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Power moments of the error term in the approximate
functional equation for ζ2(s)

by

Aleksandar Ivić (Beograd)

Let as usual s = σ+it be a complex variable, d(n) the number of divisors
of n, and ζ(s) the Riemann zeta-function. One may consider (see e.g. Th. 4.2
of [3])

R

(
s;

t

2π

)
:= ζ2(s)−

∑′

n≤t/(2π)

d(n)n−s − χ2(s)
∑′

n≤t/(2π)

d(n)ns−1

(0 ≤ σ ≤ 1)

as the error term in the approximate functional equation for ζ2(s), where

χ(s) = ζ(s)/ζ(1− s) = 2sπs−1 sin(πs/2)Γ (1− s) .

In his important works [10], [11] Y. Motohashi established a very precise
formula for the function R(s; t/(2π)), which connects it with

∆(x) :=
∑′

n≤x

d(n)− x(log x + 2γ − 1)− 1/4 ,

the error term in the classical divisor problem. Here γ is Euler’s constant,
and in general

∑′
n≤y denotes that the last term in the sum is to be halved

if y is an integer. In particular, Motohashi has shown that

(1) χ(1− s)R
(

s;
t

2π

)
= −

√
2
(

t

2π

)−1/2

∆

(
t

2π

)
+ O(t−1/4) .

By using (1) and the author’s bounds (see [2] or Ch. 13 of [3])

(2)
T∫

1

|∆(x)|A dx �
{

T 1+A/4+ε, 0 ≤ A ≤ 35/4,
T 19/54+35A/108+ε, A ≥ 35/4,
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Voronöı formula for the divisor problem.
Research financed by the Mathematical Institute of Belgrade.



138 A. Ivi ć

I. Kiuchi [7] obtained the bounds

(3)
T∫

1

∣∣∣∣R(
1
2

+ it;
t

2π

)∣∣∣∣A dt �
{

T 1−A/4+ε, 0 ≤ A ≤ 4,
1, A ≥ 4.

Here, as usual, both f(x) = O(g(x)) and f(x) � g(x) mean that |f(x)| ≤
Cg(x) for x ≥ x0, g(x) > 0 and some C > 0. In the special case A = 2 a
precise result may be obtained. Kiuchi and Matsumoto [8] obtained

(4)
T∫

1

∣∣∣∣R(
1
2

+ it;
t

2π

)∣∣∣∣2 dt =
√

2π
{ ∞∑

n=1

d2(n)h2(n)n−1/2
}

T 1/2 + F (T )

with F (T ) = O(T 1/4 log T ), and I. Kiuchi improved this in [6] to F (T ) =
O(log5 T ). In (4) the function h(n) is defined as

(5) h(n) =
(

2
π

)1/2 ∞∫
0

(y + nπ)−1/2 cos(y + π/4) dy .

Two integrations by parts give

h(n) =
(

2
π

)1/2{
− (2πn)−1/2 + (2πn)−3/2

−3
4

∞∫
0

(y + nπ)−5/2 cos(y + π/4) dy

}
,

which easily yields

(6) h(n) = −n−1/2

π
+

n−3/2

2π2
+ O(n−5/2) , h(n) < 0 (n ∈ N) ,

so that the series in (4) converges, since d(n) � nε for any ε > 0.
The object of this note is to improve (3), and at the same time to indicate

how a simple proof of (4) with F (T ) = O(log5 T ) may be obtained. The
results are contained in the following

Theorem. Let A ≥ 0 be a given constant. For 0 ≤ A < 4 there exists a
positive constant C(A) such that

(7)
T∫

1

∣∣∣∣R(
1
2

+ it;
t

2π

)∣∣∣∣A dt ∼ C(A)T 1−A/4 (T →∞) .

Moreover , there exist effectively computable constants B > 0 and D such
that , for any ε > 0,

(8)
T∫

1

∣∣∣∣R(
1
2

+ it;
t

2π

)∣∣∣∣4 dt = B log T + D + O(T ε−1/23) ,
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and for A > 4

(9)
T∫

1

∣∣∣∣R(
1
2

+ it;
t

2π

)∣∣∣∣A dt = D(A) + O(E(T,A)) ,

where

(10) D(A) =
∞∫

1

∣∣∣∣R(
1
2

+ it;
t

2π

)∣∣∣∣A dt

is finite and positive, and

(11) E(T,A) =
{

T 1−A/4, 4 < A < 28/3,
T (4−2A)/11+ε, A ≥ 28/3.

P r o o f. We begin with the case A > 4, which is not difficult to settle.
Instead of (2) we may use the bounds

T∫
1

|∆(x)|A dx �
{

T 1+A/4+ε, 0 ≤ A ≤ 28/3,
T 1+7(A−2)/22+ε, A ≥ 28/3.

This result is obtained in the same way as (2) was obtained, only instead of
∆(x) � x35/108+ε one uses the sharper estimate ∆(x) � x7/22+ε of Iwaniec
and Mozzochi [5], e.g. in (13.71) of [3] and in the estimate that follows it.
Moreover, from the proof of D. R. Heath-Brown [1] one obtains then

(12)
T∫

1

|∆(x)|A dx �
{

T 1+A/4, 0 ≤ A < 28/3,
T 1+7(A−2)/22+ε, A ≥ 28/3,

and in the bound for A ≥ 28/3 one could actually replace T ε by a suitable
power of the logarithm. Since |χ(1/2± it)| = 1, it follows from (1) and (12)
that

2Y∫
Y

∣∣∣∣R(
1
2

+ it;
t

2π

)∣∣∣∣A dt � Y 1−A/4 + Y −A/2
2Y∫

Y

|∆(y)|A dy � E(Y, A) .

This easily yields (9), since both exponents of T in the definition (11) of
E(T,A) are negative for A > 4.

To obtain the remaining results of the Theorem it is necessary to use the
classical Voronöı formula for ∆(x) (see Ch. 3 of [3]), namely

(13) ∆(x) = (π
√

2)−1x1/4
∞∑

n=1

d(n)n−3/4 cos(4π
√

xn− π/4) + O(x−1/4) ,

which in truncated form may be written as

(14) ∆(x) = (π
√

2)−1x1/4
∑
n≤N

d(n)n−3/4 cos(4π
√

xn− π/4)

+ O(xε + x1/2+εN−1/2)
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for any given ε > 0, and 1 ≤ N ≤ xC , where C > 0 is any fixed number. The
key idea, suggested by (1), is to make the connection between the functions
R(·) and ∆(·) in such a way that the appropriate analogues of (13) and (14)
may by obtained for R(·). The relation (1) is too weak for this purpose,
and we shall use the following formula which follows from Motohashi’s work
(e.g. pp. 74–75 of [11]):

(15) χ

(
1
2
− it

)
R

(
1
2

+ it;
t

2π

)
= −

√
2
(

t

2π

)−1/2

∆

(
t

2π

)

+ (π
√

2)−1

(
t

2π

)−1/2(1
6

log
(

t

2π

)
+

γ

3
+ 1

)

+ (2π)−1/2

(
t

2π

)−1/4 ∞∑
n=1

d(n)n−1/4h1(n) cos(2
√

2πtn− π/4)

+ O(t−3/4) ,

where

h1(n) :=
∞∫

0

(y + nπ)−3/2 cos(y − π/4) dy � n−3/2 .

Now we define

(16) g(t) := t1/2χ

(
1
2
− it

)
R

(
1
2

+ it;
t

2π

)
,

so that g(t) is real for t real, and

(17) |g(t)| = t1/2

∣∣∣∣R(
1
2

+ it;
t

2π

)∣∣∣∣ .

Noting that an integration by parts gives

h1(n) =
(

2
πn

)1/2

+ (2π)1/2h(n) ,

where h(n) is given by (5), we deduce from (13) and (15) that

(18) g(t)− (6
√

π)−1

(
log

t

2π
+ 2γ + 6

)
= (2πt)1/4

∞∑
n=1

d(n)h(n)n−1/4 cos(2
√

2πtn− π/4) + O(t−1/4) .
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On the other hand, by using (14) and the fact that∑
n>N

d(n)n−1/4h1(n) cos(2
√

2πtn− π/4) � N−3/4 log N ,

we obtain from (15), for 1 ≤ N ≤ tC ,

(19) g(t)− (6
√

π)−1

(
log

t

2π
+ 2γ + 6

)
= (2πt)1/4

∑
n≤N

d(n)h(n)n−1/4 cos(2
√

2πtn− π/4)

+ O(tε + t1/2+εN−1/2) .

If we now set

(20) G(t) := g(t)− (6
√

π)−1

(
log

t

2π
+ 2γ + 6

)
,

then the analogy between ∆(x) and G(t) is indeed striking: (13) corresponds
to (18) and (14) to (19), only the scaling factors are different and n−3/4 is
replaced by

n−1/4h(n) ∼ −π−1n−3/4 .

Thus essentially the results on ∆(x) based only on the use of (13) and (14)
have their counterparts for G(t), and through the use of (16) and (20) one
can then obtain the corresponding results for R(1/2 + it; t/(2π)). To stress
our point, note that the result

∆(x)−∆(y) � (x + y)ε(|x− y|+ 1) (x, y ≥ 1) ,

which follows trivially from d(n) � nε and the definition of ∆(x), does not
seem obtainable by (13) or (14). Thus we cannot infer automatically the
corresponding bound

G(x)−G(y) � (x + y)ε(|x− y|+ 1) (x, y ≥ 1)

for G(t) (or g(t)). Indeed, it is not obvious how the last bound can be
proved.

After the above discussion it is easy to see why (4) holds with F (T ) =
O(log5 T ). Namely T. Meurman [9] proved

(21)
X∫

1

∆2(x) dx =
ζ4(3/2)
6π2ζ(3)

X3/2 + R(X)

with R(X) = O(X log5X). This was obtained much earlier by K.-C. Tong
[13], but Meurman’s method is substantially simpler than Tong’s. E. Preiss-
mann [12] indicated how at one place in the proof a variant of Hilbert’s in-
equality may be used to save a further log-power, so that now even R(X) =
O(X log4X) is known. Since the works of Meurman and Preissmann use



142 A. Ivi ć

only (13) and (14), it follows that the analogue of (21) may be obtained
for G(t), and this will be

(22)
T∫

1

G2(t) dt = A1T
3/2 + R1(T ) , R1(T ) = O(T log4 T ) ,

with the value

A1 =
√

2π

3

∞∑
n=1

d2(n)h2(n)n−1/2 .

From (20) and (22) one obtains
T∫

1

g2(t) dt =
T∫

1

G2(t) dt + (3
√

π)−1
T∫

1

G(t)
(

log
t

2π
+ 2γ + 6

)
dt

+ (36π)−1
T∫

1

(
log

t

2π
+ 2γ + 6

)2

dt

= A1T
3/2 + R2(T ) ,

say, where

(23) R2(T ) = R1(T ) + O(T 3/4 log T ) + (36π)−1
T∫

1

(
log

t

2π
+ 2γ + 6

)2

dt ,

since by the first derivative test (Lemma 2.1 of [3]) one easily finds that

(24) H(T ) :=
T∫

1

G(t)
(

log
t

2π
+ 2γ + 6

)
dt � T 3/4 log T .

Thus we have R2(T ) = O(T log4 T ), so that (17) and integration by parts
give

T∫
1

∣∣∣∣R(
1
2

+ it;
t

2π

)∣∣∣∣2 dt = 3A1T
1/2 + F (T )

with

(25) F (T ) = R2(T )T−1 −R2(1)− 3A1 +
T∫

1

R2(t)t−2 dt .

Hence the bound R2(T ) = O(T log4 T ) gives immediately (4) with F (T ) =
O(log5 T ), obtained by I. Kiuchi [6], whose proof is much more involved, as
it reproduces the details of the method of Meurman and Preissmann. Note
also that if

R1(T ) = o(T log2 T ) (T →∞)
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could be proved, then from (23) and (25) it would follow that

F (T ) =
(

1
108π

+ o(1)
)

log3 T (T →∞) .

This would mean the appearance of a new main term in (4), and a similar
observation was made by Kiuchi [6]. It may also be remarked that by the
method of [4] it follows that there exist constants B1, B2 > 0 such that for
T ≥ T0 every interval [T, T + B1T

1/2] contains points t1, t2 such that

H(t1) > B2t
3/4
1 log t1 , H(t2) < −B2t

3/4
2 log t2 ,

where H(t) is defined by (24), and a sharp mean square formula for H(t) may
be also derived. This observation coupled with the bound in (24) prompts
one to state the optimistic conjecture that

(26)
T∫

1

∣∣∣∣R(
1
2

+ it;
t

2π

)∣∣∣∣2 dt

= 3A1T
1/2 + a0 log3 T + a1 log2 T + a2 log T + a3 + O(T ε−1/4)

holds with any ε > 0, and effectively computable constants a0, a1, a2 and a3.
We return now to the proof of the Theorem. K.-M. Tsang [14] recently

proved

(27)
X∫

1

∆4(x) dx = 3c2(64π4)−1X2 + O(X45/23+ε)

with

(28) c2 =
∞∑

k,l,m,n=1

k1/2+l1/2=m1/2+n1/2

(klmn)−3/4d(k)d(l)d(m)d(n) ,

which he showed to be a convergent series. Tsang’s proof is entirely based
on (14), hence we may follow it to derive the corresponding result for g(t),
which will be

(29)
T∫

1

g4(t) dt =
3π

8
c3T

2 + U(T ) , U(T ) = O(T 45/23+ε) ,

where

(30)

c3 :=
∞∑

k,l,m,n=1

k1/2+l1/2=m1/2+n1/2

(klmn)−1/4h(k)h(l)h(m)h(n)d(k)d(l)d(m)d(n) .
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Since h(n) < 0 and h(n) � n−1/2, one shows that c3 is finite and positive in
the same way as Tsang did for c2 in (28). Using (17) and integrating (29)
by parts we easily obtain (8) with

B =
3πc3

4
> 0 , D = 2

∞∫
1

U(t)
t3

dt− U(1) .

Let now 0 ≤ A < 4. From (4), (29) and Hölder’s inequality for integrals
it follows that

(31) T 1−A/4 �
T∫

1

∣∣∣∣R(
1
2

+ it;
t

2π

)∣∣∣∣A dt � T 1−A/4 (0 ≤ A < 4) .

D. R. Heath-Brown [1] proved the existence of

lim
X→∞

X−1−k/4
X∫

1

|∆(x)|k dx

for 0 ≤ k ≤ 9 by a general method. In view of (17) and (31) this method
gives, when applied to g(t), the existence of

lim
T→∞

T−1−k/4
T∫

1

|g(t)|k dt

for 0 ≤ k < 4. From (17) and integration by parts we deduce that

C(A) = lim
T→∞

TA/4−1
T∫

1

∣∣∣∣R(
1
2

+ it;
t

2π

)∣∣∣∣A dt

exists for 0 ≤ A < 4. Since (31) holds we obtain C(A) > 0, hence (7) is
proved.
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[2] A. Iv i ć, Large values of the error term in the divisor problem, Invent. Math. 71
(1983), 513–520.

[3] —, The Riemann Zeta-function, Wiley, New York, 1985.
[4] —, Large values of certain number-theoretic error terms, Acta Arith. 56 (1990),

135–159.
[5] H. Iwaniec and C. J. Mozzochi, On the divisor and circle problems, J. Number

Theory 29 (1988), 60–93.
[6] I. Kiuchi, An improvement on the mean value formula for the approximate func-

tional equation of the square of the Riemann zeta-function, ibid., to appear.
[7] —, Power moments of the error term for the approximate functional equation of the

Riemann zeta-function, Publ. Inst. Math. (Beograd) 52 (66) (1992), in print.



Power moments of the error term 145

[8] I. Kiuchi and K. Matsumoto, Mean value results for the approximate functional
equation of the square of the Riemann zeta-function, Acta Arith. 61 (1992), 337–345.

[9] T. Meurman, On the mean square of the Riemann zeta-function, Quart. J. Math.
Oxford Ser. (2) 38 (1987), 337–343.

[10] Y. Motohash i, A note on the approximate functional equation for ζ2(s), Proc.
Japan Acad. Ser. A 59 (1983), 393–396 and II , ibid. 469–472.

[11] —, Lectures on the Riemann–Siegel Formula, Ulam Seminar, Dept. Math., Colorado
University, Boulder, 1987.

[12] E. Pre i s smann, Sur la moyenne quadratique du terme de reste du problème du
cercle, C. R. Acad. Sci. Paris 306 (1988), 151–154.

[13] K.-C. Tong, On divisor problem III , Acta Math. Sinica 6 (1956), 515–541 (in
Chinese).

[14] K.-M. Tsang, Higher power moments of ∆(x), E(t) and P (x), Proc. London Math.
Soc. (3) 65 (1992), 65–84.

KATEDRA MATEMATIKE RGF-A

UNIVERSITETA U BEOGRADU
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