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Introduction. Mohanty [2] introduced 1 chains and gave several fun-
damental theorems for 1 chains with positive integer elements. We now
generalize the notion of 1 chain by extending the domain of definition:

Definitions. A sequence of integers {ui} in K(
√−3), with at least three

terms, in which any three consecutive terms satisfy the relation un−1· un+1 =
u3
n + 1, is called a 1 chain. A 1 chain that contains only rational integers is

called a 1+ chain if all elements are positive integers and a 1± chain if it
contains at least one negative integer.

In this paper we prove results for 1 chains, similar to Mohanty’s [2] for
1+ chains and some new ones concerning the least element(s) of a 1 chain.

We first solve the two open problems from Mohanty’s paper [2]:

Is there any pair (of positive integers) {x, y} such that x | y2 − y + 1
and y |x3 + 1 which cannot be obtained from {1, 1} by using the algorithm
x′ = (y2 − y + 1)/x and y′ = (x′3 + 1)/y (or this algorithm starting with y
instead)?

The answer is affirmative and the numerically smallest examples are
{49, 325} and {49, 362}, where each pair consists of consecutive terms in
the 1+ chain 〈325, 49, 362〉 (where 〈u, s, t〉 stands for . . . , u, s, t, . . .). To see
that these pairs cannot be obtained from {1, 1} it is sufficient to realize that
the algorithm is reversible and generates a unique smallest pair independent
of the order of execution. Other examples of 1+ chains that contain such
(smallest) pairs are 〈398, 93, 2021〉, 〈962, 147, 3302〉 and 〈2110, 619, 112406〉.

The second open problem was:

Are there two (non-identical) 1+ chains that have the same least ele-
ment?

All 1+ chains in which the least element is ≤ 78567 are given in Table 1
and clearly there is just one instance: 〈3002, 1209, 588665〉 and
〈13205, 1209, 133826〉.
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Extension to rational integers. We now study 1± chains and define
the least element as the single element (except in a singular case) with the
least absolute value. If we permit both 1+ chains and 1± chains in the
second problem above, there are numerous examples of solutions including
some of higher order:

s = −273 : 〈−508,−273, 40052〉, 〈−646,−273, 31496〉,
〈−1054,−273, 19304〉, 〈−2356,−273, 8636〉;

s = −9 : 〈−13,−9, 56〉, 〈−28,−9, 26〉, 〈−52,−9, 14〉;
s = −7 : 〈−9,−7, 38〉, 〈−18,−7, 19〉;
s = 31 : 〈−32, 31,−931〉, 〈−56, 31,−532〉, 〈−98, 31,−304〉;
s = 65 : 〈114, 65, 2409〉, 〈−66, 65,−4161〉, 〈−146, 65,−1881〉;
s = 1209 : 〈13205, 1209, 133826〉, 〈3002, 1209, 588665〉,

〈−1210, 1209,−1460473〉, 〈−4345, 1209,−406714〉.
In fact, for each 1+ chain (or 1± chain) 〈u, s, t〉 where s > 0 is the least

element, there is a 1± chain 〈−(s+ 1), s,−(s2 − s+ 1)〉 with the same least
element.

Mohanty studied the properties of 1+ chains 〈u, s, t〉 in which s | t+ 1 or
s | t2−t+1 and proved that in these cases u, s or t is the least element. These
results are valid also for 1± chains with minor changes (proofs omitted) and
the statement corresponding to (f) in [2] for 1± chains is

(a) If 〈u, s, t〉 is a 1± chain that does not have 0 as its least element and
s | t+ 1, then u, s or t is the least element.

The excluded 1± chains are singular, of the type 〈−(M3 + 1), M , −1,
0, −1 for any M 6= 0,−1 as the next element is undefined. This singularity
can be removed with a proper definition of 0/0 but then the statement is
not valid if s = M in 〈−(M3 + 1),M,−1〉.

Theorem 4 in [2] is valid for 1± chains if s 6= 0:

(b) If 〈u, s, t〉 is a 1± chain, then s 6= 0 is the least element if and only
if |s| < |t| < s2.

To make Theorem 6 in [2] valid for 1± chains, we have to make a minor
exception:

(c) If s 6= 0 and s | t2− t+1 in 〈u, s, t〉, then u, s or t is the least element
except if 〈u, s, t〉 = 〈−t5 + 3t4− 6t3 + 7t2− 6t+ 3,−(t2− t+ 1), t〉 and t < 0.

All 1+ chains and 1± chains that satisfy both u | s2−s+1 and s |u2−u+1
for some consecutive elements u, s were given by Mills [1]: the 1+ chain 〈1, 1〉
and two infinite sets of 1± chains with 〈u, s〉 = 〈αn, αn+1〉 satisfying αn+1 =
5αn − αn−1 + 1, α0 = α1 = −1, 〈βn, βn+1〉 where βn+1 = −3βn − βn−1 + 1
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and β0 = 1, β1 = −1. αn and βn are the least elements in their respective
1± chains except if 0 is the least element or 〈u, s〉 = 〈α2, α3〉 = 〈−3,−13〉,
in accordance with statement (c).

1 chains with common elements. In this section we consider only
1 chains with rational integers and show some interesting connections be-
tween such 1 chains that have common elements; first the simple but fun-
damental

Theorem A. If 〈u1, s〉 and 〈u2, s〉 are two 1 chains, f a factor of u1u2

that satisfies f3 + 1 ≡ 0 (mod s) and (u1u2/f) | s3 + 1, then there is a third
1 chain 〈u, s〉 with u = u1u2/f .

P r o o f. By assumption we have u = (u1u2/f) | s3+1. Further, u3
1 ≡ u3

2 ≡
f3 ≡ −1 (mod s), leading to (u3

1u
3
2/f

3) ≡ −1 (mod s) or (u1u2/f)3 +1 ≡ 0
(mod s).

R e m a r k. f = −1 always satisfies the first divisibility condition and the
second is satisfied if u1 | s+ 1 and u2 | s2 − s+ 1 or if (u1, u2) = 1.

Examples. 〈26,−9〉, 〈14,−9〉 and f = −1, 2,−4,−7, . . . gives the
1± chains 〈u,−9〉 with u = −364, 182,−91,−52, etc. The 1± chain 〈−7, 19〉
combined with itself (u1 = u2 = −7, s = 19, f = −1) generates 〈−49, 19〉.

Corollary A. If 〈u, s〉 and 〈u1, s〉 (u1 6= 0) are 1 chains and u1 |u then
〈−u/u1, s〉 is a 1 chain.

P r o o f. The 1 chains 〈u, s〉 and 〈(s3 + 1)/u, s〉 are identical though re-
versed. Apply Theorem A (with f = −1) to 〈(s3 + 1)/u, s〉 and 〈u1, s〉
where u1 |u. Clearly ((s3 + 1)/u) · u1 = (s3 + 1)/(u/u1) | s3 + 1 and thus
〈(s3 + 1)/(−u/u1), s〉 exists and is the (reversed) 1 chain 〈−u/u1, s〉.

Theorem B. If 〈u, s〉 is a 1+ chain in which s is the least element and
s |u2 − u+ 1, then u is the least element in another 1+ chain 〈u, s(u+ 1)〉.

P r o o f. By applying Theorem A (with u as the common element and f =
−1) to 〈u,−(u+1)〉 and 〈u, s〉 given that s |u2−u+1, we see that 〈u, s(u+1)〉
is indeed another 1+ chain and the element preceding u is (u2−u+ 1)/s. It
remains to show that u is the least element. Clearly s(u+ 1) > u. We know
from [2] that u = s if and only if u = s = 1 in which case the theorem is
true. If s < u we immediately have s ≤ u − 1 < u − 1 + (1/u), leading to
(u2 − u+ 1)/s > u.

Corollary B. By Theorem 3(i) in [2] we see that Theorem B also can
be used to generate the 1+ chain 〈t, s(t + 1)〉 with t = (s3 + 1)/u, in which
t is the least element.



252 E. Dofs

Examples. 〈1, 1〉 generates the (same) 1+ chain 〈2, 1〉, but the last choice
of elements gives a new 1+ chain 〈3, 2〉. 〈325, 49, 362〉 generates the 1+ chains
〈15974, 325, 2149〉 and 〈17787, 362, 2667〉.

R e m a r k. Theorem B is also valid for 1± chains, except for singular
ones, but the proof requires more details.

A theorem that could simplify a search for additional solutions to Mo-
hanty’s second problem is

Theorem C. Let 〈u1, s〉 be a 1+ chain and s its least element and
assume there exists a 1± chain 〈u2, s〉, where u2 < 0 and |u2| < s2/u1. If
also u1u2 | s3 + 1, then the 1+ chain 〈−u1u2, s〉 exists and s is also the least
element of this 1+ chain.

P r o o f. The existence of the 1+ chain 〈−u1u2, s〉 follows directly from
Theorem A. We have s < −u1u2 as s < u1 and u2 < 0. Further (by assump-
tion), −u1u2 < s2, and consequently s is the least element by Theorem 4
of [2].

R e m a r k. Also a combination of the 1+ chain 〈u1, s〉 with 0 < u1 < s
and the 1± chain 〈u2, s〉 where u2 < 0 and s the least element gives a
1+ chain 〈−u1u2, s〉 with the same least element provided that −u1u2 < s2

and u1u2 | s3 + 1.

Parametric 1± chains. In [2, Th. 2], all 1+ chains and 1± chains
〈u, s〉 were given in which u | s + 1 for some consecutive elements: 〈1, 1〉,
〈2, 3〉, 〈5, 9〉, and the parametric ones: 〈M,−(M + 1)〉, 〈−M2,M3− 1〉 with
M 6= 0,±1, and 〈−1,M〉 (see (a) above).

It is more difficult to find parametric 1± chains in which some consec-
utive elements satisfy u | s2 − s + 1, apart from 〈−1,M〉, 〈M,−(M + 1)〉
and 1 chains derived from them by means of Theorem 5 of [2] or its corol-
lary, extended to 1± chains. The smallest examples (with smallest degrees
of polynomials) that we have found are: 〈u, s〉 = 〈−(M5 + 2M4 + 5M3 +
5M2 + 4M + 1),−(M4 + M3 + 3M2 + M + 1)〉 and 〈M5 + 4M4 + 9M3 +
11M2 + 8M + 3,−(M4 + 3M3 + 5M2 + 3M + 1)〉, in which s is the least
element except if s = −1.

It is quite difficult to find parametric 1± chains in the frequent case
where u - s + 1 and u - s2 − s + 1 for all consecutive elements; however, one
example is sufficient to prove

Theorem D. There exist an infinite number of 1± chains that neither
satisfy u | s+ 1 nor u | s2 − s+ 1 for any consecutive elements.

P r o o f. For any M (6= 0,±1), all consecutive elements in the 1± chain
〈−(M23+4M20+10M17+16M14+19M11+17M8+10M5+4M2),−(M18+
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3M15 + 6M12 + 7M9 + 6M6 + 4M3 + 1)〉 satisfy u - s + 1 and u - s2 − s
+ 1.

Extension to integers in K(
√−3). If we permit the elements of a

1 chain to be integers in K(
√−3), results similar to those in [2] and in this

paper for 1± chains can be obtained. This is due to the field K(
√−3) being

Euclidean and to the arithmetic structure of the 1 chain algorithm. How-
ever, most proofs require considerably more details than the corresponding
theorems for 1 chains containing only real elements. Even the generalization
of a fairly obvious statement like (d) in [2] needs a proof:

Theorem E. If 〈ui, ui+1〉 is a non-singular 1 chain and |ui| < |ui+1|,
then |ui+1| < |ui+2|.

P r o o f.

|ui+2| = |(u3
i+1 + 1)/ui| ≥ |u3

i+1/ui| − 1/|ui|
≥ |u2

i+1| |ui+1/ui| − 1 > |ui+1|2 − 1 > |ui+1|
as |ui+1| > |ui| ≥ 1 implies |ui+1| ≥

√
3.

In order to shorten several of the proofs below we state the simple:

Lemma. If 〈u, s〉 is a 1 chain, then also 〈uµ, sτ〉 is a 1 chain if µ, τ = 1, σ
or σ̂, where σ3 = 1 and σ 6= 1 (we call such 1 chains associated).

The definition of least element, given above for 1± chains, is easily ex-
tended to 1 chains with elements in K(

√−3), but there are infinitely many
1 chains that have two least elements (see Theorem F).

Theorem 4 of [2] and (b) above, used in proofs concerning the least
element, are not valid for all 1 chains with elements in K(

√−3):

Theorem F. There are infinitely many 1 chains 〈u, s, t〉 that satisfy
|u| = |s| and |t| = |(s3 + 1)/s| > |s|2. In these 1 chains s and u are the least
elements but |t| < |s|2 is not satisfied , in contrast to (b).

P r o o f. If s = a + (1 − a)σ = û (a is a real integer), then |t|2 = |s|4
+ 3.

Problem. In addition to the 1 chain given in Theorem F, 〈−1,−1〉 and
associated 1 chains, is there any other 1 chain that satisfies |u| = |s|?

R e m a r k. The problem is of some significance as it is possible to show
that if s is the least element in 〈u, s, t〉 and |t| ≥ |s|2 then |u| = |s|, except
if 〈u, s, t〉 = 〈2, 1, 1〉 or an associated 1 chain.

Theorem B above is not generally true for 1 chains with elements in
K(
√−3):
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Examples. Assume that s is the least element in 〈u, s〉 and s |u2−u+1.
If 〈u, s〉 = 〈2, 1 − σ〉, 〈2, 1 − σ̂〉 or if s = −(u + σ) and |u + σ| ≤ |u| but
|u| > |u + σ̂|, which is true for all integers of the form u = 1 + reiθ where
|θ| < π/6, then |(u2 − u+ 1)/s| < |u|, which implies that u is not the least
element of 〈s(u+ 1), u〉.

The theorem corresponding to (f) in [2] and (a) above, can be stated
similarly to (a):

Theorem G. If 〈u, s, t〉 is a non-singular 1 chain, u, s and t are integers
in K(

√−3) and s |u+1, then also s | t+1 and u, s or t is the least element.

P r o o f. The first part is easy. To prove the second part put u+1 = αs (α
an integer in K(

√−3)). If N(α) ≥ 3 we get |s| = |u+ 1|/|α| ≤ (|u|+ 1)/
√

3,
implying |s| < |u| unless |u| = 1. However, u 6= −1,−σ,−σ̂ as the 1 chain
is non-singular. u = 1 implies |α| = 2, which gives the 1 chain 〈1, 1〉 (or
associated ones) in which u and s are the least element. u = σ, σ̂ gives the
contradiction |α| = 1. Define β by t+1 = βs. If we also assume N(β) ≥ 3 we
get |s| < |t| and s is the least element, unless t = 1 (or u = 1). The remaining
case N(α) = 1 (or N(β) = 1) implies that α is a unit in K(

√−3). Then
t = (±(u+ 1)3 + 1)/u and either u | 2 or t = −(u2 + 3u+ 3). If u | 2, a finite
number of cases occur and u or s is the least element. The second case gives
〈u, s, t〉 = 〈u,−(u+ 1),−(u2 + 3u+ 3)〉 (or an associated 1 chain), in which
u or s is the least element. |u2 + 3u + 3| > |u + 1| is false for some integer
u-values (e.g. u = σ − 1) but in these cases the 1 chain is singular.

R e m a r k. The theorem is also true if s |u+ σ but in this case s | t+ σ̂.

A generalization of Theorem 4 of [2] which takes Theorem F above into
account is:

Theorem H. If 〈u, s, t〉 is a non-singular 1 chain, u, s, t are integers
in K(

√−3) and s is a unique least element , i.e. |u| > |s| and |t| > |s| > 1,
then |u| < |s|2 and |t| < |s|2. On the other hand , if 1 < |s| < |u| < |s|2, then
|t| ≥ |s|, i.e. s is a least (but not necessarily unique) element.

P r o o f. As N(u) = |u|2 etc. we have to prove N(u) < N(s2) = N2(s)
in the first case. We know that N(t) = N((s3 + 1)/u) = N(s3 + 1)/N(u) ≥
N(s) + 1 as |t| > |s|. This gives N(u) ≤ N(s3 + 1)/(N(s) + 1). The triangle
inequality implies |s3 + 1| ≤ |s3|+ 1, i.e. N(s3 + 1) ≤ N(s3) + 2

√
N(s3) + 1,

leading to

N(u) ≤ N(s3) + 2
√
N(s3) + 1

N(s) + 1
=
N3(s) + 2

√
N3(s) + 1

N(s) + 1
< N2(s)

for all integers s with N(s) > 4. No exceptions occur if N(s) = 3, 4.
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To prove the second part of the theorem: |u| < |s|2 implies that

N(t) =
N(s3 + 1)
N(u)

≥ N(s3 + 1)
N2(s)− 1

≥ (
√
N3(s)− 1)2

N2(s)− 1
.

Now

N(t)−N(s) ≥ −(2N(s) +
√
N(s) + 1)

(N(s) + 1)(
√
N(s) + 1)

> −1

if N(s) > 1. Thus N(t) ≥ N(s) as the norms are (rational) integers.

We are now in a position to prove the theorem corresponding to Theo-
rem 6 in [2] and (c) above:

Theorem I. If 〈u, s, t〉 is a non-singular 1 chain and s |u2− u+ 1, then
u, s or t is the least element except if s = −(u2 − u + 1) or an associated
integer and |u+ 1| < |u|.

P r o o f. We can assume |s| > 1 as s = −1,−σ,−σ̂ would make the
1 chain singular and if s = 1, σ, σ̂ the theorem is true. Put u2 − u+ 1 = αs
and assume first that |u|2 < |s|. Then

|α| <
∣∣∣∣
u2 − u+ 1

u2

∣∣∣∣ ≤ 1 +
1
|u| +

1
|u|2 <

√
3

if |u| ≥ √7, i.e. |α| = 1. In the same way |α| = 1,
√

3 if |u| = √3, 2. Of these
α-values, α = −1,−σ,−σ̂ give the exceptions in the theorem, while the case
|u| = 1 gives no exception.

Next, the case |u|2 = |s| is impossible (unless |s| = |u| = 1): If r is the
element preceding u in 〈u, s, t〉 we have

|u| − 1
|u|2 ≤ |r| =

∣∣∣∣
u3 + 1
u2

∣∣∣∣ ≤ |u|+
1
|u|2

and this gives

(
√
N(u)− 1/N(u))2 ≤ N(r) ≤ (

√
N(u)− 1/N(u))2

or

− 2√
N(u)

+
1

N2(u)
≤ N(r)−N(u) ≤ 2√

N(u)
+

1
N2(u)

.

N(u) = 3, 4 give no 1 chains while N(r) = N(u) if N(u) ≥ 7. If |u|2 = |s|
and |r| = |u| then |rs| = |u3 + 1| = |u3| but there is no integer u in K(

√−3)
that satisfies this.

Finally, we have the case |u|2 > |s|. Now if 1 < |u| < |s|, u is the least
element by Theorem H. If 1 < |u| = |s| then u (and s) are the least element as
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|t| =
∣∣∣∣
s3 + 1
u

∣∣∣∣ =
∣∣∣∣
s3 + 1
s

∣∣∣∣ ≥ |s|2 −
1
|s| > |s| ,

since |s| ≥ √3. The same reasoning can be carried out for t (instead of u)
as s | t2 − t+ 1 according to the (easily) generalized Theorem 3 of [2].

The only remaining case is |s| < |u| and |s| < |t| but then obviously s is
the least element.

Finally, we prove the generalization of Theorem 2 of [2]:

Theorem J. All solutions of

(1) α3 + β + 1 = αβΓ ,

where α, β, Γ integers in K(
√−3), are the following :

I. the (rational integer) solutions: (1, 1), (1, 2), (2, 1), (2, 3), (2, 9),
(3, 2), (3, 14), (5, 9), (5, 14);

II. the parametric solutions: (α,−1), (−1, β), (α,−(α+ 1)),
(α,−(α2−α+1)), (α,−(α3 +1)), (−r2, r3−1) where r is an integer
in K(

√−3);
III. (1 − 2σ,−2σ), (1 − 2σ,−9σ), (−1 + 3σ, 4 − 2σ), (−1 + 3σ,−9σ̂),

(−1 + σ, 2), (−1 + σ, 2 + 3σ), (1 + 2σ,−1− 3σ), (1 + 2σ, 2);
IV. (ασ, β), (ασ̂, β) and (α̂, β̂) where (α, β) is any of the above solutions.

P r o o f. As in [2], put r = (β+ 1)/α, s = (α3 + 1)/β, t = rs−α2 (= Γ ),
assuming α, β 6= 0. Then α2 − αrt+ (r + t) = 0 and the discriminant

(2) (rt)2 − 4(r + t) = u2

for some u, where r, t, u are integers in K(
√−3).

We note that if (r, t) is a solution of (2) corresponding to (α, β), then
also (rσ, tσ), (rσ̂, tσ̂) and (t, r) are solutions. The first two cases correspond
to the solutions (ασ̂, β) and (ασ, β) while the third one corresponds to
(α, (α3 + 1)/β). For sufficiently large (absolute) values of r and t the differ-
ence between (rt)2 and adjacent squares becomes bigger than 4|r + t| and
then r + t must equal 0. This gives α = −r2 and the solution (−r2, r3 − 1).
To determine the other solutions we assume r + t 6= 0 and get

2|r| |t| − 1 ≤ 2|rt| − 1 ≤ |rt+ u| |rt− u| ≤ |r2t2 − u2|
= 4|r + t| ≤ 4(|r|+ |t|)

or

|r| ≤ (4|t|+ 1)/(2|t| − 4) if |t| > 2 .

If also |r| > 2 and |t| =
√

7, 3, 2
√

3,
√

13, 4 or
√

19 then it is sufficient to
try all r-values with |r| ≤ √79,

√
42, 5,

√
21, 4,

√
13 respectively, due to the

symmetry of (2). No solutions occur in these cases and it remains to consider
the cases |r| = 0, 1,

√
3, 2 (or |t| assuming these values).
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|r| = 0 leads to t = −α2 and (α, β) = (α,−1) while |t| = 0 gives the
solution (α,−(α3 + 1)).
|r| = 1 has two distinct subcases: r = −1 (or −σ,−σ̂) connected with

(α, β) = (−1, 0) and (α,−(α + 1)), and r = 1 (or σ, σ̂) which gives the
solutions (α, β) = (1 − 2σ,−2σ), (2, 1) and (3, 2). t = −1 gives (α, β) =
(−1, β) and (α,−(α2 − α + 1)) while t = 1 gives (1 − 2σ,−9σ), (2, 9) and
(3, 14).
|r| =

√
3 gives the remaining (III) solutions, while |r| = 2 gives the

remaining real integer solutions (I).

Acknowledgements. The author is greatly indebted to Hans Riesel for
his continuous advice. He also verified or simplified some proofs and put
extensive calculations on 1 chains at my disposal.

Table 1. 1+ chains 〈s, t〉; s (least element) < 78568

s t s t s t s t

1 1 2110 7189 8554 103211 39153 2431274
2 3 2219 18702 8606 33069 39219 960890
5 9 2345 11889 8909 110565 39302 3097413

14 45 2394 37841 8918 179371 39654 7049315
35 54 2449 52850 9083 566954 40369 3201341
49 325 2763 44498 9425 184149 43225 1577749
65 114 2881 25498 9603 13034 46298 760609
93 398 2989 25070 9774 23579 46534 1974355
99 626 3302 74149 10202 880859 47538 638009

117 413 3365 138894 14315 24594 47619 4441766
147 962 3377 83522 14363 56126 48650 327249
185 434 3722 63729 14921 50661 50195 347634
234 329 3794 74283 14949 646766 50861 94977
299 3150 4074 71585 15419 1740918 52281 3476753
325 2149 4257 158234 16213 989054 55734 213995
362 2667 4406 15707 16254 330965 56126 331467
398 1699 4718 39091 16681 164426 56601 208562
434 3219 4737 149066 17222 1418027 58338 678737
437 6278 4934 34755 17517 287966 60602 190297
594 2771 5723 200658 17594 690795 60714 1250729
619 2110 5934 321677 18289 76405 63441 4980197
635 2394 6021 7622 19299 60602 66195 2110634
874 1057 6038 398269 20229 56462 67005 17168654
962 6289 6074 394065 20942 206829 72627 5585522
981 9329 6278 117741 23478 1576637 73507 541322

1209 3002 6786 58289 27018 259571 76405 319189
1209 13205 6867 65246 27585 402194 78174 730835
1251 3518 7371 8018 29379 421490
1638 4619 7859 14934 32942 2080413
2021 43897 8379 14258 37989 4701590
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