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The Pélya—Vinogradov inequality
for totally real algebraic number fields

by

PETER SOHNE (Marburg)

The Polya—Vinogradov inequality states that for any primitive character
X mod g,

(1) > x(n) < ¢'*logq.

n<z

Conversely, there is a 1 < x < ¢ satisfying

(2) > )| > 2

n<x

(see Montgomery and Vaughan [6]).

Here a generalization of these inequalities to totally real algebraic number
fields is given. So let K be a totally real field of degree n over Q with
ramification ideal 0, absolute value of discriminant d = N0 and ring of
integers Zg . All constants implied by the <-notation depend only on n,
if no other dependence is explicitly noted. The nature of the difficulties in
making the dependence of the constants on n explicit seems to be purely
technical. One has to substitute formula (6) below by a result similar to
Lemma 2 of [1].

Let f C Zk be an ideal, x a primitive character of the multiplicative
group (Zg /f)* extended to Zg in the usual manner.

Finally, let x € RY} satisfy X :=[[_, 2, > 2 and let y € R™.

By means of Siegel’s summation formula and an additional argument
Hinz [3] succeeded in showing

(3) Z x(v) = E(x)X + OE(Nfl_l/@(”H))XE)
VEZLK
()<V<Q)§wq

where ¢ is an arbitrary positive number and E(x) equals 1/Vd if § = Z,
and 0 otherwise.
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A similar estimate was given by Lee [4] who had the exponent 1 on Nf.
Our result is

THEOREM 1.
> x(v) = E(\)X + O(d"?N§'/?log™ (dX)).

VELK
yq<V<q)§yq+xq

This sharpens (3) for any value of X and Nf and is up to logarithms the
same as (1). Moreover, arbitrary values of y may be chosen, while (3) needs
y =0.

Recently Rausch ([8], (1.9)) proved this result (with constants depending
on d) using a different method.

In the opposite direction we have

THEOREM 2. For any y € R" there erists x € R}, maxi<y<n ¥y <k
Nf/™ subject to

R ) R

yq<l/(q> Syq"l‘mq
Here w(a) denotes the number of prime divisors of a. In particular, the
right-hand side is >k . Nf'/?(log 2Nf)~17.
In the case of the ideal of being principal one has for some x € R},
(dNf)/?
—EX)X| > —F—.
Y W BX|2 G

VEZK
yq<1/(Q) Squ’,a:q

Only minor additional work has to be done to extend Theorems 1 and 2
to non-primitive characters .

An easy corollary of the proof of Theorem 1 is given by
PROPOSITION 1. Let vy € Zi. Then

|{V€ZK|VEV0mOdfa yq<V(Q) < yYq + g, 1§Q§n}|
X
~ dY/2Nf§

The right-hand side coincides with the number of lattice points in a par-
allelotope (see (7) below). The problem of counting these is similar to that
of counting the lattice points of a polyhedron of volume ~ X. For the poly-
hedron {w € R” | w; > 1, > w,w; < X'/"} it was shown by Spencer [11]
that for almost all (in the sense of Lebesgue measure) coefficients wy, . .., wy,
the remainder does not exceed O, (log"** X).

+ O(d™?log™ (X dN¥)).
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In the case of n = 2 and w; /wsy being a quadratic irrationality, Hardy and
Littlewood proved that the remainder is O(log X) which is best possible ([2],
Theorems A3 and A4). Thus the remainder in Proposition 1 is Oy s(log X)
for real-quadratic K. Skriganov [10] gives a proof of Proposition 1 with
remainders Oy 4(log" X), n > 3, and Oj 4(log X), n = 2. Nevertheless, it
seems impossible to use his approach based on the inequality (3.18) of [10]
to estimate character sums.

Our method of proof goes back to Pélya’s original proof ([7]; see also [6]).
The most important tool in it is

o ¥ -7

0<k<z
T 1 mx ml
S ) -1 _
q * Z 2mim <€< q ) >e< q )

k=l mod q
0<|m|<H
1 1
—|—O<min<1, — + >>,
H|=H - HIG

where ||z|| := min(jx — k| | k € Z) and e(z) := €2™*.

Theorem 3 below gives an adequate generalization of (4).

Minkowski’s convex body theorem shows that there is a ' € Zx — {0}
subject to

8/D] < ¢ d/Cm X/ @12 1 < g <n.
B := (% satisfies

(5) 0< B < c%dl/”Xl/"xgl , 1<¢g<n.
By Theorem 1 of Mahler [5] there is a Z-basis {a1,...,a,} of Bf subject to
(6) )| < cod" PN (Bf)Y" < e3dNT/™, 1< pg<n.

We use it to define the functions
:R™ — R™, t :( t 0’))" th ") =
a:R" = a(t) Zl o) - (thus a(Z") = B)

and
n:=a T :R" - R" (thus n(Z") = 1/(005f)).
Moreover, for u,v,z € R with
(7) 0<w, <22dY"XY" 1<p<n,
we define

F(u,z) == F(u,z;v,0) = [{m € Z" | z, < aP(m +u) < 2, + v, }|.
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In Sections 1-3 we fix z and work with the Fourier series of F' with respect
to u. This will prove Theorem 1.

In Section 4, u is fixed and the Fourier expansion of F' with respect to z
is used to derive lower bounds. Here only L2-convergence of the series is
needed, so that the proof is easily compared to that of the upper bounds
requiring a result similar to (4).

We make use of the notations

k
[tloo :=max(|t;| |1 <j<k) and (s,t):=) s;t;, stecRF;
j=1

in particular,

Voo = max(|v' P |1 <¢<n) and (v,u)=Swu) forv,uekK.

1. Preliminary lemmas. First we need
LEMMA 1. For a natural number N and reals v < w one has
" 1 1 1
e(kt) dt < — min ( + ,N) .
D Nl Tl

Proof. Obviously, it suffices to prove the lemma assuming v, w ¢ Z.
The integral equals

S o (elhw) — e(k))
N<|k|<2N

and is, therefore, by trivial estimation, < 1, and is

< 1 . < 1 n 1 )
—min [ — + —
N [l flwl]

by use of partial summation and of ) _, _,e(kt) < 1/||t]|. =
LEMMA 2. Let M,T > 2, C > 1 and § € R. Then

o 1 1
f min <,M> min <,T> dt
ks I £+ ]

< log(MT) Y min (M,MT).

Im|<2C

Proof. The left-hand side is less than
m+1/2

. 1 . 1
Z f m1n<|tm|,M>m1n<t+ﬁ|,T>dt.

|m|<2C m—1/2

For fixed m, the integral can be estimated in a trivial way by MT.
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For [m + (3| > 1 one has

and

m+1/2

1 M
[ min( ——, M) dt =2log [ =~ ) < log(MT).
|t —m)| 2

m—1/2

Otherwise, let

and
IQ = [m— 1/2,m+1/2] —Il.

The integral taken over I; does not exceed 4 < min(1/|m+ 3|, T). I5 is the
union of at most 3 subintervals. Let [v1, v2] be one of them. Then

v2 V2
f dt B f dt ‘
P I R P e )
(note that the integrand does not change its sign on [v1,v2])
v2
1 1 1
et et
m+ [ o t—m t+p0

1
L —log(MT). m
m 1 ) s MT)

LEMMA 3. Letk € Nya € (R—{0})*, M >2, B€R and C > 1. Assume

> : -1 .
T_M+21I£]a§xk(]a]\+]a] )
Then

J ﬁ min <Hth!M> min <WT> dt

[~c.clf =1

<y (logT)* Z min <\(am>+ﬁ]’TMk> )

mEZk
|m|<25C
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Proof. We use induction on k& and the formula

< 1 1
f min <,M> min (,T> dty,
_C HtkH |<a’t> +/8’
c
1 . 1
=g 4w ()
-C
1
X min — ,Tak]> dtk
<|tk + (ngkfl tja; + Bay, a

1
<| > i<k tiag + (axmy + B)|’

\V/(tl, e 7tk—1) S [—C, C]k_l

< logT Z min
|mg|<2C

)

by Lemma 2. =u

2. Fourier expansion of F(-,z). Obviously, one has

(8) F(,2)= ) ane((n,) in L*(0,1]"),
nezm
where
(9) an = an(z;v,a) = f F(u,z)e(—(n,u))du
[0,1]™
Z f (n,m+u))du = f e(—(n,u))du,
mezn [0,1]" 1%
m-+ueV
( >_< zp,zp+vp).

For brevity, let

X 1/n
7= cud™? <<Nf> + 1) ,

= esd™ (XY™ 4+ N,
k € Z" given by k, := [(a"(2))?], thus [k — a " (z)]e < 1.

(10)

LEMMA 4.t €V, ue[0,1]" = [t —u—k|, < 7.
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Proof. Cramer’s rule and (6) imply

(1) max Ja~ (W)l < [det(ag?)| ™ (max o))" !

< dn/2_1N(,8f)_1/n < dn—le—l/n )
This proves the assertion since (7) and (6) yield

a(t —u = k)| = [(a(t) —2) + (o™ (z) —u— k)|
< V] + max |a(w)|s

oo =

< (dX)Y" + dNF/" . m
PROPOSITION 2. Let N > 27" and u € [0,1]", ¢ := a(u). Then

Y ane(nw)|

neZ™
N<|nfoo<2N

1 n
log N 1/n : 1 n
&K ———dNf¥ E g g mm(]zp—i—cvp—,g(p) _y(p)’,N 7’) .

vepf c=0 p=1
|[v—2|oo <7’

Proof. Our approach should be compared to the proof of Theorem 1
of Tatuzawa [12]. We divide the left-hand side into 2™ — 1 subsums taken
over the sets

Wr={neZ"|N<|ng <2NVqel,|ng <NVq¢glI}

corresponding to the nonempty sets I C {1,...,n}. Let I be one of these
sets; to simplify the notation we assume n € I.

(9) leads to

‘Zan nu‘:‘fz nu—t>)dt’

neWr neWr

=TI X etmlm—tDI] 3 elnplup—t))at

V. pel N<|n,|<2N PEI |ny|<2N

< 1. Hmm(|spu v)
x‘ [ ST e(nnsn) dsy

{8n](81,-,8n) T +u+keV} N<|n,|<2N

d" s

by means of the substitution s =t — u — k and of Lemma 4.
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Now {s, | (s1,...,8n) +u+k eV} =:[£,8] is an interval, and

alP ((s1,...,8n-1,8) +u+Kk) =2, + cvp
1
= f] = (zp + CUp _ Q( (p) ZS a(?’)) (p) ™~ § (S)

for some ¢ € {0,1}, p € {1,...,n}.
Since
Een(s) = (cvp +aP (a7 (2) —u—k + O(r)))a®
1

< ((dX)Y™ + dN§Ym 7 ‘HQ(Q)Na ‘
q#p
< (Xl/n _|_Nf1/n7_>dn/2Nf71/n

< d"?r by (6)&(7),

the inner integral is, by Lemma 1,

1 , 1
<¥ 2 ()
1 . 1
xZ 2 (Ge=m)

&P |my|<ced™/2T

This gives

‘ 3 ane((n, u>)(

neW;

<yL ¥ J Hmm(rsm)

G |my,|<cedn/2T [—7',7']"71

1
« min (,N)dn—ls
|£cp(s) - mn|
log" N . < 1 )
< min ,TN™
N Z Z |£Cp((mla---amn—1)—r) _mn’

eP |m|oo<crdn/2r

by Lemma 3, which is applicable because (6) imply

max[(a]/ah)( )| = max‘ (@) Hagf)/Nozh‘
k#i
< (dM2NfY™MP NG < dV? < 7
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Now

(Eepl(mas- 1)) = ma)al®) = 2, + cv, — o) — ) (1) — ¥ (m)
= 2, + cv, — 0P — )
where v := a(k + m) € (f satisfies
V= 7o = a(k — a7} (2) + m)|ow < max(la(®)lc | [tloo < crd™/2) < 7
for sufficiently large cs.

Moreover, m — v is injective, and the assertion follows since \a%p )] <

ANF/". m
PRrOPOSITION 3. Let N > 27. Then

F(u,z)= Y ane((n,u))

nezZ”
Infec <N

1 n
log"N  1/n 1
+O< N N Z Zz|zp+cvp+a(p)(u)—u(1’)|)

vepf c=0 p=1
[V—2|oo <7’

for any u € [0,1]™.

Remark. For certain values of u the expression inside O(+) is not finite.
It is easy to show (but not needed in this paper) that the remainder does

not exceed
X 1-1/n
— "/2log"NX |.
o(F)  +evoenx)

One has to combine Lemma 5 below and a result similar to Hilfssatz 10 of [9].

Proof of Proposition 3. Define
K= {u € 0,1]" | v € Bf, |v— 2o <7,

3e,p: 2y + v, = VP 4+ alP)(u)},
G:=[0,1]"-K and Fp(u):= > ane((n,u)).

neZ™
2T IN<|n| o0 <2™N

Proposition 1 yields, for u € G,

(12) > [Fu(u)

o0

log" (2™ N) 1 1

o " TV AN§/n

< Z 2m N f Z Z |zp + cvp — a®)(u) — vP)]
m=1 c,p |V*Z‘oo§7—/
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1 n
lognN 1/n 1
<N dNy Z Z Z |zp + cvp + a®)(u) —v@)|

veBf c=0 p=1
|v—2|oo <7’

Therefore, 22321 F,, converges uniformly on any compact set GCG It

coincides by (8) with

F(,z)— > ame((n,) inL*(G).
I lN

Since K is closed and both the functions are continuous, equality holds at ev-
ery point of G, and the assertion follows (of course it is trivial for u € K). =
3. Upper bounds. From Proposition 3 we derive our generalization

of (4):

THEOREM 3. There are complex numbers by, = by (x,y, ) satisfying

n

1 1
bn ; ’ 1/n>
|bn| < \/gNﬁf p”1 min <|77(p) )] X

and

{veZk |v=ymodf, y, <v'D <y, +z4, 1 <q<n}

S s
=Vang T 2 beelSBin) + O
0<|n|cc <N

for any vy € Zg and any N > cg(dNfX ).

Proof. Let z, := ﬁ(Q)yq, Vg 1= /B(Q)xq, 1 < g < n. For different integers
v1, vo of K satisfying |v; — z|e < 27,

min (11" — 8P| > [N(v1 — vo)|/|v1 — ve|25 ! > (477)1 7
1<p<n

Thus at least one of the intervals

1Zp + cvp — (87)17" 2, + ev,]  and ]2, + cUp, 2 + €U, + (87)1 77
does not contain the pth conjugate of any v € Zg, |v — z|o < 7.

This allows us to choose acp, bep € {0,1} so that

Zp ' =Zp+ (—1)%?(87")1_"]\7_1/3
and
vp =Ty + (Fp — 2) + (1)l (87) "N T3

satisfy
lzp + cvp, — VP > (87PN Wy e Zg : v — 2| <7/ Vee {0,1} Vp
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and (since all elements of the counted sets are integers v subject to |V — 2|
<277)

F(a™!(Br),2;v,0) = Fa™ ' (Bro), %V, )
={mez" |7, <aP(m+a ' (Bn)) <7+ Ty}
= [{n € Bf | ﬁ(p)yp <(n+ ﬁVO)(p) < pw (yp + p) }
—{velZg|v=vymodf, y, <v® <y, +z,}.

(7) holds because of (5) and of v, = v, + O(N~V/3) = gWP)g, + O(N~1/3).
Thus Proposition 3 can be used to obtain

HreZk |v=rvymodf, y, < v(P) < Yp + Tp}

— Z an(z,v,a)e((n,a™ " (Brp)))

nez”
[n|oe <N

log" N 1/n 1n—npr—1/3y—1
+0< N %ng (71 N3y

|[v—2|oo <7’

= Y o vkl pu) + O EE g

nez”
[n|oc <N

by use of
(v € Bf | Iv— 2l < 7'} = {m € Z" | |a(m) — a(z)] < )]

m

VANBF

< Vol(t € R™ | |a(t)|e < 27") <

For sufficiently large cg the remainder is < N~1/3 (see (10)).
Moreover, by means of the substitution t = a(v), (9) gives

Zpt+up

n'?) (n
f NP ;- H /e i

Zp

which shows the estimate for the b,, n # 0, and

1 n n

. _; ~ n—npr—1/3
bo._mNﬁfU%_\/&Nﬁf[{l(vﬁou N™3Y)

levm<Hﬂ(p) p+0<<(d{)'w>n_lN_l/3>> by )
NBX

~ VANB;

+O(N~Y3) by (10). =
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LEMMA 5. Let ¢ denote a (not necessarily integral) ideal of K and let
M > 2+ Nc. Then

1
) ] < d"=Y2 N log M)™.
yEC v

0<|v|co <M

Proof. Givenz € R}, Z = [[,_, 24, we obtain from Theorem 1 of [5]
the existence of a linear mapping v = 7, : R” — R" satisfying

)= | Tup D (b)] < crod /2N "z Z7 1
oo <1

This implies

) SEEETID S

yEC mez" m+[0,1]"
zq<\»y(tI)|§2zq Zq<|’y(q>(m)|§2,zq
< Vol(t € R™ | [y (t)] < 22 + O(d'/*Ne!/" 2,27 1™))
1 £ )

—_— /2 1/n —1/n

< dU2ZN¢ U<2zq+0(d Nct/mz,z=1my)
= (n—1)/2

< arne e '

Since v € ¢ and 0 < |Y|oo < M imply

INy| > Ne  and [y 9] =Ny [T WP 7! > NeM' "
PF#q

we conclude that

> mc X >

ol
vee log(M™—1/N¢) vEe
0<[v|oc <M 0Shsokn S =000 M2~ a1 <|y(@D]|< M2k
. 1 _
< E min (N , M o¥katn E : 1
c
log(M™=1/N¢) Yee
0k kn <™ om M2 Fa—1 < | @ |< M2k
1 Mn2—2kq
i —noXk (n—1)/2
< E min | —, M~ "2%% - 4d
N¢’ d'/2N¢

log(M™—1/N¢)
0<ky,... oy < B AR

< log"(M™/N¢)(d V2Nt 4 d™ V2N w

Let G(v) denote the Gaussian sum -, .41 x(0)e(S(v0)), v € 1/(2f).
Since x is primitive one has the well-known
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LEMMA 6.
0’ (fybf’ f) # ]"
G(~7)| =
)] {Nf1/27 (of. ) = 1.
Proof of Theorem 1. One has

> xv)

Yq<v(D <yg+zq

= Z X(o){v € Zk | v =vo mod f, y; < 9 < yg + 24}

vo mod f

=< Z X(V()))dl/fj\ff

vo mod f

+ D ba Y x()e(S(n(n)Bro)) + O(1)
nez™ vo mod f
0< |n]oe <N

by Theorem 3, with NV := cg(dN§X)® > Nf3. Analogously to (11),

t)| < cpd" 'NFU/R
dpax, In(t)] < e f

follows. This yields
(13) {n(n)|n€Z" 0<|njo <N} C{nel/(®Bf)]0<|new <N}
since N > ciod™ 1.

From Lemma 6 one infers

S lal| X xto)e(Smm)su)|

nez” vo mod §

0<|n|0 <N
N§1/2 d ( 1 )
L — 5 Z Hmin —_ xn
12N (@)’
PENBE eiGay w1 N
0<|n]ec <N?
(moBf,f)=1
1 1 n/2 arsl/2 n
nel/(opf)
0<|n]ee<N?
by Lemma 5.

So Theorem 1 follows directly for Nf'/? < X (implying log(dN§X) <
log(dX)); otherwise it is trivial (use Theorem 1 with f = Zg). =

The proof of Proposition 1 follows in the same way.

4. Lower bounds. To derive lower bounds we fix vy € Zg, replace (8
by 1 and work with the Fourier series of F'(a~! (1), 2; v, &) with respect to z.
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From (6) follows the existence of w € R™, |w|o, < d'/2Nf'/", satisfying
A:=w+a(0,1]") CRY.
In L?(A),
(14) F(ail(VO)f;VvO‘) = Z C’Ye(_<77 ))
ye1/(of)

holds where the coefﬁcients are given by

VolA fF “H(vo), 2)e(—(7,2)) dz

(15) ¢y =cy(vy,v,a) =

e(=S(wo))

:dl/szAf VZGT e((v,v+uvy—z))dz
zp<l/<p)+l/(()p)§zp+”1>
D S
vELK An{z|0<vP) —z,<v,}
v=vp mod f N
e(=5(y))
= W f e((’Y’ Z)) dz

{2]0<zp<vp}

- d1/2ij\?$ H f (1)

p=1 0

1 e(=Stmo) 1 1 VO™
- 1), 0,
) Griy T &PNT Ny le tha
X
d/2Ny’
Remark. c,(vo,v,a)e(S(nwo)) = a,-1(4)(2, v, a)e(—(7,2)).
PROPOSITION 4. Let vy € 1/(0f) — {0} satisfy (7o0f,f) = 1. For any
y € R™ there is an x € R, |X|oo < |1/%0|00 + d/2NF/™, satisfying

1 1
Z x(v) — E(X)X‘ Z (2m)"d1/2 Nf/2|N~o|

v=0.

yq<1/(‘1)§yq+zq
Proof. One has .
h(z): = Z x(v) — E(x) H Uq
zq+yq<u(‘1)§yq+zq+vq q=1
= > xv) D eWwv.ae(=(r,z+V))
v mod § v€1/(df)—{0}

in L2(A) by (14).
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Parseval’s equation and (15) lead to

1
m > 2
zeagdh( )\ 2 ol Af|h(z)\ dz

= Z ‘ Z cy (v, v,a)x(v)

y€l/(2f)—{0} v modj

1 1 2 (») 2

’ 2

The product is 4™ if we choose v, to be (2\7@)]

By use of Lemma 6 we obtain the existence of z € A (thus 0 < z; <€
d'/2Nfl/m) satistying
1 1
7nd/2N§ | Nl

= ‘ > x(v)

2q+yq<v(D <yg+zq+vg

N§'/2 < |h(z)]

—E(x) Vol(v € R" | yg + 24 < vg < yq + 24 —l—vq)‘

- | 5 (Y W)

Clyeey cn=0 yq<u(4)§yq+zch+vq
—E(x) Vol(v € R" | yg < vg < yq + 2¢4¢q + vq)> ‘ .
So at least one of the 2" values of (z,c, +v,)j—; can be chosen to be x. =

Proof of Theorem 2. The ideal class generated by 0f contains at
least 2w(f) prime ideals of norm less than ¢13(K)w(2f) log(w(6f)). Thus one
of these ideals, say p, does not divide f. Any generator -y of the principal
ideal p/(0f) satisfying

w(2f) log(w(6f))

() N 1/n
o | <& [Nyl /™ <k N7

(see e.g. (81) of [9])
is admissible in Proposition 3 since

(700§, ) = (p. ) = 1.
This proves Theorem 2. If 9f = (p) is principal one applies Proposition 4
with 7o =1/0. =

Acknowledgements. The author would like to thank Acta Arithme-
tica’s referee for fruitful hints giving Lemma 1 its final form.
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