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1. Introduction. The new mean value estimates provided by recent
advances in Waring’s problem (see, in particular, [9, 10, 11, 14]) may plainly
be applied to improve current estimates for ‖αnk‖, the distance from αnk

to the nearest integer (which is intimately related to the fractional part
of αnk). The rather recent arrival of these new estimates has apparently
left insufficient time for workers in the field to record in the literature the
methods required to cultivate the ensuing bounds on the fractional parts of
polynomials. In this paper we intend to fill this lacuna in the literature, at
the same time providing a technical improvement to the existing methods,
this involving the use of a derivative mean value estimate. A second objec-
tive of this paper is the simplification of the bounds of [14, Lemma 3.2] to a
convenient form of the same asymptotic strength, the present bounds being
excessively unwieldy in many applications.

The investigation of the fractional parts of polynomials dates back to
the start of this century, with work of Weyl [13] and then Vinogradov [12].
Heilbronn [6] refined Vinogradov’s work, and later Danicic [3] obtained the
natural generalisation to show that when α is a real number, and k is a
natural number exceeding 1, then for each ε > 0 there is a real number
N(ε, k) such that whenever N ≥ N(ε, k), we have

min
1≤n≤N

‖αnk‖ < Nε−21−k

.

There has since been extensive work on these and related problems by a
number of authors (see, for example, [1, 2]).

In this paper we shall be concerned with the situation in which k is
large, small values of k being better dealt with elsewhere in the light of [11].
We shall require a little notation in order to describe our results. For each
s, k ∈ N, we define δs,k to be the unique positive solution of the equation

(1.1) δs,k + log δs,k = 1− 2s
k
.
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Theorem 1.1. Define σ(k) (k ≥ 4) by

σ(k) = max
s≥2

k(1− 2δs,k)
4s2 − 1

.

Let α ∈ R and ε > 0. Then there are infinitely many n ∈ N with ‖αnk‖ ≤
nε−σ(k).

A simple optimisation yields the following corollary.

Corollary 1. The conclusion of Theorem 1.1 holds with σ(k)−1 =
(γ + o(1))k, where γ = 9.0267256 . . . Here,

γ =
(ω + logω − 1)2

1− 2ω
,

where ω = 0.2818257 . . . is the unique positive solution of the equation ω +
2− ω−1 = logω.

This unlocalised result may be compared with [5, Theorem 2], where a
bound of the above form is established with γ ≈ 14.4245. By simply taking
s = k in Theorem 1.1 we deduce the following corollary.

Corollary 2. The conclusion of Theorem 1.1 holds with (kσ(k))−1 =
9.028.

Turning our attention now to localised bounds, we obtain the following
result.

Theorem 1.2. For k ≥ 4, define τ(k) by

τ(k) = max
s≥1

k − (k − 1)∆2s

4s(2k − 1)− 1−∆2s
,

where ∆s is defined for each s ∈ N from (1.1) by ∆s = kδs,k. Let α ∈ R and
ε > 0. Then there is a real number N(ε, k) such that whenever N ≥ N(ε, k),

min
1≤n≤N

‖αnk‖ ≤ Nε−τ(k) .

Corollary. The conclusion of Theorem 1.2 holds with

τ(k)−1 = 2k(log k + log log k + 2 + o(1)) .

The latter may be compared with [1, Theorem 6.2], which gives a similar
result with τ(k)−1 = 4k(log k + log log k + 3).

Our methods are based on estimates for the number, Ss(P,R), of solu-
tions of the equation

xk1 + . . .+ xks = yk1 + . . .+ yks ,

with xi, yi ∈ A(P,R), where here, and throughout,

A(P,R) = {n ≤ P : p |n, p prime ⇒ p ≤ R} .
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When R = P η, with η a sufficiently small positive number, estimates are
available for Ss(P,R) through the work of Vaughan and Wooley [9, 10, 11,
14]. In Section 2 we derive a simplification of [14, Lemma 3.2] of use in later
sections, where we shall incorporate such estimates for Ss(P,R) into the
methods of R. C. Baker [1, Chapter 6], and Heath-Brown [5, Section 5]. We
are able to obtain some further small improvements by considering bounds
for the number, Us(P,H,R), of solutions of the diophantine equation

(1.2) h1x
k
1 + . . .+ hsx

k
s = g1y

k
1 + . . .+ gsy

k
s ,

with

(1.3) 1 ≤ hi, gi ≤ H and xi, yi ∈ A(P,R) (1 ≤ i ≤ s) .

The estimate Us(P,H,R) � H2sSs(P,R) is almost immediate on applying
Hölder’s inequality. In Section 3 we will demonstrate that non-trivial esti-
mates are available in which a factor of H is saved. It is these estimates
which we apply in Sections 4 and 5 to deduce Theorems 1.1 and 1.2. We
note here that, as experts will recognise, the methods of this paper yield the
same conclusion in Theorem 1.1 with αnk replaced by αnk + β, where β is
any real number, and α is irrational.

It transpires that the estimate established in Section 2 is of sufficient
asymptotic strength to improve slightly on upper bounds in Waring’s prob-
lem. Thus, denoting by G(k) the smallest number s such that every suffi-
ciently large natural number is the sum of, at most, s kth powers of natural
numbers, in Section 6 we are able to establish the following refinement of [14,
Corollary 1.2.1].

Theorem 1.3. When k is large,

G(k) < k

(
log k + log log k + 2 + log 2 + (1 + o(1))

log log k
log k

)
.

For comparison, the bound given in the aforementioned corollary is
G(k) ≤ k(log k + log log k +O(1)).

Much of the work for this paper was completed while the author was
enjoying the hospitality of the Institute for Advanced Study, while in receipt
of NSF grant DMS-8610730, and completed with the aid of a Rackham
Faculty Fellowship at the University of Michigan. The author thanks the
referee for useful comments.

Throughout, the implicit constant in Vinogradov’s notation will depend
at most on s, k, ε and η, unless otherwise indicated, and P denotes the basic
parameter, a real number sufficiently large in terms of the latter quantities.
Also, we write [x] for the integer part of x, and e(α) for e2πiα.
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2. A new manifestation of a mean value theorem. In this section
we aim to establish a simplification of [14, Lemma 3.2], which is, moreover,
asymptotically of the same strength. The following theorem provides a
suitable result which is particularly useful when s is O(k).

Theorem 2.1. Let k ≥ 4 and t ∈ N. For each s ∈ N with 2 ≤ s ≤ t,
define δs,k as in (1.1) and write

(2.1) λs = 2s− k(1− δs,k) .

Then given ε > 0, there is an η0 = η0(k, ε, t) such that whenever 0 < η < η0
and 2 ≤ s ≤ t,

(2.2) Ss(P, P η) � Pλs+ε .

P r o o f. We shall prove that (2.2) holds with (2.1) for each s ≥ 2 by
induction. First observe that for each s the number δs,k satisfies 0 < δs,k <
1. Also, δ + log δ is an increasing function of δ when δ > 0. Thus the
inductive hypothesis holds for s provided that we can establish that

Ss(P, P η) � P 2s−k(1−δ)+ε

with δ + log δ ≤ δs,k + log δs,k. It therefore follows immediately from the
inequality

1− 2/k + log(1− 2/k) < 1− 4/k = δ2,k + log δ2,k ,

and the classical estimate S2(P, P η) � P 2+ε, that the inductive hypothesis
holds with s = 2.

Now suppose that the inductive hypothesis holds for s, and write δ =
δs,k. Let λ = 2s+ 2− k +∆, where ∆ = kδ(1− θ) + kθ − 1 and

(2.3) kθ =
1

1 + δ
+

(
1− 1

1 + δ

)(
1− δ

2

)k−1

.

Then it follows from [14, Lemma 3.2] that whenever 0 < η < η1(k, ε, s), we
have Ss+1(P, P η) � Pλ+ε. Therefore, if we can prove that

∆

k
+ log

∆

k
≤ δs+1,k + log δs+1,k ,

then we may conclude from the above remarks that the inductive hypothesis
follows with s replaced by s+ 1.

From (2.3) we obtain

kθ ≤ 1
1 + δ

(1 + δ21−k) ,

and hence

∆ = kδ + k(1− δ)θ − 1 ≤ kδ +
1− δ

1 + δ
(1 + δ21−k)− 1 .
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On writing ω = (1− δ)21−k, we therefore deduce that

∆ ≤ kδ

(
1− 2− ω

k(1 + δ)

)
,

and hence
∆

k
+ log

∆

k
≤ δ

(
1− 2− ω

k(1 + δ)

)
+ log δ + log

(
1− 2− ω

k(1 + δ)

)
.

But a simple estimate for log x gives

log
(

1− 2− ω

k(1 + δ)

)
≤ − 2− ω

k(1 + δ)
− (2− ω)2

2k2(1 + δ)2
.

Then on writing

E = 2kω − (2− ω)2

(1 + δ)2
,

we obtain
∆

k
+ log

∆

k
≤ δ + log δ − 2

k
+

E

2k2
.

Now we observe that 2 − ω = 2 − (1 − δ)21−k ≥ 2 − (1 − δ) = 1 + δ, and
ω ≤ 21−k. Thus when k ≥ 4, we have E ≤ k22−k − 1 ≤ 0, and hence by the
inductive hypothesis,

∆

k
+ log

∆

k
≤ δs,k + log δs,k −

2
k

= 1− 2s+ 2
k

= δs+1,k + log δs+1,k .

Then the inductive hypothesis holds with s replaced by s+1, and the proof
of the theorem is complete.

When s is rather larger than k, it is usually more convenient to use the
exponentiated version of Theorem 2.1 embodied in the following corollary.

Corollary. Let k ≥ 4 and t ∈ N. For each s ∈ N with 2 ≤ s ≤ t, define
the real number ∆s to be the unique positive solution of the equation

∆se
∆s/k = ke1−2s/k .

Then (2.2) holds with λs = 2s− k +∆s. Consequently , (2.2) holds with

λs = 2s− k + ke1−2s/k .

P r o o f. The first assertion follows immediately on exponentiating (1.1)
and writing ∆s = kδs,k. The second assertion follows on noting that ∆s ≥ 0
for each s, so that ∆s ≤ ke1−2s/k.

3. A mean value theorem. We now set about obtaining estimates for
the mean value Us(P,H,R) defined by (1.2) and (1.3), and also the mean
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value Vs(P,H,R), which we define to be the number of solutions of the
diophantine equation

s∑
i=1

hi(xki − yki ) = 0 ,

with hi, xi, yi satisfying (1.3). We start with a very simple estimate, useful
when s is even.

Lemma 3.1. When r ∈ N we have

U2r(P,H,R) � P εH4r−1+εS2r(P,R) +H4r(Sr(P,R))2

and
V2r(P,H,R) � P εH2r−1+εS2r(P,R) +H2r(Sr(P,R))2 .

Further , for each s ∈ N we have the trivial estimates

Us(P,H,R) � H2sSs(P,R) and Vs(P,H,R) � HsSs(P,R) .

P r o o f. Let
f(α) =

∑
x∈A(P,R)

e(αxk) .

Then by considering the underlying diophantine equation, for each s ∈ N
we have

(3.1) Us(P,H,R) =
1∫

0

∣∣∣ ∑
1≤h≤H

f(αh)
∣∣∣2s dα .

Therefore, by Hölder’s inequality,

Us(P,H,R) � H2s−1
∑

1≤h≤H

1∫
0

|f(αh)|2s dα = H2sSs(P,R) ,

by considering the underlying diophantine equation. A similar argument
bounds Vs(P,H,R) in an analogous manner, and thus the final line of the
lemma holds.

We may therefore suppose that s is even, say s = 2r. We now apply
Cauchy’s inequality to (3.1) to obtain, on considering the underlying dio-
phantine equation,

Us(P,H,R) � Hs
1∫

0

( ∑
h≤H

|f(αh)|2
)s
dα� HsVs(P,H,R) .

Thus it suffices to consider Vs(P,H,R). By Hölder’s inequality, we have

V2r(P,H,R) � H2r−2
1∫

0

( ∑
h≤H

|f(αh)|2r
)2

dα .
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The latter integral is the number of solutions of the diophantine equation

(3.2) h
r∑
i=1

(xki − yki ) = g
r∑
i=1

(uki − vki )

with 1 ≤ h, g ≤ H and xi, yi, ui, vi ∈ A(P,R) (1 ≤ i ≤ r). Let R(n;h)
denote the number of solutions of the equation

h
r∑
i=1

(xki − yki ) = n

with xi, yi ∈ A(P,R) (1 ≤ i ≤ r). Then the number of solutions of (3.2) is
given by∑

n

( H∑
h=1

R(n;h)
)2

=
∑
n 6=0

( ∑
h|n

R(n;h)
)2

+
( H∑
h=1

R(0;h)
)2

� (PH)ε
∑
n 6=0

H∑
h=1

R(n;h)2 + (HSr(P,R))2 ,

by Cauchy’s inequality and a standard estimate for the divisor function.
Then by considering the underlying diophantine equation,

V2r(P,H,R) � P εH2r−1+εS2r(P,R) +H2r(Sr(P,R))2 .

The lemma now follows immediately.

We shall now briefly outline how the new iterative method in Waring’s
problem may be applied successfully to provide non-trivial estimates for the
mean value Us(P,H,R) under more general circumstances. We begin with
an estimate for a fourth moment.

Lemma 3.2. We have U2(P,H,R) � H3+εP 2+ε.

P r o o f. Write
F (α) =

∑
1≤x≤P

e(αxk) .

Then by considering the underlying diophantine equation, we have

U2(P,H,R) ≤
1∫

0

∣∣∣ ∑
1≤h≤H

F (αh)
∣∣∣4 dα

≤ H
1∫

0

∑
1≤g≤H

|F (αg)|2
∣∣∣ ∑
1≤h≤H

F (αh)
∣∣∣2 dα ,

by Cauchy’s inequality. The latter integral is O(T (P,H)), where T (P,H)
denotes the number of solutions of the diophantine equation

(3.3) g(xk − yk) = h1u
k
1 − h2u

k
2 ,
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with 1 ≤ g, h1, h2 ≤ H and 1 ≤ x, y, u1, u2 ≤ P . The number of solutions
of (3.3) counted by T (P,H) in which x = y is O((HP )2+ε). Meanwhile, if
x 6= y, we may assign h1, h2, u1, u2 in at most H2P 2 ways, and then g, x−y
and xk−1 +xk−2y+ . . .+yk−1 are divisors of a fixed non-zero integer. Thus,
by using standard estimates for the divisor function, the number of solutions
in this case is O((H2P 2)1+ε). This completes the proof of the lemma.

We now set about constructing an iterative method for Us(P,H,R), in
a manner entirely analogous to the method of [14]. Let Ψ(z, c) denote a
polynomial with integer coefficients in the variables z, c1, . . . , ct of degree in
z at least one, and write Ψ ′(z, c) for (∂Ψ/∂z)(z, c). Let H, P , Q, and R be
positive real numbers with R ≤ Q ≤ P , and let Ci, C ′

i (1 ≤ i ≤ t) be real
numbers with 1 ≤ C ′

i ≤ Ci � P . Let

Rs(P,Q,H,R) = Rs(P,Q,H,R;Ψ ;C,C′)

denote the number of solutions of the equation

(3.4) hΨ(z, c) + h1x
k
1 + . . .+ hsx

k
s = gΨ(z′, c′) + g1y

k
1 + . . .+ gsy

k
s

with

xj , yj ∈ A(Q,R) and 1 ≤ h, g, hj , gj ≤ H (1 ≤ j ≤ s) ,(3.5)
1 ≤ z, z′ ≤ P, C ′

i < ci, c
′
i ≤ Ci (1 ≤ i ≤ t) .(3.6)

For a given real number θ with 1 < P θ < Q, let

Ws(P,Q,H,R; θ) = Ws(P,Q,H,R; θ;Ψ ;C,C′)

denote the number of solutions of the equation

h(Ψ(z, c)− Ψ(z′, c)) + wk
s∑
i=1

(hiuki − giv
k
i ) = 0

with z, z′, c, h, hi, gi as in (3.5) and (3.6), and

P θ < w ≤ min{Q,P θR}, uj , vj ∈ A(QP−θ, R) (1 ≤ j ≤ s) ,
z ≡ z′ (mod wk) .

Finally, let Ns(P,Q,H,R) = Ns(P,Q,H,R;Ψ ;C,C′) denote the number of
solutions of the equation (3.4) subject to (3.5), (3.6) and also Ψ ′(z, c) =
Ψ ′(z′, c′) = 0.

The lemma below relates Rs to Ws.

Lemma 3.3. Let θ = θ(s, k;Ψ) satisfy 1 < P θ < Q. Then

Rs(P,Q,H,R) � Rs(P, P θ,H,R) +Ns(P,Q,H,R)

+H2QP θ+εRs−1(P,Q,H,R)

+HP ε
( t∏
i=1

Ci

)
(P θR)2s−1Ws(P,Q,H,R; θ) .
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The implied constant may depend on Ψ .

P r o o f. The proof follows that of [14, Lemma 2.2], with obvious modi-
fications. The condition (2.12) of that proof should be replaced by

xjD(P θ)hΨ ′(z, c) or yjD(P θ)gΨ ′(z′, c′) ,

with similar changes for each occurrence of Ψ ′.

Now follow the same change of notation, with obvious modifications, as
that following [14, Lemma 2.2]. We record two further lemmata.

Lemma 3.4. Suppose that for some positive real number η,

exp((log logP )2) < R ≤ P η .

Then for j = 0, . . . , k − 1, and for any constant κ > 0,

Rs(P,Qj ,H,R;Ψj ;κ)

� HP ε
( j∏
i=1

HiMiR
)
(Mj+1R)2s−1Ws(P,Qj ,H,R;φj+1;Ψj ;κ) .

(Here the convention that Q0 = P is adopted.)

P r o o f. This follows precisely as in the proof of [14, Lemma 2.3], with
obvious modifications.

Lemma 3.5. For j = 0, 1, . . . , k − 1, and any constant κ ≥ 1,

Ws(P,Qj ,H,R;φj+1;Ψj ;κ)

� PHMj+1R
( j∏
i=1

HiMiR
)
Us(Qj+1,H,R)

+ (Us(2Qj+1,H,R)Rs(2P, 2Qj+1,H,R;Ψj+1; 2κ))1/2 .

P r o o f. This follows the proof of [14, Lemma 3.1].

We may now follow the argument of the proof of [14, Lemma 3.2] to
obtain the following lemma.

Lemma 3.6. Suppose that t is a positive integer and µ is a positive real
number with

2t− k < µ ≤ 2t

and satisfying the property that , given ε > 0, there is a positive number η0 =
η0(k, ε) such that whenever 0 < η < η0, then Ut(P,H, P η) � H2t−1+εPµ+ε.
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Define the real numbers λs, θs, ∆s (s = t, t + 1, . . .) successively by
λt = µ, θt = 0, ∆t = µ− 2t+ k, and for s > t, by

θs =
1

k +∆s−1
+

(
1
k
− 1
k +∆s−1

)(
k −∆s−1

2k

)k−1

,

∆s = ∆s−1(1− θs) + kθs − 1, λs = 2s− k +∆s .

Then given t′ and ε′ > 0, there is an η1 = η1(k, ε′, t′) such that whenever
0 < η < η1 and t ≤ s ≤ t′,

Us(P,H, P η) � H2s−1+εPλs+ε′ .

We may now apply Lemma 3.6 with t = 2, and make use of Lemma 3.2.
Thus, by the argument of the proof of Theorem 2.1 we may finally conclude
with the following estimate.

Lemma 3.7. Let λs be defined as in the statement of the corollary to
Theorem 2.1. Then under the same hypotheses as in the statement of The-
orem 2.1, for each k ≥ 4 and s ≥ 2 we have

Us(P,H, P η) � H2s−1+εPλs+ε .

We note that the preceding argument is really intended as a demon-
stration that non-trivial estimates for Us can be obtained. The methods
of Sections 4 and 5 are most effective when k is small, and under such cir-
cumstances the estimates of [11] supersede those of Theorem 2.1. Nonethe-
less, the argument of this section provides a basis for the estimation of
Us(P,H,R) through the methods of [11].

4. Unlocalised bounds for fractional parts of αnk. We are now in
a position to obtain unlocalised bounds for the fractional parts of αnk by
using estimates for Us(P,H,R) arising from Lemma 3.7 and Theorem 2.1.
This we achieve by refining an argument of Heath-Brown [5, Section 5]. We
shall require the following lemma due to Harman.

Lemma 4.1. Suppose that g(n) is a non-negative function for all n, L is
a positive integer and αn is a sequence of real numbers for n = 1, . . . , N . If

L∑
l=1

∣∣∣ N∑
n=1

g(n)e(lαn)
∣∣∣ < 1

6

N∑
n=1

g(n) ,

then for any β, there is a solution of ‖αn + β‖ < L−1, with 1 ≤ n ≤ N .

P r o o f. This is Harman [4, Lemma 5].

Given positive numbers P , M and R, we define the arithmetical function
g(n) = g(n;P,M,R) by

g(n) = card{(x, y) ∈ N2 : xy = n, x ∈ A(P,R), y ∈ A(M,R)} .
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Thus, in particular, g(n) is zero when n 6∈ A(P,R), and for all n ∈ N we
have g(n) ≤ d(n) �ε n

ε. We now describe the exponential sum at the core
of our argument. When N and H are large positive numbers, we define the
positive numbers P and M by P 2 = NH−1/k and M2 = NH1/k, and when
α ∈ R we write

S(α;H,N,R) =
H∑
h=1

∣∣∣ N∑
n=1

g(n;P,M,R)e(αhnk)
∣∣∣ .

We now provide a result which bounds the exponential sum S(α;H,N,R).

Lemma 4.2. Suppose that s ∈ N, and that δs,k is defined as in (1.1).
Let α ∈ R, and suppose that a ∈ Z and q ∈ N satisfy (a, q) = 1 and
|qα − a| ≤ q−1. Then when R ≤ Nη with η a sufficiently small positive
number (in the context of Theorem 2.1),

S(α;H,N,R)2s
2
�ε q

ε(HN)2s
2+εNkδs,k(q−1 + (HNk)−1/2 + qH−1N−k) .

P r o o f. For the sake of conciseness, we write S(α) for S(α;H,N,R).
From the definition of g(n), it follows that

(4.1) S(α) =
∑

1≤h≤H

∣∣∣ ∑
x∈A(P,R)

∑
y∈A(M,R)

e(αh(xy)k)
∣∣∣ .

Define the complex numbers of unit modulus, εx,h, by∣∣∣ ∑
y∈A(M,R)

e(αh(xy)k)
∣∣∣s = εx,h

( ∑
y∈A(M,R)

e(αh(xy)k)
)s
.

Also, let rc denote the number of solutions of the diophantine equation

yk1 + . . .+ yks = c

with yi ∈ A(M,R) (1 ≤ i ≤ s). Then by applying Hölder’s inequality to
(4.1), we obtain

|S(α)|s ≤ (PH)s−1
∑

1≤h≤H

∑
x∈A(P,R)

∣∣∣ ∑
y∈A(M,R)

e(αh(xy)k)
∣∣∣s

= (PH)s−1
∑
c

rc
∑
h

∑
x

εx,he(αchxk) .

A second application of Hölder’s inequality yields

|S(α)|2s
2
≤ (PH)2s(s−1)Js(α)

( ∑
c

rc

)2s−2( ∑
c

r2c

)
,

where

(4.2) Js(α) =
∑

1≤c≤sMk

∣∣∣ ∑
h

∑
x

εx,he(αchxk)
∣∣∣2s .
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But by considering the underlying diophantine equations, we have
∑
c rc ≤

Ms and
∑
c r

2
c = Ss(M,R), and hence

(4.3) |S(α)|2s
2
≤ (PHM)2s(s−1)Js(α)Ss(M,R) .

Let r̃d denote the number of solutions of the equation
s∑
i=1

hix
k
i −

2s∑
i=s+1

hix
k
i = d ,

with xi ∈ A(P,R) and 1 ≤ hi ≤ H (1 ≤ i ≤ 2s), each solution weighted by
the factor ( s∏

i=1

εxi,hi

)( 2s∏
i=s+1

εxi,hi

)
.

Then by considering the underlying diophantine equation,

r̃d =
1∫

0

∣∣∣ ∑
x

∑
h

εx,he(γxkh)
∣∣∣2se(−γd) dγ .

Therefore, on making a trivial estimate, |r̃d| ≤ r̃0 ≤ Us(P,H,R), since
|εx,h| = 1. On recalling equation (4.2), we have

(4.4) Js(α)

=
∑

1≤c≤sMk

∑
d

r̃de(αcd) ≤ Us(P,H,R)
∑

|d|≤sHPk

∣∣∣ ∑
1≤c≤sMk

e(αcd)
∣∣∣ .

But, by using [8, Lemma 2.2] we obtain∑
|d|≤sHPk

∣∣∣ ∑
1≤c≤sMk

e(αcd)
∣∣∣

≤
∑

|d|≤sHPk

min{sMk, ‖αd‖−1}

�Mk + (qHP )ε(PM)kH(q−1 +M−k + qH−1(PM)−k) .

On recalling the definitions of P and M , we have P kH = Mk, and hence
by (4.3), (4.4), Lemma 3.7 and Theorem 2.1,

S(α)2s
2

� qε(NH)2s(s−1)+2εH2s−1(PM)2s−k+kδs,kNkH(q−1 +M−k + qH−1N−k) .

Finally, we deduce that

S(α)2s
2
� qε(NH)2s

2+2εNkδs,k(q−1 +M−k + qH−1N−k) .

This completes the proof of the lemma.



New mean value theorem 175

We are now in a position to prove Theorem 1.1 in a standard manner.
First note that the theorem is trivial if α is rational, so we suppose that
α is irrational. Take a/q to be a convergent to the continued fraction of
α, so that (a, q) = 1 and |qα − a| ≤ q−1. We take σ(k) to be as in the
statement of Theorem 1.1, with s the value of the parameter corresponding
to the maximum. Let φ be any real number with ε < φ < σ(k), and define
the real numbers N and H by

Nk+σ(k)−φ = q2 and H = Nσ(k)−φ .

Then by Lemma 4.2, we have

S(α;H,N,R)2s
2
�ε (HN)2s

2
Nkδs,k+ε−k/2H−1/2 .

But by using the definitions of σ(k) and H, we discover that

Nkδs,k+ε−k/2H−1/2 � Nψ ,

where

2ψ = 2ε− k(1− 2δs,k)−
k(1− 2δs,k)

4s2 − 1
+ φ = 2ε+ φ− 4s2σ(k) .

Thus S(α;H,N,R) = o(N). But as a simple deduction from, for exam-
ple, [9, Lemma 5.3], we have

∑N
n=1 g(n) � N , and hence S(α;H,N,R) =

o(
∑N
n=1 g(n)). Therefore, by Lemma 4.1 with L = H, it follows that

min
1≤n≤N

‖αnk‖ < H−1 = Nφ−σ(k) ,

and Theorem 1.1 follows on taking a sequence of q going to infinity.

The deduction of the corollaries to Theorem 1.1 may now be disposed of
swiftly. For Corollary 1 we take s = [Ck] + 1, with C a positive number to
be chosen later. Then in Theorem 1.1 we have kσ(k) = ζ + o(1), where

4C2ζ = 1− 2δ ,

and by equation (1.1),
δ + log δ = 1− 2C .

On eliminating C, we find that the optimal choice of parameters is deter-
mined by the equation

δ + 2− δ−1 = log δ .
Thus we obtain C = 0.99232 . . . , δ = 0.28182 . . . , and ζ−1 = 9.02672 . . .
Also, on taking s = k in Theorem 1.1 we obtain 4kσ(k) ≥ 1− 2δ, where by
equation (1.1), δ + log δ = −1. Corollary 2 follows with a little calculation.

5. Localised bounds. We now turn our attention to the matter of ob-
taining localised bounds for the fractional part of αnk through the estimates
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of Sections 2 and 3. Once again we shall make use of Lemma 4.1, this time
through the vehicle of a variant of Vinogradov’s estimate for exponential
sums based on [7, Section 2].

Given positive numbers P , M and R, we define the arithmetical function
g(n) = g(n;P,M,R) by

g(n) = card{(p, x) ∈ N2 : px = n, p prime, P < p ≤ 2P, x ∈ A(M,R)} .

Thus, in particular, for all n ∈ N we have g(n) ≤ d(n) �ε nε. We
now describe the exponential sum at the core of our argument. When N
and H are large positive numbers, we define the positive numbers P and
M by (2P )2k−1 = NkH and M2k−1 = Nk−1H−1, and when α ∈ R we
write

T (α;H,N,R) =
H∑
h=1

∣∣∣ N∑
n=1

g(n;P,M,R)e(αhnk)
∣∣∣ .

Lemma 5.1. Suppose that s ∈ N, and that ∆s and ∆2s are defined as
in the corollary to Theorem 2.1. Let α ∈ R, and suppose that a ∈ Z
and q ∈ N satisfy (a, q) = 1, q ≤ 2(2P )k and |qα − a| ≤ 1

2 (2P )−k, and
suppose further that if q ≤ P , then |qα − a| � PH−1N−k. Then when
R ≤ Nη, with η a sufficiently small positive number (in the context of The-
orem 2.1),

T (α;H,N,R)4s �ε (HN)4s+ε(P−1M∆2s + P−1HM2∆s−k) .

P r o o f. For the sake of conciseness, we write T (α) for T (α;H,N,R).
From the definition of g(n), it follows that

(5.1) T (α) =
∑

1≤h≤H

∣∣∣ ∑
P<p≤2P

∑
x∈A(M,R)

e(αh(px)k)
∣∣∣ ,

where the summation over p is over prime numbers. Let by denote the
number of solutions of the diophantine equation

h1(xk1 − yk1 ) + . . .+ hs(xks − yks ) = y ,

with 1 ≤ hi ≤ H and xi, yi ∈ A(M,R) (1 ≤ i ≤ s). We note that by = b−y.
Also, write Y = sHMk. Then by applying Hölder’s inequality to (5.1), we
obtain

|T (α)|2s � HsP 2s−1
∑

P<p≤2P

( ∑
1≤h≤H

∣∣∣ ∑
x∈A(M,R)

e(αh(px)k)
∣∣∣2)s(5.2)

= HsP 2s−1
∑

P<p≤2P

∑
|y|≤Y

bye(αpky) .
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But by the lemma of [7, Section 2], it follows that∑
P<p≤2P

∑
|y|≤Y

bye(αpky) �
∑

P<p≤2P

(
b0 + 2 Re

∑
1≤y≤Y

bye(αpky)
)

� P ε(PY + P k)1/2
( ∑
|y|≤Y

b2y

)1/2

.

We now note that PHMk � P k, and hence from (5.2),

|T (α)|4s � P 2εH2s+1P 4s−1MkV2s(M,H,R) .

Thus, by Lemma 3.1 and the corollary to Theorem 2.1, we have

|T (α)|4s � (PMH)4s+2ε(P−1M∆2s + P−1HM2∆s−k) ,

and the lemma now follows immediately.

We may now prove Theorem 1.2 in a standard manner. We take τ(k) to
be as in the statement of Theorem 1.2, with s the value of the parameter
corresponding to the maximum. We take φ to be any real number with
ε < φ < τ(k). Let N be a large positive number, and put H = Nτ(k)−φ.
By Dirichlet’s Theorem, we may choose a ∈ Z and q ∈ N with (a, q) = 1,
q ≤ 2(2P )k and |qα − a| ≤ 1

2 (2P )−k. Suppose first that when q ≤ P , we
have |qα− a| ≥ PH−1N−k. Then by Lemma 5.1 we have

T (α)4s � (HN)4s+ε(P−1M∆2s + P−1HM2∆s−k) .

In view of the definition of ∆s, it follows with some calculation that when
k ≥ 4, the second term in parentheses is always smaller than the first. Then
on observing that

(HN)εP−1M∆2s � Nψ ,

where
(2k − 1)ψ ≤ 2(2k − 1)ε− k + (k − 1)∆2s − (1 +∆2s)(τ(k)− φ)

< −4s(2k − 1)(τ(k)− φ) ,

we deduce that T (α) = o(N/ logN), and hence, T (α) = o(
∑N
n=1 g(n)).

Then in this case we deduce from Lemma 4.1, with L = H, that

min
1≤n≤N

‖αnk‖ < H−1 = Nφ−τ(k) .

Then we may suppose that q ≤ P and |qα− a| < PH−1N−k. Then

‖αqk‖ ≤ |qkα− qk−1a| < H−1P kN−k ≤ Nφ−τ(k) .

Thus
min

1≤n≤N
‖αnk‖ ≤ ‖αqk‖ < Nφ−τ(k) ,

and this completes the proof of Theorem 1.2.
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To prove the corollary to Theorem 1.2, we merely apply the corollary to
Theorem 2.1. Putting s = [14k(log k + log log k + 1)] + 1, we obtain

∆2s ≤ ke1−4s/k ≤ 1
log k

.

Thus

τ(k) ≥ k − (k − 1)/(log k)
2k2(log k + log log k + 1 + o(1))

= (2k(log k + log log k + 2 + o(1)))−1 .

6. The upper bound for G(k). The proof of Theorem 1.3 is entirely
straightforward, given the corollary to Theorem 2.1. We put

C = {x = pz : p prime, X/2 < p ≤ X, z ∈ A(X,Xη)} ,

where X = P 1/2, and write

h(α) =
∑
x∈C

e(αxk) .

Let m be the set of α ∈ [0, 1] such that whenever a ∈ Z, q ∈ N, (a, q) = 1
and |qα− a| ≤ P 1/2−k, one has q > X. Then as in [9, Section 7], we have

sup
α∈m

|h(α)| �ε P
1−%(k)+ε ,

where

%(k) = max
s∈N

1−∆s

4s
.

On putting s = [ 12k(log k + log log k + 1)] + 1, from the corollary to Theo-
rem 2.1 we obtain the bound

%(k) ≥ (2k(log k + log log k + 2 + o(1)))−1 .

Further, by the analysis of [9, Section 8], as in [14, Section 4], we have

G(k) ≤ min
v∈N

(
3 + 2v + 2

[
∆v

2%(k)

])
.

But from the corollary to Theorem 2.1, we have ∆v ≤ ke1−2v/k. On putting
v = [12k(log k + log log k + 1 + log 2)] + 1, we therefore obtain

∆v ≤
1

2 log k
,

and hence

G(k) ≤ k(log k + log log k + 1 + log 2) + k + k
log log k

log k
(1 + o(1)) .

This completes the proof of Theorem 1.3.
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[13] H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916),
313–352.

[14] T. D. Wooley, Large improvements in Waring’s problem, Ann. of Math. 135
(1992), 131–164.

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF MICHIGAN

ANN ARBOR

MICHIGAN 48109-1003

U.S.A.

E-mail: TREVOR WOOLEY@MATH.LSA.UMICH.EDU

Received on 18.1.1993 (2367)


