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The Pólya–Vinogradov inequality states that for any primitive character
χ mod q,

(1)
∑
n≤x

χ(n) � q1/2 log q .

Conversely, there is a 1 ≤ x ≤ q satisfying

(2)
∣∣∣ ∑

n≤x

χ(n)
∣∣∣ � q1/2

(see Montgomery and Vaughan [6]).
Here a generalization of these inequalities to totally real algebraic number

fields is given. So let K be a totally real field of degree n over Q with
ramification ideal d, absolute value of discriminant d = Nd and ring of
integers ZK . All constants implied by the �-notation depend only on n,
if no other dependence is explicitly noted. The nature of the difficulties in
making the dependence of the constants on n explicit seems to be purely
technical. One has to substitute formula (6) below by a result similar to
Lemma 2 of [1].

Let f ⊂ ZK be an ideal, χ a primitive character of the multiplicative
group (ZK/f)∗ extended to ZK in the usual manner.

Finally, let x ∈ Rn
+ satisfy X :=

∏n
q=1 xq ≥ 2 and let y ∈ Rn.

By means of Siegel’s summation formula and an additional argument
Hinz [3] succeeded in showing

(3)
∑

ν∈ZK

0<ν(q)≤xq

χ(ν) = E(χ)X + Oε(N f1−1/(2(n+1))Xε)

where ε is an arbitrary positive number and E(χ) equals 1/
√

d if f = ZK ,
and 0 otherwise.
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A similar estimate was given by Lee [4] who had the exponent 1 on N f.
Our result is

Theorem 1.∑
ν∈ZK

yq<ν(q)≤yq+xq

χ(ν) = E(χ)X + O(dn/2N f1/2 logn(dX)) .

This sharpens (3) for any value of X and N f and is up to logarithms the
same as (1). Moreover, arbitrary values of y may be chosen, while (3) needs
y = 0.

Recently Rausch ([8], (1.9)) proved this result (with constants depending
on d) using a different method.

In the opposite direction we have

Theorem 2. For any y ∈ Rn there exists x ∈ Rn
+, max1≤q≤n xq �K

N f1/n, subject to∣∣∣ ∑
ν∈ZK

yq<ν(q)≤yq+xq

χ(ν)− E(χ)X
∣∣∣ �K N f1/2

(
1

ω(2f) log ω(6f)

)
.

Here ω(a) denotes the number of prime divisors of a. In particular , the
right-hand side is �K,ε N f1/2(log 2N f)−1−ε.

In the case of the ideal df being principal one has for some x ∈ Rn
+,∣∣∣ ∑

ν∈ZK

yq<ν(q)≤yq+xq

χ(ν)− E(χ)X
∣∣∣ ≥ (dN f)1/2

(2π)n
.

Only minor additional work has to be done to extend Theorems 1 and 2
to non-primitive characters χ.

An easy corollary of the proof of Theorem 1 is given by

Proposition 1. Let ν0 ∈ ZK . Then

|{ν ∈ ZK | ν ≡ ν0 mod f, yq < ν(q) ≤ yq + xq, 1 ≤ q ≤ n}|

=
X

d1/2N f
+ O(dn/2 logn(XdN f)) .

The right-hand side coincides with the number of lattice points in a par-
allelotope (see (7) below). The problem of counting these is similar to that
of counting the lattice points of a polyhedron of volume ∼ X. For the poly-
hedron {w ∈ Rn | wj ≥ 1,

∑
wjωj ≤ X1/n} it was shown by Spencer [11]

that for almost all (in the sense of Lebesgue measure) coefficients ω1, . . . , ωn

the remainder does not exceed Oε(logn+ε X).
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In the case of n = 2 and ω1/ω2 being a quadratic irrationality, Hardy and
Littlewood proved that the remainder is O(log X) which is best possible ([2],
Theorems A3 and A4). Thus the remainder in Proposition 1 is Od,f(log X)
for real-quadratic K. Skriganov [10] gives a proof of Proposition 1 with
remainders Of,d(lognX), n ≥ 3, and Of,d(log X), n = 2. Nevertheless, it
seems impossible to use his approach based on the inequality (3.18) of [10]
to estimate character sums.

Our method of proof goes back to Pólya’s original proof ([7]; see also [6]).
The most important tool in it is

(4)
∑

0<k≤x
k≡l mod q

1 =
[
x− l

q

]
−

[
−l

q

]

=
x

q
+

∑
0<|m|≤H

1
2πim

(
e

(
mx

q

)
− 1

)
e

(
− ml

q

)

+ O

(
min

(
1,

1
H‖x−l

q ‖
+

1
H‖ l

q‖

))
,

where ‖x‖ := min(|x− k| | k ∈ Z) and e(x) := e2πix.
Theorem 3 below gives an adequate generalization of (4).
Minkowski’s convex body theorem shows that there is a β′ ∈ ZK − {0}

subject to

|β′(q)| ≤ c1d
1/(2n)X1/(2n)x−1/2

q , 1 ≤ q ≤ n .

β := β′2 satisfies

(5) 0 < β(q) ≤ c2
1d

1/nX1/nx−1
q , 1 ≤ q ≤ n .

By Theorem 1 of Mahler [5] there is a Z-basis {α1, . . . , αn} of βf subject to

(6) |α(p)
q | ≤ c2d

1/2N(βf)1/n ≤ c3dN f1/n , 1 ≤ p, q ≤ n .

We use it to define the functions

α : Rn → Rn , α(t) =
( n∑

q=1

tqα
(p)
q

)n

p=1
(thus α(Zn) = βf)

and

η := α−1> : Rn → Rn (thus η(Zn) = 1/(dβf)) .

Moreover, for u,v, z ∈ Rn with

(7) 0 < vp ≤ 2c2
1d

1/nX1/n , 1 ≤ p ≤ n ,

we define

F (u, z) := F (u, z;v, α) := |{m ∈ Zn | zp < α(p)(m + u) ≤ zp + vp}| .
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In Sections 1–3 we fix z and work with the Fourier series of F with respect
to u. This will prove Theorem 1.

In Section 4, u is fixed and the Fourier expansion of F with respect to z
is used to derive lower bounds. Here only L2-convergence of the series is
needed, so that the proof is easily compared to that of the upper bounds
requiring a result similar to (4).

We make use of the notations

|t|∞ := max(|tj | | 1 ≤ j ≤ k) and 〈s, t〉 :=
k∑

j=1

sjtj , s, t ∈ Rk ;

in particular,

|ν|∞ = max(|ν(q)| | 1 ≤ q ≤ n) and 〈ν, µ〉 = S(νµ) for ν, µ ∈ K .

1. Preliminary lemmas. First we need

Lemma 1. For a natural number N and reals v < w one has
w∫

v

∑
N<|k|≤2N

e(kt) dt � 1
N

min
(

1
‖v‖

+
1
‖w‖

, N

)
.

P r o o f. Obviously, it suffices to prove the lemma assuming v, w 6∈ Z.
The integral equals ∑

N<|k|≤2N

1
2πik

(e(kw)− e(kv))

and is, therefore, by trivial estimation, � 1, and is

� 1
N

min
(

1
‖v‖

+
1
‖w‖

)
by use of partial summation and of

∑
a<k<b e(kt) � 1/‖t‖.

Lemma 2. Let M,T ≥ 2, C ≥ 1 and β ∈ R. Then
C∫

−C

min
(

1
‖t‖

,M

)
min

(
1

|t + β|
, T

)
dt

� log(MT )
∑

|m|≤2C

min
(

1
|m + β|

,MT

)
.

P r o o f. The left-hand side is less than∑
|m|≤2C

m+1/2∫
m−1/2

min
(

1
|t−m|

,M

)
min

(
1

|t + β|
, T

)
dt .

For fixed m, the integral can be estimated in a trivial way by MT.
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For |m + β| ≥ 1 one has

min
(

1
|t + β|

, T

)
� min

(
1

|m + β|
, T

)
(m− 1/2 ≤ t ≤ m + 1/2)

and
m+1/2∫

m−1/2

min
(

1
|t−m|

,M

)
dt = 2 log

(
eM

2

)
� log(MT ) .

Otherwise, let

I1 :=
]
m− 1

MT
,m +

1
MT

[
∪

]
− β − 1

MT
,−β +

1
MT

[
and

I2 := [m− 1/2,m + 1/2]− I1 .

The integral taken over I1 does not exceed 4 � min(1/|m+β|, T ). I2 is the
union of at most 3 subintervals. Let [v1, v2] be one of them. Then

v2∫
v1

dt

|t−m| |t + β|
=

∣∣∣∣ v2∫
v1

dt

(t−m)(t + β)

∣∣∣∣
(note that the integrand does not change its sign on [v1, v2])

=
∣∣∣∣ 1
m + β

v2∫
v1

(
1

t−m
− 1

t + β

)
dt

∣∣∣∣
� 1

|m + β|
log(MT ) .

Lemma 3. Let k ∈ N, a ∈ (R−{0})k, M ≥ 2, β ∈ R and C ≥ 1. Assume

T ≥ M + 2 max
1≤j≤k

(|aj |+ |a−1
j |) .

Then ∫
[−C,C]k

k∏
q=1

min
(

1
‖tq‖

,M

)
min

(
1

|〈a, t〉+ β|
, T

)
dt

�k (log T )k
∑

m∈Zk

|m|∞≤2kC

min
(

1
|〈a,m〉+ β|

, TMk

)
.
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P r o o f. We use induction on k and the formula

C∫
−C

min
(

1
‖tk‖

,M

)
min

(
1

|〈a, t〉+ β|
, T

)
dtk

=
1
|ak|

C∫
−C

min
(

1
‖tk‖

,M

)

×min
(

1
|tk + (

∑
j≤k−1 tjaj + β)a−1

k |
, T |ak|

)
dtk

� log T
∑

|mk|≤2C

min
(

1
|
∑

j≤k−1 tjaj + (akmk + β)|
, TM

)
∀(t1, . . . , tk−1) ∈ [−C,C]k−1

by Lemma 2.

2. Fourier expansion of F (·, z). Obviously, one has

(8) F (·, z) =
∑
n∈Zn

ane(〈n, ·〉) in L2([0, 1]n) ,

where

an = an(z;v, α) =
∫

[0,1]n

F (u, z)e(−〈n,u〉) du(9)

=
∑

m∈Zn

∫
[0,1]n

m+u∈V

e(−〈n,m + u〉) du =
∫
V

e(−〈n,u〉) du ,

V := α−1
( n×

p=1

]zp, zp + vp]
)

.

For brevity, let

(10)


τ := c4d

n/2

((
X

N f

)1/n

+ 1
)

,

τ ′ := c5d
n(X1/n + N f1/n) ,

k ∈ Zn given by kq := [(α−1(z))(q)] , thus |k− α−1(z)|∞ ≤ 1 .

Lemma 4. t ∈ V , u ∈ [0, 1]n ⇒ |t− u− k|∞ ≤ τ .
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P r o o f. Cramer’s rule and (6) imply

max
|w|∞≤1

|α−1(w)|∞ � |det(α(q)
p )|−1(max

p,q
|α(q)

p |)n−1(11)

� dn/2−1N(βf)−1/n � dn−1N f−1/n .

This proves the assertion since (7) and (6) yield

|α(t− u− k)|∞ = |(α(t)− z) + α(α−1(z)− u− k)|∞
≤ |v|∞ + max

|w|∞≤2
|α(w)|∞

� (dX)1/n + dN f1/n .

Proposition 2. Let N ≥ 2τ ′ and u ∈ [0, 1]n, % := α(u). Then∣∣∣ ∑
n∈Zn

N<|n|∞≤2N

ane(〈n,u〉)
∣∣∣

� lognN

N
dN f1/n

∑
ν∈βf

|ν−z|∞≤τ ′

1∑
c=0

n∑
p=1

min
(

1
|zp + cvp − %(p) − ν(p)|

, Nnτ

)
.

P r o o f. Our approach should be compared to the proof of Theorem 1
of Tatuzawa [12]. We divide the left-hand side into 2n − 1 subsums taken
over the sets

WI = {n ∈ Zn | N < |nq| ≤ 2N ∀q ∈ I, |nq| ≤ N ∀q 6∈ I}

corresponding to the nonempty sets I ⊂ {1, . . . , n}. Let I be one of these
sets; to simplify the notation we assume n ∈ I.

(9) leads to∣∣∣ ∑
n∈WI

ane(〈n,u〉)
∣∣∣ =

∣∣∣ ∫
V

∑
n∈WI

e(〈n,u− t〉) dt
∣∣∣

=
∣∣∣ ∫

V

∏
p∈I

∑
N<|np|≤2N

e(np(up − tp))
∏
p6∈I

∑
|np|≤2N

e(np(up − tp)) dt
∣∣∣

�
∫

[−τ,τ ]n−1

n−1∏
p=1

min
(

1
‖sp‖

, N

)
×

∣∣∣ ∫
{sn|(s1,...,sn)>+u+k∈V }

∑
N<|nn|≤2N

e(nnsn) dsn

∣∣∣dn−1s

by means of the substitution s = t− u− k and of Lemma 4.
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Now {sn | (s1, . . . , sn) + u + k ∈ V } =: [ξ1, ξ2] is an interval, and

α(p)((s1, . . . , sn−1, ξj) + u + k) = zp + cvp

⇒ ξj =
(
zp + cvp − %(p) − α(p)(k)−

n−1∑
j=1

sjα
(p)
j

)
α(p)

n

−1
=: ξcp(s)

for some c ∈ {0, 1}, p ∈ {1, . . . , n}.
Since

ξcp(s) = (cvp + α(p)(α−1(z)− u− k + O(τ)))α(p)
n

−1

� ((dX)1/n + dN f1/nτ)
∣∣∣ ∏

q 6=p

α(q)
n Nα−1

n

∣∣∣
� (X1/n + N f1/nτ)dn/2N f−1/n

� dn/2τ by (6)&(7) ,

the inner integral is, by Lemma 1,

� 1
N

∑
c,p

min
(

1
‖ξcp(s)‖

, N

)
� 1

N

∑
c,p

∑
|mn|≤c6dn/2τ

min
(

1
|ξcp(s)−mn|

, N

)
.

This gives∣∣∣ ∑
n∈WI

ane(〈n,u〉)
∣∣∣

� 1
N

∑
c,p

∑
|mn|≤c6dn/2τ

∫
[−τ,τ ]n−1

n−1∏
j=1

min
(

1
‖sj‖

, N

)

×min
(

1
|ξcp(s)−mn|

, N

)
dn−1s

� lognN

N

∑
c,p

∑
|m|∞≤c7dn/2τ

min
(

1
|ξcp((m1, . . . ,mn−1)>)−mn|

, τNn

)
by Lemma 3, which is applicable because (6) imply

max
h,i,j

|(αj/αh)(i)| = max
h,i,j

∣∣∣α(i)
j

∏
k 6=i

α
(k)
h /Nαh

∣∣∣
� (d1/2N f1/n)nNβf−1 � dn/2 � τ .
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Now

(ξcp((m1, . . . ,mn−1)>)−mn)α(p)
n = zp + cvp − %(p) − α(p)(k)− α(p)(m)

= zp + cvp − %(p) − ν(p) ,

where ν := α(k + m) ∈ βf satisfies

|ν − z|∞ = |α(k− α−1(z) + m)|∞ ≤ max(|α(t)|∞ | |t|∞ ≤ c7τdn/2) ≤ τ ′

for sufficiently large c5.
Moreover, m → ν is injective, and the assertion follows since |α(p)

n | �
dN f1/n.

Proposition 3. Let N ≥ 2τ . Then

F (u, z) =
∑
n∈Zn

|n|∞≤N

ane(〈n,u〉)

+ O

(
lognN

N
dN f1/n

∑
ν∈βf

|ν−z|∞≤τ ′

1∑
c=0

n∑
p=1

1
|zp + cvp + α(p)(u)− ν(p)|

)

for any u ∈ [0, 1]n.

R e m a r k. For certain values of u the expression inside O(·) is not finite.
It is easy to show (but not needed in this paper) that the remainder does
not exceed

O

((
X

N f

)1−1/n

+ dn/2 lognNX

)
.

One has to combine Lemma 5 below and a result similar to Hilfssatz 10 of [9].

P r o o f o f P r o p o s i t i o n 3. Define

K := {u ∈ [0, 1]n | ∃ν ∈ βf , |ν − z|∞ ≤ τ ′ ,

∃c, p : zp + cvp = ν(p) + α(p)(u)} ,

G := [0, 1]n −K and Fm(u) :=
∑
n∈Zn

2m−1N<|n|∞≤2mN

ane(〈n,u〉) .

Proposition 1 yields, for u ∈ G,

(12)
∞∑

m=1

|Fm(u)|

�
∞∑

m=1

logn(2mN)
2mN

dN f1/n
∑
c,p

∑
|ν−z|∞≤τ ′

1
|zp + cvp − α(p)(u)− ν(p)|
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� lognN

N
dN f1/n

∑
ν∈βf

|ν−z|∞≤τ ′

1∑
c=0

n∑
p=1

1
|zp + cvp + α(p)(u)− ν(p)|

.

Therefore,
∑∞

m=1 Fm converges uniformly on any compact set G̃ ⊂ G. It
coincides by (8) with

F (·, z)−
∑
n∈Zn

|n|∞≤N

ane(〈n, ·〉) in L2(G̃) .

Since K is closed and both the functions are continuous, equality holds at ev-
ery point of G, and the assertion follows (of course it is trivial for u ∈ K).

3. Upper bounds. From Proposition 3 we derive our generalization
of (4):

Theorem 3. There are complex numbers bn = bn(x,y, α) satisfying

|bn| �
1√

dNβf

n∏
p=1

min
(

1
|η(p)(n)|

, X1/n

)
and

|{ν ∈ ZK | ν ≡ ν0 mod f , yq < ν(q) ≤ yq + xq , 1 ≤ q ≤ n}|

=
X√
dN f

+
∑
n∈Zn

0<|n|∞≤N

bne(S(η(n)βν0)) + O(N−1/3)

for any ν0 ∈ ZK and any N ≥ c8(dN fX)c9 .

P r o o f. Let z̃q := β(q)yq, ṽq := β(q)xq, 1 ≤ q ≤ n. For different integers
ν1, ν2 of K satisfying |νj − z̃|∞ ≤ 2τ ′,

min
1≤p≤n

|ν(p)
1 − ν

(p)
2 | ≥ |N(ν1 − ν2)|/|ν1 − ν2|n−1

∞ ≥ (4τ ′)1−n .

Thus at least one of the intervals

]z̃p + cṽp − (8τ ′)1−n, z̃p + cṽp] and ]z̃p + cṽp, z̃p + cṽp + (8τ ′)1−n]

does not contain the pth conjugate of any ν ∈ ZK , |ν − z|∞ ≤ τ ′.
This allows us to choose acp, bcp ∈ {0, 1} so that

zp := z̃p + (−1)acp(8τ ′)1−nN−1/3

and
vp := ṽp + (z̃p − zp) + (−1)bcp(8τ ′)1−nN−1/3

satisfy

|zp + cvp − ν(p)| ≥ (8τ ′)1−nN−1/3 ∀ν ∈ ZK : |ν − z|∞ ≤ τ ′ ∀c ∈ {0, 1} ∀p
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and (since all elements of the counted sets are integers ν subject to |ν−z|∞
≤ 2τ ′)

F (α−1(βν0), z;v, α) = F (α−1(βν0), z̃; ṽ, α)

= |{m ∈ Zn | z̃p < α(p)(m + α−1(βν0)) ≤ z̃p + ṽp}|
= |{µ ∈ βf | β(p)yp < (µ + βν0)(p) ≤ β(p)(yp + xp)}|
= |{ν ∈ ZK | ν ≡ ν0 mod f , yp < ν(p) ≤ yp + xp}| .

(7) holds because of (5) and of vp = ṽp + O(N−1/3) = β(p)xp + O(N−1/3).
Thus Proposition 3 can be used to obtain

|{ν ∈ ZK | ν ≡ ν0 mod f, yp < ν(p) ≤ yp + xp}|

=
∑
n∈Zn

|n|∞≤N

an(z,v, α)e(〈n, α−1(βν0)〉)

+ O

(
lognN

N
dN f1/n

∑
ν∈βf

|ν−z|∞≤τ ′

(τ ′1−nN−1/3)−1

)

=
∑
n∈Zn

|n|∞≤N

an(z,v, α)e(〈η(n), βν0〉) + O

(
lognN

N
d1/2τ ′2n−1N1/3

)

by use of

|{ν ∈ βf | |ν − z|∞ ≤ τ ′}| = |{m ∈ Zn | |α(m)− α(z)|∞ ≤ τ ′}|

≤ Vol(t ∈ Rn | |α(t)|∞ ≤ 2τ ′) � τ ′n√
dNβf

.

For sufficiently large c9 the remainder is � N−1/3 (see (10)).
Moreover, by means of the substitution t = α(v), (9) gives

bn := an(z,v, α) =
1√

dNβf

n∏
p=1

zp+vp∫
zp

e(−η(p)(n)tp) dtp ,

which shows the estimate for the bn, n 6= 0, and

b0 : =
1√

dNβf

n∏
p=1

vp =
1√

dNβf

n∏
p=1

(ṽp + O(τ ′1−nN−1/3))

=
1√

dNβf

( n∏
p=1

β(p)xp + O

((
(dX)1/n

τ ′

)n−1

N−1/3

))
by (5)

=
NβX√
dNβf

+ O(N−1/3) by (10) .
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Lemma 5. Let c denote a (not necessarily integral) ideal of K and let
M ≥ 2 + Nc. Then∑

γ∈c
0<|γ|∞≤M

1
|Nγ|

� d(n−1)/2Nc−1(log M)n .

P r o o f. Given z ∈ Rn
+, Z =

∏n
q=1 zq, we obtain from Theorem 1 of [5]

the existence of a linear mapping γ = γz : Rn → Rn satisfying

γ(Zn) = c and sup
|t|∞≤1

|γ(q)(t)| ≤ c10d
1/2Nc1/nzqZ

−1/n .

This implies∑
γ∈c

zq<|γ(q)|≤2zq

1 =
∑

m∈Zn

zq<|γ(q)(m)|≤2zq

∫
m+[0,1]n

dt

≤ Vol(t ∈ Rn | |γ(q)(t)| ≤ 2zq + O(d1/2Nc1/nzqZ
−1/n))

� 1
d1/2Nc

n∏
q=1

(2zq + O(d1/2Nc1/nzqZ
−1/n))

� Z

d1/2Nc
+ d(n−1)/2 .

Since γ ∈ c and 0 < |γ|∞ ≤ M imply

|Nγ| ≥ Nc and |γ(q)| = |Nγ|
∏
p6=q

|γ(p)|−1 ≥ NcM1−n

we conclude that∑
γ∈c

0<|γ|∞≤M

1
|Nγ|

≤
∑

0≤k1,...,kn≤ log(Mn−1/Nc)
log 2

∑
γ∈c

M2−kq−1<|γ(q)|≤M2−kq

1
|Nγ|

≤
∑

0≤k1,...,kn≤ log(Mn−1/Nc)
log 2

min
(

1
Nc

,M−n2Σkq+n

) ∑
γ∈c

M2−kq−1<|γ(q)|≤M2−kq

1

�
∑

0≤k1,...,kn≤ log(Mn−1/Nc)
log 2

min
(

1
Nc

,M−n2Σkq

)(
Mn2−Σkq

d1/2Nc
+ d(n−1)/2

)

� logn(Mn/Nc)(d−1/2Nc−1 + d(n−1)/2Nc−1) .

Let G(γ) denote the Gaussian sum
∑

% mod f χ(%)e(S(γ%)), γ ∈ 1/(df).
Since χ is primitive one has the well-known
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Lemma 6.

|G(γ)| =
{

0, (γdf, f) 6= 1,
N f1/2, (γdf, f) = 1.

P r o o f o f T h e o r e m 1. One has∑
yq<ν(q)≤yq+xq

χ(ν)

=
∑

ν0 mod f

χ(ν0)|{ν ∈ ZK | ν ≡ ν0 mod f, yq < ν(q) ≤ yq + xq}|

=
( ∑

ν0 mod f

χ(ν0)
) X

d1/2N f

+
∑
n∈Zn

0<|n|∞≤N

bn
∑

ν0 mod f

χ(ν0)e(S(η(n)βν0)) + O(1)

by Theorem 3, with N := c8(dN fX)c9 ≥ N f3. Analogously to (11),

max
|t|∞≤1

|η(t)| ≤ c11d
n−1N f−1/n

follows. This yields

(13) {η(n) | n ∈ Zn, 0 < |n|∞ ≤ N} ⊂ {η ∈ 1/(dβf) | 0 < |η|∞ ≤ N2}
since N ≥ c12d

n−1.
From Lemma 6 one infers∑

n∈Zn

0<|n|∞≤N

|bn|
∣∣∣ ∑

ν0 mod f

χ(ν0)e(S(η(n)βν0))
∣∣∣

� N f1/2

d1/2Nβf

∑
η∈1/(dβf)

0<|η|∞≤N2

(ηdβf,f)=1

n∏
q=1

min
(

1
|η(q)|

, X1/n

)

� 1
d1/2NβN f1/2

∑
η∈1/(dβf)

0<|η|∞≤N2

1
|Nη|

� dn/2N f1/2(log N)n

by Lemma 5.
So Theorem 1 follows directly for N f1/2 ≤ X (implying log(dN fX) �

log(dX)); otherwise it is trivial (use Theorem 1 with f = ZK).

The proof of Proposition 1 follows in the same way.

4. Lower bounds. To derive lower bounds we fix ν0 ∈ ZK , replace β
by 1 and work with the Fourier series of F (α−1(ν0), z;v, α) with respect to z.
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From (6) follows the existence of w ∈ Rn, |w|∞ � d1/2N f1/n, satisfying

∆ := w + α([0, 1]n) ⊂ Rn
+ .

In L2(∆),

(14) F (α−1(ν0), ·;v, α) =
∑

γ∈1/(df)

cγe(−〈γ, ·〉)

holds where the coefficients are given by

cγ = cγ(ν0,v, α) =
1

Vol∆

∫
∆

F (α−1(ν0), z)e(−〈γ, z〉) dz(15)

=
e(−S(γν0))

d1/2N f

∫
∆

∑
ν∈f

zp<ν(p)+ν
(p)
0 ≤zp+vp

e(〈γ, ν + ν0 − z〉) dz

=
e(−S(γν0))

d1/2N f

∑
ν∈ZK

ν≡ν0 mod f

∫
∆∩{z|0<ν(p)−zp≤vp}

e(〈γ, ν − z〉) dz

=
e(−S(γν0))

d1/2N f

∫
{z|0<zp≤vp}

e(〈γ, z〉) dz

=
e(−S(γν0))

d1/2N f

n∏
p=1

vp∫
0

e(γ(p)tp) dtp

=


1

(2πi)n

e(−S(γν0))
d1/2N f

1
Nγ

n∏
p=1

(e(γ(p)vp)− 1), γ 6= 0,

X

d1/2N f
, γ = 0.

R e m a r k. cγ(ν0,v, α)e(S(ην0)) = aη−1(γ)(z,v, α)e(−〈γ, z〉).
Proposition 4. Let γ0 ∈ 1/(df) − {0} satisfy (γ0df, f) = 1. For any

y ∈ Rn there is an x ∈ Rn
+, |x|∞ � |1/γ0|∞ + d1/2N f1/n, satisfying∣∣∣ ∑

yq<ν(q)≤yq+xq

χ(ν)− E(χ)X
∣∣∣ ≥ 1

(2π)nd1/2

1
N f1/2|Nγ0|

.

P r o o f. One has

h(z) : =
∑

zq+yq<ν(q)≤yq+zq+vq

χ(ν)− E(χ)
n∏

q=1

vq

=
∑

ν mod f

χ(ν)
∑

γ∈1/(df)−{0}

cγ(ν,v, α)e(−〈γ, z + v〉)

in L2(∆) by (14).
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Parseval’s equation and (15) lead to

max
z∈∆

|h(z)|2 ≥ 1
Vol∆

∫
∆

|h(z)|2 dz

=
∑

γ∈1/(df)−{0}

∣∣∣ ∑
ν mod f

cγ(ν,v, α)χ(ν)
∣∣∣2

≥ 1
(4π2)n

1
dN f2

1
|Nγ0|2

|G(−γ0)|2
n∏

p=1

|e(γ(p)
0 vp)− 1|2 .

The product is 4n if we choose vp to be (2|γ(p)
0 |)−1.

By use of Lemma 6 we obtain the existence of z ∈ ∆ (thus 0 < zq �
d1/2N f1/n) satisfying

1
πnd1/2N f

1
|Nγ0|

N f1/2 ≤ |h(z)|

=
∣∣∣ ∑

zq+yq<ν(q)≤yq+zq+vq

χ(ν)

−E(χ) Vol(v ∈ Rn | yq + zq < vq ≤ yq + zq + vq)
∣∣∣

=
∣∣∣ 1∑

c1,...,cn=0

(−1)n−Σcq

( ∑
yq<ν(q)≤yq+zqcq+vq

χ(ν)

−E(χ) Vol(v ∈ Rn | yq < vq ≤ yq + zqcq + vq)
)∣∣∣ .

So at least one of the 2n values of (zqcq + vq)n
q=1 can be chosen to be x.

P r o o f o f T h e o r e m 2. The ideal class generated by df contains at
least 2ω(f) prime ideals of norm less than c13(K)ω(2f) log(ω(6f)). Thus one
of these ideals, say p, does not divide f. Any generator γ0 of the principal
ideal p/(df) satisfying

|γ(q)
0 | �K |Nγ0|1/n �K

ω(2f) log(ω(6f))
N f

(see e.g. (81) of [9])

is admissible in Proposition 3 since

(γ0df, f) = (p, f) = 1 .

This proves Theorem 2. If df = (%) is principal one applies Proposition 4
with γ0 = 1/%.

Acknowledgements. The author would like to thank Acta Arithme-
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References

[1] K. M. Bartz, On a theorem of A. V. Sokolovskĭı, Acta Arith. 34 (1978), 113–126.
[2] G. H. Hardy and J. E. Lit t l ewood, Some problems of Diophantine approximation:

The lattice-points of a right-handed triangle, Proc. London Math. Soc. (2) 20 (1921),
15–36.

[3] J. G. Hinz, Character sums in algebraic number fields, J. Number Theory 17 (1983),
52–70.

[4] K. C. Lee, On the average order of characters in totally real algebraic number fields,
Chinese J. Math. 7 (1979), 77–90.

[5] K. Mahler, Inequalities for ideal bases in algebraic number fields, J. Austral. Math.
Soc. 4 (1964), 425–448.

[6] H. L. Montgomery and R. C. Vaughan, Mean values of character sums, Canad.
J. Math. 31 (1979), 476–487.
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