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Sums of distinct residues mod p
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Öystein J. Rödseth (Bergen)

1. Introduction. Given distinct residue classes a1, a2, . . . , ak modulo
a prime p, let s denote the number of distinct residue classes of the form
ai + aj , i 6= j. An old conjecture of Erdős and Heilbronn states that (cf.
Erdős [7, p. 410] and Guy [11, p. 73])

(1) s ≥ min(p, 2k − 3) .

Erdős and Graham [8, p. 95] refer this problem to the paper [9] of Erdős
and Heilbronn, but the conjecture (1) is not explicitly stated in [9]. Erdős
and Heilbronn are, however, considering closely related problems and it does
seem reasonable that the problem (1) was raised during their work on the
paper [9].

If ai = a+ id, i = 0, 1, . . . , k − 1, for some residue classes a and d, then
(1) holds with equality. Hence, if (1) is true, it is certainly best possible.
Some sufficient conditions for (1) to hold can be found in [1], [2], [15]. In
particular, Rickert [15] shows that (1) holds if k ≤ 12 or if p ≤ 2k + 3. He
also shows that (1) holds if p > 6 · 4k−4.

In addition, it is a rather immediate consequence of the Cauchy–Daven-
port Theorem that (see Section 2)

(2) s ≥ min(p, 3
2k − 2) .

In this note we show the two theorems below. Both are easy consequences
of results in the literature. The first theorem follows from Pollard’s (simple
and elegant) extension [13] of the Cauchy–Davenport Theorem, the second
from a (deep) result of Freiman [10].

Theorem 1. s ≥ min(p, 2k − (4k + 1)1/2).

Theorem 2. There exists an absolute constant c such that if p > ck,
then s ≥ 2k − 3.

2. Proof of Theorem 1. Let A, B be non-empty sets of residue classes
mod p. We use |A| to denote the number of elements in A, and A+B is the
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set of sums a+ b, a ∈ A, b ∈ B. Further, we write xA for the set of elements
xa, a ∈ A, x an integer or a residue class. In particular, −A = (−1)A and
A − B = A + (−B). For a residue class y we also write y for the singleton
set {y}.

Let ν(x) = νA,B(x) denote the number of distinct representations of the
residue class x as x = a+ b, a ∈ A, b ∈ B. Then

(3) ν(x) = |A ∩ (x−B)| .
Further, for a positive integer r, let Nr = Nr(A,B) denote the number of
distinct residue classes x satisfying ν(x) ≥ r. Then N1 = |A+B|, and

(4) p ≥ N1 ≥ N2 ≥ . . .
If Nr 6= p, then there is a residue class x for which ν(x) ≤ r − 1. Hence by
(3),

p ≥ |A ∪ (x−B)| = |A|+ |x−B| − ν(x) ≥ |A|+ |B| − r + 1 ;

that is,

(5) p ≥ |A|+ |B| − r + 1 if Nr 6= p .

The theorem of Pollard [13] states that

(6) N1 +N2 + . . .+Nr ≥ rmin(p, |A|+ |B| − r)
for r = 1, 2, . . . ,min(|A|, |B|). For r = 1, this is the Cauchy–Davenport
Theorem [3], [5], [6].

Now, let a1, . . . , ak be distinct residue classes mod p, and let A = B =
{a1, . . . , ak}. Suppose that k > 1, and consider the k×k matrix M = (mij),
where mij = ai+aj . Putting t = N1, we have that t is the number of distinct
entries in M , and N2 is the number of distinct residue classes which appear
at least twice in M . Since M is symmetric, N2 thus equals the number of
distinct residue classes outside the main diagonal; hence N2 = s.

By (5) we thus have

(7) p ≥ 2k − 1 if s 6= p .

Moreover, since s ≥ |(ai +A) ∪ (aj +A)| − 2 for all i and j, we have

s ≥ 2k − 2− |(ai +A) ∩ (aj +A)| = 2k − 2− νA,−A(ai − aj) ,
so that

(8) s ≥ 2k − 2−m,

where

m = min
0 6=x∈A−A

νA,−A(x) .
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Suppose that s 6= p. By (7) and the Cauchy–Davenport Theorem, we
then have |A−A| ≥ 2k − 1. Since

k(k − 1) =
∑

0 6=x∈A−A
νA,−A(x) ≥ (|A−A| − 1)m,

we thus have m ≤ k/2 and (2) follows by (8).
Alternatively, since the diagonal in the matrix M contains k elements

we have

(9) k + s ≥ t ,
and (2) follows by (9), (6) with r = 2, and (7).

We now prove Theorem 1. Suppose that s 6= p. By (6) and (7) we have
N1 + N2 + . . . + Nr ≥ r(2k − r) for the integer r = d((4k + 1)1/2 − 1)/2e.
Using (4) and (9), we get k + rs ≥ r(2k − r), and an easy calculation gives
Theorem 1.

We remark that some of the results in this section also hold for the ad-
ditive group of residue classes mod p replaced by more general structures.
A result corresponding to (5) holds in an arbitrary quasi-group (cf. Mc-
Worter [12]). Also, if p is replaced by an arbitrary positive integer n, then
(2) holds if gcd(ai − aj , n) = 1 for some fixed i and all j 6= i. For in this
case we can use the Cauchy–Davenport–Chowla Theorem [4] instead of the
Cauchy–Davenport Theorem in the argument above. Finally, Pollard’s re-
sult (6) also hold if gcd(ai − aj , n) = 1 for all i and j, j 6= i (cf. [14]).
Therefore Theorem 1 also holds modn as long as this condition is satisfied.

3. Proof of Theorem 2. For residue classes x 6= 0 and y, the set xA+y
is an affine image of A. The affine diameter of A is the smallest positive
integer d = d(A) such that the interval [0, d− 1] contains representatives of
all elements of some affine image of A.

Now, the corollary of Freiman [10, p. 93] can be stated as follows: There
exists an absolute constant c such that if t < 3k − 3 and p > ck, then
d(A) ≤ t− k + 1.

By (9) we have s ≥ 2k − 3 if t ≥ 3k − 3. To prove Theorem 2 we may
therefore assume that t < 3k − 3. By Freiman’s result there then exists an
absolute constant c ≥ 4 such that if p > ck, then d(A) ≤ 2k − 3. Since
s = s(A) is an affine invariant, i.e. s(A′) = s(A) for all affine images A′

of A, we can assume that each ai has an integer representative ri such
that 0 = r1 < r2 < . . . < rk ≤ 2k − 4. Then all the 2k − 3 integers
r1 + r2 < r1 + r3 < . . . < r1 + rk < r2 + rk < . . . < rk−1 + rk are distinct
mod p, and the proof of Theorem 2 is complete.
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way A/S. We also thank the Johannes Gutenberg-Universität in Mainz,
Germany for its hospitality.

References

[1] W. Brakemeier, Ein Beitrag zur additiven Zahlentheorie, Dissertation, Tech.
Univ. Braunschweig, 1973.

[2] —, Eine Anzahlformel von Zahlen modulo n, Monatsh. Math. 85 (1978), 277–282.
[3] A. L. Cauchy, Recherches sur les nombres, J. École Polytech. 9 (1813), 99–116.
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