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Squares in products from a block of consecutive integers

by

R. Balasubramanian (Madras) and T. N. Shorey (Bombay)

1. Let k ≥ t ≥ 2, m ≥ 0, y ≥ 1 be integers and write d1, . . . , dt for
distinct positive integers not exceeding k. The letter b denotes a positive
integer such that the greatest prime factor of b is less than or equal to k.
We put

F (k) = k(log k)/(log log k) for k ≥ 3 .

For a real number θ and k ≥ 27, we define

µk(θ) = k

(
1− log log k

log k
+

log log log k
log k

+
θ

log k

)
.

Finally, we recall that γ is Euler’s constant.
We consider the equation

(1) (m+ d1) . . . (m+ dt) = by2 .

It follows from a theorem of Baker [1] that equation (1) with t ≥ 3 implies
that max(b,m, y) is bounded by an effectively computable number depend-
ing only on k. Erdős [2] and Rigge [8], independently, proved in 1939 that
equation (1) with t = k and b = 1 is not possible. Thus, the product of two
or more consecutive positive integers is never a square. In fact, Erdős [3,
p. 88] observed in 1955 that his method allows to show that there exists an
absolute constant C1 > 0 such that equation (1) with b = 1 and

m > k2, t ≥ k − C1k/(log k)

implies that k is bounded by an effectively computable absolute constant.
Further, Erdős [3, p. 88] stated in 1955 that he had no proof of the following
sharpening of the preceding result:

Let ε > 0. The equation (1) with b = 1 and

(2) m > k2, t ≥ k − (1− ε)k log log k
log k

implies that k is bounded by an effectively computable number depending only
on ε.
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Shorey [9] applied in 1986 Brun’s sieve and an estimate of Sprindžuk [12]
on the magnitude of integral solutions of a hyperelliptic equation to prove
that equation (1) with

(3) m > k2, t ≥ k − (1− ε)k log log log k
log k

implies that k is bounded by an effectively computable number depending
only on ε. Further, Shorey [10] relaxed in 1987 the assumption (3) to (2). In
this paper, we combine the arguments for the proofs of the preceding results
of Shorey to obtain a further relaxation of the assumption (2).

Theorem 1. Let k ≥ 27. There exist effectively computable absolute
constants θ0 and C2 such that equation (1) with

(4) m > k2

and

(5) t ≥ µk(θ0)

implies that

k ≤ C2 .

Since µk(θ) is an increasing function of θ, we observe that the assumption
(5) can be replaced by t ≥ µk(θ) for any θ > θ0. For an integer ν > 1, we
define P (ν) to be the greatest prime factor of ν and we write P (1) = 1. If
equation (1) with P (y) > k is valid, we can find an integer i with 1 ≤ i ≤ k
such that m+ di ≥ (k + 1)2, which implies that m > k2. Consequently, we
observe that the assumptions (4) and (5) in Theorem 1 can be replaced by

P (y) > k, t ≥ µk(θ0) .

If P (y) ≤ k, we observe from (1) that

P (m+ di) ≤ k for 1 ≤ i ≤ t ,
which implies that

(6) t ≤ k log k
logm

+ π(k) ,

by a well-known argument of Erdős [3, Lemma 3]; see also [4, Lemma 2.1]. In
(6), we write π(k) for the number of distinct primes not exceeding k. From
now onward, we shall always understand that θ0 is an effectively computable
absolute constant given by Theorem 1. Now, we combine Theorem 1 and
(6) to derive the following result.

Corollary 1. Let ε > 0 and k ≥ 27. The equation (1) with

(7) m ≥ e1−θ0+εF (k)
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and (5) implies that k is bounded by an effectively computable number de-
pending only on ε.

On the other hand, we show that Corollary 1 with b = 1 is close to
best possible in each of the assumptions (7) and (5). For this, we prove the
following more general result.

Theorem 2. Let ε > 0. There exist effectively computable numbers
C3, C4 and C5 depending only on ε such that for every pair k,m with k ≥ C3

and

(8) m ≤ k17/12−ε ,

we can find distinct integers d1, . . . , dt in [1, k] with

(9) t ≥ min
(
k−C4

k

log k
, k− k

log k

(
1+

C5

log k

)(
log
(
m+ k

k

)
+1+γ+ε

))

and

(10) (m+ d1) . . . (m+ dt)

is a square.

If m ≤ k, Erdős and Turk [4, p. 167] proved the assertion of Theorem 2
with (9) replaced by t ≥ k − 4k/(log k). As an immediate consequence of
Theorem 2, we obtain the following result.

Corollary 2. (a) Let ε > 0, k ≥ 3 and

m < e−1−γ−θ0−εF (k) .

There exists an effectively computable number C6 depending only on ε such
that for k ≥ C6 there are distinct positive integers d1, . . . , dt not exceeding
k with t satisfying (5) and the product is a square.

(b) Let ε > 0, k ≥ 3 and

m < e1−θ0−εF (k) .

The assertion of Corollary 2(a) is valid with t satisfying

(11) t ≥ µk(θ0)− (2 + γ)k/(log k)

in place of (5).

By Corollary 2(a), we observe that the assumption (7) in Corollary 1
with b = 1 cannot be replaced by

m ≥ e−1−γ−θ0−εF (k) .

Further, we see from Corollary 2(b) that we cannot relax the assumption
(5) to (11) in Corollary 1 with b = 1.
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2. P r o o f o f T h e o r e m 1. We shall choose later θ0, a suitable absolute
positive constant. We may suppose that k ≥ c1 where c1 is a sufficiently large
effectively computable number depending only on θ0. Thus

(12) ε =:
θ0

log log k

satisfies 0 < ε ≤ 1/2. By (1), we have

(13) m+ di = AiX
2
i for 1 ≤ i ≤ t ,

where Ai and Xi are positive integers such that P (Ai) ≤ k and Ai is square
free. Further, by (4), we observe that the elements of S1 =: {A1, . . . , At}
are pairwise distinct. By a well-known argument of Erdős [3, Lemma 3], we
find a subset S2 of S1 with |S2| ≥ t− π(k) such that

∏

Ai∈S2

Ai ≤ kk .

Then, we apply [10, Lemma 6] with η = ε and

g = log log k − log log log k − (θ0 − 2)

to conclude that there exists a subset S3 of S2 with

(14) |S3| ≥ εk/2
and

(15) Ai ≤ 4e2F (k) if Ai ∈ S3 .

By (13), (4) and (15), we derive that

(16) Xi > k1/4 if Ai ∈ S3 .

We write S4 for the set of all Ai ∈ S3 with Ai ≤ 3k and let S5 be the
complement of S4 in S3. Now, we follow the proof of [10, Theorem 2] to
derive from Erdős [3, Lemma 4] and (15) that

(17) |S5| ≤ 12e2k

log log k
.

By taking θ0 > 48e2, we observe from (14), (17) and (12) that

(18) |S4| > εk/4 .

Let C be as in the proof of [9, Theorem 2] to which we refer in this
paragraph without explicit mention. We write b1, . . . , bs for all the integers
between k/(log k)2C and 3k such that every proper divisor of bi is less than
or equal to k/(log k)2C . By Brun’s sieve, we derive that

(19) s ≤ c2k

log log k
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where c2 is an effectively computable absolute constant. By taking θ0 suffi-
ciently large, we derive from (18), (19) and (12) that

(20) B2B3(X2X3)2 = (B1X
2
1 +R)(B1X

2
1 +R′)

where B1, B2, B3 and R,R′ are integers of absolute values not exceeding
(log k)3C . For this assertion, we may permute the subscripts of d1, . . . , dt and
this involves no loss of generality. Finally, we apply a theorem of Sprindžuk
[12] (see also [9, Lemma 4]) to equation (20) to conclude from (16) that k
is bounded by an effectively computable absolute constant. Finally, we fix
θ0 sufficiently large so that the arguments of the proof of Theorem 1 are
valid.

3. In this section, we shall prove Theorem 2. For this, we require the
following lemmas.

Lemma 1. For x ≥ 2, we have∑

n≤x
n−1 = log x+ γ +O(x−1) .

P r o o f. See Nagell [6, p. 276]. In particular, there is an effectively com-
putable absolute constant c3 > 0 satisfying

(21)
∑

n≤x
n−1 ≤ log x+ γ + c3x

−1 .

Let G be a set of positive integers and denote by ω(G) the number of
prime divisors of all the elements of G. Then, we have

Lemma 2. There is a subset G′ of G with

|G′| ≥ |G| − ω(G)

such that the product of all elements of G′ is a square.

P r o o f. See Erdős and Turk [4, Lemma 6.2].

Finally, we state the following well-known result on the number of prime
factors in short intervals.

Lemma 3. Let ε > 0. There exists x0 ≥ 2 depending only on ε such that
for every x ≥ x0 and h ≥ x7/12+ε, we have

(22) π(x+ h)− π(x) =
h

log x
+O

(
h

(log x)2

)
.

P r o o f. This is due to Huxley [5]; an upper bound given by (22) is enough
for our purpose. For the error term in (22), see Ramachandra [7].

P r o o f o f T h e o r e m 2. We put S6 = {m+ 1, . . . ,m+ k}. Let

(23) ε1 = (2c3)−1ε
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where c3 is the absolute positive constant appearing in (21). We write c4, c5
and c6 for effectively computable positive numbers depending only on ε. We
may assume that k ≥ c4 with c4 sufficiently large. If m ≤ k/ε1, we observe
that

ω(S6) ≤ c5k/(log k)

and we apply Lemma 2 with G = S6 to obtain the assertion of Theorem 2.
Thus, we may suppose that

(24) m > k/ε1 .

We write S7 for the set of all ν ∈ S6 such that P (ν) ≤ k. Further, we denote
by S8 the complement of S7 in S6. An element of S8 is of the form λp where
p > k is a prime number and λ is an integer satisfying 1 ≤ λ ≤ (m+ k)/k.
For an integer λ with 1 ≤ λ ≤ (m + k)/k, we write Tλ for all the elements
of S8 of the form λp where p > k is a prime number. Further, we write

tλ = |Tλ| for 1 ≤ λ ≤ (m+ k)/k .

Thus

(25) |S8| ≤
∑

1≤λ≤(m+k)/k

tλ .

It is clear from the definition of Tλ that

(26) tλ = π

(
m+ k

λ

)
− π

(
m

λ

)
for 1 ≤ λ ≤ (m+ k)/k .

For 1 ≤ λ ≤ (m+ k)/k, we derive from (8) that

(27)
k

λ
>

(
m

λ

)7/12+ε/2

and, by (24),

(28)
m

λ
≥ mk

m+ k
>

k

1 + ε1
.

Now, we apply Lemma 3 with x = m/λ, h = k/λ to derive from (26)–(28)
that

(29) tλ ≤
(

1 +
c6

log k

)
k

λ (log k)
.

Next, we combine (25), (29), (21), (24) and (23) to conclude that

|S8| ≤ G(k)

where

G(k) =
(

1 +
c6

log k

)
k

log k

(
log
(
m+ k

k

)
+ γ +

ε

2

)
.
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Therefore, we obtain

|S7| ≥ k −G(k) .

Consequently, we apply Lemma 2 with G = S7 to conclude that there exists
a subset S9 of S7 with

(30) |S9| ≥ k −G(k)− π(k)

such that the product of all the elements of S9 is a square. Finally, we
observe that the right hand side of (30) is at least the right hand side of (9)
with C5 = c6 to complete the proof of Theorem 2.

R e m a r k s. (i) Without applying Lemma 3, it is possible to obtain a
slightly weaker estimate for |S8|. By definition of S8, we have

k|S8| ≤ (m+ 1) . . . (m+ k)
k!

≤
(
e(m+ k)

k

)k
,

which implies that

|S8| ≤ k

log k

(
log
(
m+ k

k

)
+ 1
)
.

(ii) Slight improvements of the exponent 7/12 in Lemma 3 are known.
Consequently, the assumption (8) in Theorem 2 can be relaxed slightly.
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