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1. Introduction. Often, when considering the integral over the minor
arcs in the Hardy–Littlewood circle method, one resorts to bounding the
number of solutions of an underlying diophantine equation. If such a calcu-
lation is not contingent upon the structure of the underlying sets to which
the variables are restricted, one may save a power of a logarithm in the con-
sidered error term by thinning the sets over which the variables lie to ones of
smaller cardinality. The main result of this paper is the following theorem
concerning the minor arc estimate associated with the representation of an
integer by eight cubes from (ostensibly) arbitrary sets.

Theorem. Suppose that m ⊆ [0, 1],

Gi(α) =
∑
n∈Gi

e(αn3), Gi ⊆ [1, P ] ∩ Z ,

and that , for some γ,

sup
α∈m

|G1(α)| � P 3/4(log P )γ .

Then, for any ε > 0,∫
m

8∏
i=1

|Gi(α)| dα � P 5(log P )ε−3 .

This result is achieved through the use of a rather general “reduction”
lemma (Lemma D). It may well be the case that lemma will prove of greater
interest than the above theorem. For practical purposes, restrictions need
be placed on such sets Gi. They should possess suitably reasonable distri-
bution properties (e.g. analogues of the Siegel–Walfisz Theorem) so that
the major arcs can be readily handled (the generating functions Gi(α) may
be well-approximated) to obtain asymptotic formulae. Additionally, the Gi

should be sufficiently dense (else the minor arc bound as in the Theorem will
overwhelm the major arc contribution). Of course a Weyl-type minor arc es-
timate superior to the one given above would lead to much more satisfactory
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conclusions. The argument presented herein is limited to the case of eight
cubes, but a much more general result may be constructed. We intend to
provide such a method in a sequel paper. The techniques that are involved
for higher powers are quite different and it is therefore more appropriate to
consider them separately.

We provide two applications of our technique—first improving upon the
error term as deduced by Vaughan [6] in his important paper that established
the asymptotic formula for eight cubes.

Corollary 1. The number of representations, r8,3(n), of n as the sum
of eight cubes of positive integers satisfies, for every ε > 0,

r8,3(n) = S8,3(n)
Γ (4/3)8

Γ (8/3)
n5/3 + O(n5/3(log n)ε−3) .

Here S8,3(n) is the usual singular series satisfying 1 � S8,3(n) � 1 (see,
for example, [5, Theorem 4.6]). Vaughan [6] proved the asymptotic formula
with an error of order (log n)4/π−2+ε smaller than the main term. The power
of the logarithm in his result may be improved to ε − 1 by employing the
sharp results of Hall and Tenenbaum for Hooley’s ∆ function (see [2]).

Roth [4] has proved that all large integers are the sum of a cube and seven
cubes of primes. He does not, however, establish any asymptotic formulae.
Our methods do provide asymptotic results, but for a fewer number of prime
cubic summands.

Corollary 2. The number of representations, R6,2(n), of n as the sum
of six cubes of positive integers and two cubes of primes satisfies

R6,2(n) = S(n)Cn5/3(log n)−2 + O(n5/3(log n)ε−3)

where C is an absolute positive constant ,

S(n) =
∞∑

q=1

q∑
a=1

(a,q)=1

q−6φ(q)−2S(q, a)6S∗(q, a)2e
(
− an

q

)
,

φ(q) is Euler’s totient function, and

S(q, a) =
q∑

r=1

e

(
ar3

q

)
, S∗(q, a) =

q∑
r=1

(r,q)=1

e

(
ar3

q

)
.

The proof of Lemma D is based upon a lecture of R. C. Vaughan given at
the University of Michigan in 1989. Lemma D, in its fundamental form, is
an iterative base for the technique introduced by Vaughan [6] to obtain the
asymptotic formula for eight cubes and exploited more fully in [7] to discern
the veracity of the asymptotic formula for 2k kth powers when k > 3.
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2. Notation. As usual, ε denotes a sufficiently small positive number
(which may change from one occurrence to the next), � and � denote
Vinogradov’s well-known notation (where implicit constants are functions
of, at most, ε and % unless otherwise specified), and e(x) = exp(2πix). We
shall also assume that n is large (in terms of ε) and that

F (α) =
P∑

n=1

e(αn3) ,

the standard generating function for cubes, and that

Gi(α) =
∑
n∈Gi

e(αn3), Gi ⊆ [1, P ] ∩ Z .

3. A reduction lemma. For primes p and for fixed % let

X = X (%) = {1 ≤ n ≤ P : p |n implies p 6∈ ((log P )%, P 1/7]} .

We presently record several lemmata for future reference.

Lemma A (Hooley, [3, Theorem 2]). We have
1∫

0

|F (α)|4 dα � P 2 .

Lemma B (Vaughan, [6, Theorem 2]). We have
1∫

0

|F (α)|8 dα � P 5 .

Lemma C (Vaughan, [6, Lemma 5]). Let E denote the number of solu-
tions of

x3
1 + m3(y3

1 + y3
2) = x3

2 + m3(y3
3 + y3

4)
where 1 ≤ xi ≤ P , 1 ≤ yi ≤ P/M , M < m ≤ 2M , (xi,m) = 1, and
M ≤ P 1/7. Then

E � P 7/2M−9/2(log P )5 .

We now present the main result of this section.

Lemma D. Suppose that m ⊆ [0, 1] and that , for some γ > 0,

sup
α∈m

|G3(α)| � P 3/4(log P )γ .
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If % is sufficiently large, for any fixed δ > 0,∫
m

8∏
i=1

|Gi(α)| dα

�
2∏

i=1

( ∫
m

∣∣∣ ∑
n∈X (%)∩Gi

e(αn3)
∣∣∣2 8∏

j=3

|Gj(α)| dα
)1/2

+ P 5(log P )−δ .

P r o o f. Let Bi be subsets of [1, P ] for i = 1, 2, . . . , 8 and set

Hi(α) =
∑
n∈Bi

e(αn3) .

By Hölder’s inequality,∫
m

8∏
i=1

|Hi(α)| dα ≤
8∏

i=1

( ∫
m

|Hi(α)|8 dα
)1/8

.

Extending the range of integration and considering the underlying diophan-
tine equations,∫

m

|Hi(α)|8 dα ≤
1∫

0

|Hi(α)|8 dα ≤
1∫

0

|F (α)|8 dα

so, by Lemma B,

(3.1)
∫
m

8∏
i=1

|Hi(α)| dα � P 5 .

By the Cauchy–Schwarz inequality,∫
m

8∏
i=1

|Gi(α)| dα ≤
2∏

i=1

( ∫
m

|Gi(α)|2
8∏

j=3

|Gj(α)| dα
)1/2

so, by (3.1), it suffices to establish that for i = 1 and i = 2,

(3.2)
∫
m

|Gi(α)|2
8∏

j=3

|Gj(α)| dα

�
∫
m

|Ĝi(α)|2
8∏

j=3

|Gj(α)| dα + P 5(log P )−2δ

where we define

Ĝi(α) =
∑

n∈X∩Gi

e(αn3) .
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Without loss of generality we fix i to be 1. Set

A = {(x, y) ∈ G1 × G1 : (x, y) > (log P )%} ,

B = {(x, y) ∈ G1 × G1 : (x, y) ≤ (log P )%, x 6∈ X} ,

C = {(x, y) ∈ G1 × G1 : (x, y) ≤ (log P )%, x ∈ X , y 6∈ X} ,

D = {(x, y) ∈ G1 × G1 : (x, y) ≤ (log P )%, x ∈ X , y ∈ X} .

Clearly A, B, C, and D partition G1 × G1 so that

|G1(α)|2 =
∑

x,y∈G1

e(α(x3 − y3))

=
( ∑

(x,y)∈A

+
∑

(x,y)∈B

+
∑

(x,y)∈C

+
∑

(x,y)∈D

)
e(α(x3 − y3)) .

We now define, for any subset S of G1 × G1,

J (S) =
∫
m

∑
(x,y)∈S

e(α(x3 − y3))
8∏

j=3

|Gj(α)| dα .

The integral on the left-hand side of (3.2) (for i = 1) is thus equal to
J (A) + J (B) + J (C) + J (D).

We first consider J (A). By the triangle inequality,

J (A) ≤
∑

d>(log P )%

∫
m

∣∣∣ ∑
(dx,dy)∈A
(x,y)=1

e(αd3(x3 − y3))
∣∣∣ 8∏

j=3

|Gj(α)| dα

and, by Hölder’s inequality, this is at most∑
d>(log P )%

( ∫
m

∣∣∣ ∑
(dx,dy)∈A
(x,y)=1

e(αd3(x3 − y3))
∣∣∣4dα

)1/4 8∏
j=3

( ∫
m

|Gj(α)|8 dα
)1/8

.

Using (3.1) and extending the range of integration we find that

J (A) � P 15/4
∑

d>(log P )%

( 1∫
0

∣∣∣ ∑
(dx,dy)∈A
(x,y)=1

e(αd3(x3 − y3))
∣∣∣4dα

)1/4

.

Bounding the number of solutions of the underlying diophantine equation,
we see that

1∫
0

∣∣∣ ∑
(dx,dy)∈A
(x,y)=1

e(αd3(x3 − y3))
∣∣∣4 dα

is at most

#{x3
1 − y3

1 + x3
2 − y3

2 = x3
3 − y3

3 + x3
4 − y3

4 : xi ≤ P/d, yi ≤ P/d}
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which is equal to
1∫

0

∣∣∣ ∑
n≤P/d

e(αn3)
∣∣∣8 dα .

By Lemma B this is � (P/d)5. It follows that

(3.3) J (A) � P 5
∑

d>(log P )%

d−5/4 � P 5(log P )−%/4 .

We now turn our attention to J (B). By assumption,

J (B) � P 3/4(log P )γ
∫
m

∣∣∣ ∑
(x,y)∈B

e(α(x3 − y3))
∣∣∣ 8∏

j=4

|Gj(α)| dα .

Upon replacing the range of integration by a unit interval and applying
Hölder’s inequality we find that J (B) is

� P 3/4(log P )γ
( 1∫

0

∣∣∣ ∑
(x,y)∈B

e(α(x3 − y3))G4(α)
∣∣∣2dα

)1/2

×
8∏

j=5

( 1∫
0

|Gj(α)|8dα
)1/8

.

Replacing G4(α) by F (α) above majorizes the number of solutions of the
underlying equation. It follows from this and (3.1) that

(3.4) J (B) � P 13/4(log P )γ
( 1∫

0

∣∣∣ ∑
(x,y)∈B

e(α(x3 − y3))
∣∣∣2|F (α)|2dα

)1/2

.

The integral in (3.4) is equal to the number of solutions of

(3.5) x3
1 − y3

1 + z3
1 = x3

2 − y3
2 + z3

2

with xj ∈ G1, yj ∈ G1, 1 ≤ zj ≤ P , and (xj , yj) ≤ (log P )% where both
x1 and x2 have prime factors in the interval Q = ((log P )%, P 1/7]. Thus
xj may be written in the form xj = njmj where mj is a prime in Q and
(mj , yj) = 1. Set

fm(α) =
P∑

y=1
(y,m)=1

e(αy3), gm(α) =
∑

1≤u≤P/m

e(αu3) .

Then ∑
m1,m2∈Q

1∫
0

fm1(−α)gm1(αm3
1)fm2(α)gm2(−αm3

2)|F (α)|2 dα
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is the number of solutions of

u3
1m

3
1 − y3

1 + z3
1 = u3

2m
3
2 − y3

2 + z3
2

with mj ∈ Q, 1 ≤ yj ≤ P , (yj ,mj) = 1, 1 ≤ zj ≤ P , and 1 ≤ uj ≤ P/mj .
This majorizes the quantity in (3.5). By the Cauchy–Schwarz inequality,
the latter quantity is at most∑

m1,m2∈Q

( 1∫
0

|fm1(α)gm1(αm3
1)F (α)|2 dα

)1/2

×
( 1∫

0

|fm2(α)gm2(αm3
2)F (α)|2 dα

)1/2

=
( ∑

m∈Q

( 1∫
0

|fm(α)gm(αm3)F (α)|2 dα
)1/2)2

.

Combining this with (3.4) we deduce that

J (B) � P 13/4(log P )γ
∑
m∈Q

( 1∫
0

|fm(α)gm(αm3)F (α)|2 dα
)1/2

.

By the Cauchy–Schwarz inequality, the integral above is

(3.6) �
( 1∫

0

|fm(α)|2|F (α)|4 dα
)1/2( 1∫

0

|gm(αm3)|4|fm(α)|2 dα
)1/2

.

By considering the underlying diophantine equation, the first integral in
(3.6) is bounded by

1∫
0

|F (α)|6 dα ≤
( 1∫

0

|F (α)|4 dα
)1/2( 1∫

0

|F (α)|8 dα
)1/2

.

Using Lemmata A and B, we conclude that

(3.7) J (B) � P 33/8(log P )γ
∑
m∈Q

( 1∫
0

|gm(αm3)|4|fm(α)|2 dα
)1/4

.

Set M0 = (log P )% and, for t > 0, Mt = 2Mt−1. We decompose Q into
dyadic blocks Mt = (Mt−1,Mt]. By Hölder’s inequality,

(3.8)
∑

m∈Mt

( 1∫
0

|gm(αm3)|4|fm(α)|2 dα
)1/4

≤ M
3/4
t−1

( ∑
m∈Mt

1∫
0

|gm(αm3)|4|fm(α)|2 dα
)1/4

.
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The sum on the right-hand side of (3.8) is equal to the number of solutions
of

m3(u3
1 + u3

2) + y3
1 = m3(u3

3 + u3
4) + y3

2

with 1 ≤ uj ≤ P/m, (yj ,m) = 1, 1 ≤ yj ≤ P , and m ∈ Mt. Since
uj ≤ P/m < P/Mt−1, it follows from Lemma C combined with (3.7) and
(3.8) that

J (B) � P 33/8(log P )γ
∑

t

M
3/4
t−1(P

7/2M
−9/2
t−1 (log P )5)1/4(3.9)

� P 5(log P )γ+5/4−3%/8 .

Upon interchanging the rôles of x and y, it is clear that J (C) may be
treated in a manner identical to that of J (B)—leading to the bound

(3.10) J (C) � P 5(log P )γ+5/4−3%/8 .

We now consider the final piece, J (D). We first observe that

J (D) =
∫
m

|Ĝ1(α)|2
8∏

j=3

|Gj(α)| dα(3.11)

−
∑

d>(log P )%

∫
m

∑
x,y∈X∩G1
(x,y)=d

e(α(x3 − y3))
8∏

j=3

|Gj(α)| dα .

After extending the range of integration, the second integral in (3.11), by
Hölder’s inequality, has absolute value at most

(3.12)
( 1∫

0

∣∣∣ ∑
x,y∈X∩G1
(x,y)=d

e(α(x3 − y3))
∣∣∣4dα

)1/4 8∏
j=3

( 1∫
0

|Gj(α)|8 dα
)1/8

and the first integral in (3.12) is equal to the number of solutions of

x3
1 − y3

1 + x3
2 − y3

2 = x3
3 − y3

3 + x3
4 − y3

4

with xi and yi in X ∩G1 and (xj , yj) = d. This is no more than the number
of solutions of the same equation with xi and yi at most P/d. It follows from
these observations and (3.1) that the second integral in (3.11) has absolute
value at most

P 15/4
( 1∫

0

∣∣∣ ∑
n≤P/d

e(αn3)
∣∣∣8 dα

)1/4

.

By Lemma B this is � P 5d−5/4. Summing over d we conclude that

(3.13) J (D) =
∫
m

|Ĝ1(α)|2
8∏

j=3

|Gj(α)| dα + O(P 5(log P )−%/4) .
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Combining this with (3.2), (3.3), (3.9), and (3.10), Lemma D is proved
upon taking

% ≥ max(8δ, 1
3 (16δ + 10 + 8γ)) .

4. General treatments. In order to prove the Theorem we need the
following bound.

Lemma E (Vaughan, [7, §2]). Let

F̂ (α) =
∑
n∈X

e(αn3) .

Then
1∫

0

|F̂ (α)|8 dα � P 5(log P )ε−3 .

(Vaughan [7] gives a more general treatment for kth powers.)

P r o o f o f t h e T h e o r e m. Put

I =
∫
m

8∏
i=1

|Gi(α)| dα .

By Hölder’s inequality,

(4.1) I ≤
8∏

j=2

( ∫
m

|G1(α)||Gj(α)|7 dα
)1/7

.

It suffices to treat
Ij =

∫
m

|G1(α)||Gj(α)|7 dα .

By Lemma D, for any δ,

Ij �
∫
m

|Ĝj(α)|2|G1(α)||Gj(α)|5 dα + P 5(log P )−δ .

By Hölder’s inequality,

Ij �
( ∫

m

|Ĝj(α)|7|G1(α)| dα
)2/7( ∫

m

|Gj(α)|7|G1(α)| dα
)5/7

+ P 5(log P )−δ

= I
5/7
j

( ∫
m

|Ĝj(α)|7|G1(α)| dα
)2/7

+ P 5(log P )−δ ,

whence
Ij �

∫
m

|Ĝj(α)|7|G1(α)| dα + P 5(log P )−δ
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(where we have altered the value of δ without apology). Applying Hölder’s
inequality again,

Ij �
( ∫

m

|Ĝj(α)|8 dα
)7/8( ∫

m

|G1(α)|8dα
)1/8

+ P 5(log P )−δ .

Extending the range of integration on the first integral we obtain∫
m

|Ĝj(α)|8 dα ≤
1∫

0

|Ĝj(α)|8 dα .

As Gj ∩ X ⊆ X , we find that, upon comparing the underlying diophantine
equations,

(4.2)
1∫

0

|Ĝj(α)|8 dα ≤
1∫

0

|F̂ (α)|8 dα .

It follows from Lemma E that

(4.3) Ij � P 35/8(log P )−21/8+ε
( ∫

m

|G1(α)|8 dα
)1/8

+ P 5(log P )−δ .

To treat the integral in (4.3), we employ Lemma D to find that

I1 =
∫
m

|G1(α)|8 dα �
∫
m

|Ĝ1(α)|2|G1(α)|6 dα + P 5(log P )−δ .

By Hölder’s inequality we conclude that

I1 � I
3/4
1

( ∫
m

|Ĝ1(α)|8 dα
)1/4

+ P 5(log P )−δ ,

whence, for a different δ,

I1 �
∫
m

|Ĝ1(α)|8 dα + P 5(log P )−δ .

Using the treatment already provided, we have, from Lemma E,

I1 � P 5(log P )ε−3 .

Placing this bound in (4.3) and (4.1), the Theorem is proved.

The quantity bounded in Lemma E,
1∫

0

|F̂ (α)|8 dα ,

is equal to

J = #{xi ∈ X : x3
1 + x3

2 + x3
3 + x3

4 = x3
5 + x3

6 + x3
7 + x3

8} .
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By utilizing sieve techniques (see [1, Theorem 3.4]),

#X � P log log P

log P
.

We therefore expect that J � P 5(log P )ε−8. This is likely to be very diffi-
cult. The author gladly offers a pony for a proof of this assertion.

The proof of the Theorem is especially wasteful if the cardinality of Gi∩X
is appreciably smaller than that of X . If this is the case, an amended form
of Lemma E may provide more desirable results when implemented in (4.2).

Before we apply the Theorem, we need a suitable minor arc estimate.
The following result of Vaughan is sufficient for the applications that we
shall consider.

Lemma F (Vaughan, [6, Lemma 1]). Let

m =
{

α :
∣∣∣∣α− a

q

∣∣∣∣ ≤ 1
qP 9/4

with (a, q) = 1 implies q > P 3/4

}
.

Then, uniformly for α ∈ m,

F (α) � P 3/4(log P )1/π+ε .

The exponent 1/π in Lemma F may be reduced to 1/4 by employing
bounds of Hall and Tenenbaum (see [2]) in the argument of Vaughan.

5. Proof of Corollary 1. Our choice for the generating functions Gi(α)
in the Theorem is to set them all equal to F (α). The minor arc integral
corresponds to r8,3(n), the number of representations of n as the sum of
eight positive cubes. As usual, let P = [n1/3]. By Dirichlet’s theorem, for
any real α we can find integers a and q with (a, q) = 1 and 1 ≤ q ≤ P 9/4

where ∣∣∣∣α− a

q

∣∣∣∣ ≤ 1
qP 9/4

.

Set

M(a, q) =
{

α :
∣∣∣∣α− a

q

∣∣∣∣ ≤ 1
qP 9/4

}
, M =

⋃
a,q

∗
M(a, q)

where the ∗ signifies that the union is taken over all 1 ≤ a ≤ q ≤ P 3/4 with
(a, q) = 1. Then M ⊂ V where

V =
[

1
P 9/4

, 1 +
1

P 9/4

]
.

It shall be convenient to work on V and not the unit interval [0, 1]. Let
m = V\M. We may treat the major arcs M using standard techniques (see,
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for example, [5, Chapter 2]) to obtain∫
M

F (α)8e(−nα) dα = S8,3(n)
Γ (4/3)8

Γ (8/3)
n5/3 + O(n5/3−δ)

for some explicit positive δ. By construction, every α ∈ m satisfies the
conditions of Lemma F so, by the Theorem,∫

m

F (α)8e(−nα) dα ≤
∫
m

|F (α)|8 dα � P 5(log P )ε−3 .

This completes the proof of the corollary.

6. Proof of Corollary 2. Let

G(α) =
∑
n∈P

e(αn3)

where P denotes the set of primes at most P = [n1/3]. Let M and m be as
defined in the proof of Corollary 1. Set W = (log P )12 and

N(a, q) =
{

α ∈ V :
∣∣∣∣α− a

q

∣∣∣∣ ≤ W

qP 3

}
, N =

⋃
a,q

∗
N(a, q)

where the ∗ signifies the union is taken over all 1 ≤ a ≤ q ≤ W with
(a, q) = 1. The N(a, q) are disjoint and N ⊆ M. Let n = M \N, the pruned
sections of the major arcs N. Then

R6,2(n) =
1∫

0

G(α)2F (α)6e(−nα) dα(6.1)

=
( ∫

N

+
∫
m

+
∫
n

)
G(α)2F (α)6e(−nα) dα .

By the Theorem,

(6.2)
∫
m

|G(α)|2|F (α)|6 dα � P 5(log P )ε−3 .

By Hölder’s inequality,∫
n

|G(α)|2|F (α)|6 dα ≤
( ∫

n

|G(α)|8 dα
)1/4( ∫

n

|F (α)|8 dα
)3/4

.

Extending the range on the first integral to a unit interval and subsequently
considering the underlying diophantine equation, we find the first integral
is, by Lemma B, O(P 5). In order to treat the remaining integral over n we
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employ a result of Vaughan [8, Lemma 5.1] which provides that∫
n

|F (α)|8 dα � P 5W ε−1/3 .

Thus ∫
n

|G(α)|2|F (α)|6 dα � P 5(log P )ε−3 ,

whence, from (6.1) and (6.2),

(6.3) R6,2(n) =
∫
N

G(α)2F (α)6e(−nα) dα + O(n5/3(log n)ε−3) .

As usual, we implement auxiliary functions to approximate G(α) and F (α)
to obtain the main term on the major arcs N. Let

v∗(β) =
∑

2≤u≤P 3

u−2/3(log u)−1e(βu), v(β) =
1
3

∑
1≤u≤P 3

u−2/3e(βu) ,

and S(q, a) and S∗(q, a) be as defined in the statement of the corollary. Set

V ∗(α, q, a) = φ(q)−1S∗(q, a)v∗
(

α− a

q

)
,

V (α, q, a) = q−1S(q, a)v
(

α− a

q

)
.

By standard estimates [5, Theorem 4.1],

F (α)− V (α, q, a) � q1/2+ε ,

from which it follows that (see [5, Chapter 4])∫
N

G(α)2F (α)6e(−nα) dα

is equal to

(6.4)
W∑

q=1

q∑
a=0

(a,q)=1

∫
N(a,q)

G(α)2V (α, q, a)6e(−nα) dα + O(n5/3−δ)

for some explicit δ > 0. Following Roth [4, Lemma 2], for α ∈ N(a, q),

G(α)− V ∗(α, q, a) � Pe−c1

√
log P

for some positive constant c1 (a result which rests upon the Theorem of
Siegel–Walfisz). It follows that for α ∈ N(a, q),

G(α)2 − V ∗(α, q, a)2 � Pe−c1

√
log P (Pe−c1

√
log P + V ∗(α, q, a)) .
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From (6.3) and (6.4) we conclude that

R6,2(n) =
W∑

q=1

q∑
a=1

(a,q)=1

∫
N(a,q)

V ∗(α, q, a)2V (α, q, a)6e(−nα) dα

+ O(K(n) + n5/3(log n)ε−3)

where

K(n) =
W∑

q=1

q∑
a=0

(a,q)=1

∫
N(a,q)

Pe−c1

√
log P

× (Pe−c1

√
log P + |V ∗(α, q, a)|) |V (α, q, a)|6 dα .

By a direct calculation, K(n) � n5/3(log n)−% for every % > 0. It follows
that

R6,2(n) =
W∑

q=1

q∑
a=1

(a,q)=1

q−6φ(q)−2S(q, a)6S∗(q, a)2

× e

(
− an

q

) W/qP 3∫
−W/qP 3

v∗(β)2v(β)6e(−nβ) dβ+O(n5/3(log n)ε−3).

We complete the proof of Corollary 2 by appealing to classical techniques
(see [5, Chapter 2]). We first extend the sum on q to infinity and the range
of integration to infinity (with acceptable error). The result then follows
standard estimates for the function v(β) and straightforward calculations
involving v∗(β).

This proof of Corollary 2 was benefitted by a conversation with
T. D. Wooley.

It may be easily deduced that S(n), the singular series, satisfies S(n) �
1 (see [5, Chapter 2]). As experts in the field will realize, a delicate treatment
of the associated singular series for the representation of a number as the
sum of three cubes and the cube of a prime leads to a mean-square result
providing that the expected asymptotic formula for the representation as
the sum of three cubes and the cube of a prime holds almost always (in the
sense of natural density).
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