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1. Introduction. Our aim is to formulate and study a “modular change
problem”. Let A be a set of ¢ natural numbers aq,...,a; (which are coin
denominations or semigroup generators). Integer linear combinations of
these numbers are clearly multiples of gcd A, their greatest common divisor.
If indeterminate coefficients, say x;’s, are nonnegative, x; € Ny, then those
combinations form a numerical semigroup S (under addition),

S=5A) = {n € N(J’n: ixiai, all z; € NU}»
i=1

which includes 0 and all multiples of ged A large enough. In fact, the fol-
lowing is known.

ProprosiTION 1.1. All integer linear combinations of integers a; in A
coincide with all the multiples of gcd A. If the coefficients are nonnegative
integers, the combinations include all multiples of ged A large enough. m

Let 2 (= 2(A) = [N=S]| < 00) denote the cardinality of the complement
of S in N. Hence, if the given numbers are relatively prime, that is,

(1.1) ged(aq,...,a) =1,

then {2 < oo is the number of integers n € Ny without any representation

t
(1.2) n = Z%‘&i,
i=1

with

(13) all z; € Ny.

The largest of these omitted n’s is denoted by g(A) (or N(A)); by defini-
tion g(A) = oo if 2 = oo, and ¢g(A) = —1 if 2 = 0. The study of the
functions {2 and ¢ dates back to Sylvester [14] and Frobenius (cf. [2]), re-
spectively. Another related function—the number of partitions (1.2)-(1.3)
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of n, denoted by v,,(A)—is older and was studied by Euler. The study of
2, g, and/or v, constitutes the classical “change problem” (cf. [9], where
only v, is considered).

Let ¢ € N and let L, L = L,, be a complete system of residues modulo
q(e.g.,Z>L={0,1,...,q — 1} unless otherwise stated). For a k € L, we
impose the additional requirement

(1.4) Zwl =k (mod q)

and consider the related functions 2., N, and v,, which represent the
number of so-called k-omitted integers n (among nonnegative ones, n € Ny);
the largest of them, 400, or —1; and the number of k-representations of n,
respectively. Then (A, q) is the pair of arguments of the functions and

9(A,q) == max{N,(A,q): k € Ly} .

This new problem, the “modular change problem”, includes the classical
one (for ¢ = 1) and is prompted by applications of the problem (1.2)—(1.4)
in constructive graph theory [13] where the following condition is desirable.

(1.5) A solution exists for all natural n large enough.

Our main result yields a useful equivalent of the condition (1.5) (or
finiteness of g) in case of our modular problem. Moreover, explicit formulae
in case of two generators (t = 2) and, in general case, efficient algorithms
for evaluating both all 2., and all N, are provided.

THEOREM 1.2. The finiteness of an N(A,q) is equivalent to the con-
gunction of (1.1) and

(1.6) ged(g, a2 —ar,a3 —az,...,ap —az—1) =1,
and is equivalent to the finiteness of g (or all Ny’s).

The proof of necessity uses the general solution of a linear Diophantine
equation. (It is not excluded that ¢ = 1, in which case (1.1) and (1.6) mean
that a1 =1 =gq.)

A correct reference to Sylvester’s problem (and result, proved by W. J. C.
Sharp [14] using a generating function) will be provided.

2. General results. We need the following notation:
Di:gcd(al,...,ai), DO ZZO,
whence Dy = ay and D; = ged(D;—1,a;), i = 1,...,t. It is known that the
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general integer solution z of (1.2) is the integer vector
t—1

(2.0) x =T+ > uy;

j=1
where Ty is a particular integer solution of (1.2) and y;’s are t — 1 integer

vectors which form a basis for the rational solution space of the simplified
(homogeneous) equation

t
(2.1) > wia; =0
=1

such that u; can be arbitrary integers. Hence, each y; is a t-vector which is
divisor minimal, that is, its components are relatively prime. In particular,
it is known that a solution y of (2.1) for t = 2, y = (z1, x2), is unique up to
a factor of +1,

(22) Yy = :|:(CL2/D2, —al/Dg) .

For j =1,...,t, let {; be an integer column j-vector with components
& satisfying the auxiliary equation

j
(2.3) > aiti; = D;
=1

whence & = §11 = 1. Assume that not only all §; but also 2y and all y; are
column vectors, ¥; = [y;j]¢x1. Then

To = n& /Dy

provided that Dy |n. By Proposition 1.1, the equation (2.3) can be replaced
by

(24) Dj_le +aj£jj :Dj (] = 1,,t)

Now, a solution of (2.4) determines the last component &;; of the vector &;
and the remaining components can be computed recursively,

&j = gid‘,le fori < jand j > 2.

We are now ready to construct all vectors y;, 7 < t. Assume that the last
t — j — 1 components of y; are zero, and the (j + 1)th component y; 1 ; is
negative and has the smallest possible absolute value. Then

Dij + j4+1Yj+1,5 = 0 for some Zj S No,

whence, using (2.3), (2.2), and the Kronecker § symbol, we finally have

213 ¢ .
(2.5) yj= | Yjt15 | = (aj+1 [ (ﬂ - Dj[5i,j+1]tx1)/Dj+1 (1<j<t).
0
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The above method which produces a “first-column-missing upper trian-
gular” matrix [y;;]¢x—1) (see also [1]) usually gives solution vectors y; with
large components y;; (in absolute value) depending on the ordering of a;’s.
A computationally efficient method to find D; and a vector & together with
all basis solutions y; (with components small enough) can be found in [6,
5]. The above method, however, readily gives the general solution to each
equation (2.3). Namely, if k replaces j there, then Ty = & and the corre-
sponding solution basis is formed by the columns of the leading k x (k — 1)
submatrix of [y;;].

From (2.5), using (2.3) to eliminate ;;, we get

¢ j—1
(2.6) > wij = (fjjajﬂ —Dj+ajn Zfzj)/DHl
im1 i=1

j—1
= (Dj(aj+1 —a;) +ajp1 Y (a;— ai)fij)/aijJrh j<t.
=1

Proof of Theorem 1.2. First, by Proposition 1.1, the existence of
an integer solution of (1.2) for any n is equivalent to (1.1).

Necessity of (1.1) is thus proved. Hence, if p is a prime divisor of the
left-hand side of (1.6) then pfas for all £ and therefore p| >, y;; in (2.6)
for all j. Then by (2.0), for any n = (kg — 1+ k)a; (k € N) in (1.2), (1.4)
is not satisfied since p| g, a contradiction.

Sufficiency. Using (2.0) and (2.6) one can see that (1.1) and (1.6) imply
the existence of a solution to (1.2) and (1.4) for any n and for any x € L,.
Now, let —Y,, . and Z,, ,, be the corresponding parts of the right-hand side
of (1.2) with nonpositive and nonnegative coefficients, respectively. Assume
that the number +Y,, , is as small as possible. Thus Yy o = 0= Zy (where
n =0 and k = 0).

Let —Y© be a linear combination of a;’s such that, for all 4, the coefficient
of a; is chosen to be the smallest of (nonpositive) coefficients of the a; in
all =Yy, (where n =0). Forn=1and k =0,let Y =Y pand Z = Z;
whence 1 = —Y 4 Z. Consider the following a; consecutive integers n:

(al—l)Y—l- YO,
(a1 —2)Y +Z +Y°,

Each of them is fully representable, i.e., has representations (1.2)—(1.4) for
all k € Ly, because any representation can be modified by adding any of the
q expressions 0 = =Y , + Zp . where n = Yo — Yy, . has a representation
(1.2) and (1.3) by the very definition of Y°. Each larger integer also has full
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representations, by adding a multiple of a; to representations of one of the
a1 integers above. m

The above sufficiency proof extends that of the existence of g for ¢ =1,
due to O. Beyer, as presented in Selmer [12] (1986).
In what follows (1.1) and (1.6) are assumed. Moreover,

(2.7) ap < ...<a.

A generator which has a 1-representation (modulo ¢) by the remaining
generators can be removed from A without altering the value of any N,.. Call
the set A of generators g-independent if either ¢ =1 =t = ay ort > 1 and no
a; in A is 1-representable modulo ¢ by the remaining generators; otherwise
A is called g-dependent (1-representable modulo 1 means representable).
Hence the 1-independence of A (¢ = 1) is the known notion of independence
of generators.

Note that

(2.8) Al =t <gqa; =gqmin A

is a necessary condition for A to be ¢-independent (whence a; > [t/q]+t—1
if A is ¢g-independent).

In fact, suppose ga; < t. Then |A — {a1}| > ga;. Hence there is j > 2
such that a; = a; (mod gaq) or there are i,j > 2 with a; = a; (mod gay).
In either case A is ¢-dependent. =

Recall that g(A,q) is the largest integer (or 4o00) which is not fully
representable modulo ¢ by A. The Frobenius problem consists in finding
(an upper bound for) the integer g(A), g(A) = g(A,1) = No(A, 1), ie., if
q =1 and k = 0. In this context we shall assume

(2.9) ar < g(A—{ar},q) ift>2,

i.e., first we shall possibly eliminate excessively large (irrelevant) genera-
tors. This natural assumption, which only admits of independence of the
largest generator a; from the remaining ones, is usually omitted in the pub-
lished upper bounds for g(A,1) or—as in [11]—it is sometimes replaced by
requiring the independence of the whole A.

Given a positive integer n which has a representation (1.2)—(1.3) with
n=n (e.g., n=a; Y, a;, etc., the smallest n = ay), let

m=qn

and, for each residue » modulo m and a fixed k € Ly, let n,, be the least
n which is in the residue class of 7 modulo m and has a k-representation.
Hence, by the choice of m, if n=r (mod m), n clearly has a k-representation
if and only if n > n,.. Thus, the finiteness of N,’s is equivalent to the
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existence of all numbers n,...; moreover,

(2.10) N, = maxn,, —m
I

because, if N, is finite, there is ¢ € Ny with o < m such that N, = o
(mod m), whence N, is clearly m smaller than n,.. This extends a formula
for g due to Brauer and Shockley [2, Lemma 3] (¢ = 1 and x = 0). Thus,
knowing the ¢gm numbers n,.,, [and a k-representation of each n,.| we can
determine all sets, say J5, of k-omitted integers [and a k-representation of
each positive n such that n ¢ J7]. Analogously, on partitioning J; into
residue classes modulo m,
m—1
(2.11) Q=13 = (npw —1)/m

r=0

=—(m—=1)/2+ ) npe/m  (cf. [11])

=3 [n/m) (ct. 7).

This formula generalizes those by Selmer [11, Theorem] and Nijenhuis [7],
respectively, for (2 if ¢ = 1.

3. The case of two generators, t = 2. Throughout this section,
(3.1) ke {-1,0,...,q—2}.
Let us use standard notation:
a=a;, b=as, x=mx1, Yy=29 (a<Dh).
Since (1.1) and (1.6) are assumed to hold,
(3.2) ged(a,b) =1 =ged(g,b—a).

Sylvester’s contribution to the change problem is misquoted or misplaced
quite often (cp. [8, 11, 12, 4] and (!) [13]). The following is what Sylvester
actually presents in [14] (where in fact p and ¢ stand for a and b, resp.): “If
a and b are relative primes, prove that the number of integers inferior to ab
which cannot be resolved into parts (zeros admissible), multiples respectively
of a and b, is

fla=1)(b-1)."

It is explained in [14] by means of an example that integers in question are
to be positive. Notice that it belongs to the mathematical folklore now that
the bound ab above [integer ab — a — b] is the largest integer which is not
representable as a linear combination of a and b with positive [nonnegative]

integer coefficients.
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We refer to k-representations, x-omitted integers and symbols ¢(.A, q)
and N, (A, q) as defined in Introduction. In order to avoid trivialities, as-
sume

(3.3) 1<a<b but a>1 ifg=1,
because if 1 € A then S = Ny, whence g({1,b},q) = —1 if ¢ = 1. Define
(3.4) g:=qab—a—b,
whence, by (3.2), g is odd;
(3.5) Ny :=qab—b— (¢ —1— K)a, —1<kr<qg-—2
=g—(¢—2—K)a, by (3.4).
THEOREM 3.1. Under the above assumptions, if t = 2 and A = {a,b},

the largest k-omitted integer Ny(A,q) = N, (whence g(A,q) = Ng—2 = g)
and 2, = (g + 1)/2 is the number of k-omitted integers.

Hence the interval [0,¢g] contains as many k-representable integers as
r-omitted ones. The proof is based on a series of auxiliary results which
follow.

ProposITION 3.2 (Folklore). If a,b € N and ged(a,b) = 1 then, for each
n > (a—1)(b—1), there is exactly one pair of nonnegative integers o and o
such that o < a and n = ga + ob.

Notice for the proof that, for j = 0,1,...,a — 1, if ged(a,b) = 1, all
integers n — jb are mutually distinct modulo a. Hence, for exactly one j,
say j = o, we have n = pa + ob, whence ¢ > 0 because pa > —a+ 1. =

It is well known that
(3.6) (z,y) = (2 +ub,y° —ua), uweZ,
is a general solution of (1.2) in our case, which agrees with (2.0) and (2.2).
Hence we have

PROPOSITION 3.3. For any k, if n < qab (or n < g in (3.4)) then n has
at most one k-representation. m

Using (3.4), let
J:=7ZNnJ0,9], 3 :=7ZnN[0,qab).
Let J,0 denote the set of k-representable integers and let

(3.7) J.:=3.Nn3, 7

K

Moreover, k + A := {k+x | z € A} if A C Z. Notice that if ¢ = 1

(and k = —1), then J,7 = S, whence, by Proposition 3.2 and formula (3.4),

3. = No—S. We are going to show that in general J;, is the set of k-omitted
integers (cf. the end of the preceding section).

=3"Nn7 3¢ =3-7,..

K K ’ K
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PROPOSITION 3.4. For any k, N,, € J5,.

Proof. By (3.3) and (3.5), N, > 0. By (3.5) and (3.6), all solutions of
(1.2) for n = N,; are of the form

r=k+1+(q—ub—q and y=wua—1, w€eZ.

Then z,y > 0 can be satisfied only if 1 < u < ¢, which is a contradiction if
q = 1; otherwise, due to (3.2), z+y (= k+(b—1)g— (b—a)u) # £ (mod q),
contrary to (1.4). m

The following transformation is used by Nijenhuis and Wilf [8] in order
to solve Sylvester’s problem (with ¢ = 1 and k = —1).

PRrOPOSITION 3.5. The transformation
p:Jedn—g—n

is a bijection onto 3, _o_, if 0 <k < q—2, and onto Ty, if k = —1.

Proof. By (3.4) and (3.5), g = Ny—2. Hence, if n € J, then ¢(n) ¢
J4—2-1 because otherwise g = n+¢(n) € J,_o, contrary to Proposition 3.4.
Moreover, injectivity of ¢ is clear. Notice that assumptions (3.2) ensure
the existence of a solution (x1,y1) of (1.2) such that 0 < z; < ¢b and
r1+y1 =q—2—k (mod g). Suppose n € J;_,_, if £ >0, and n € 32, if
k = —1. Then clearly y; < 0. Therefore, by (3.4), g —n=(¢b—1—z1)a+
(=y1 — 1)b € 3, whence ¢(g — n) = n, which proves surjectivity of ¢. m

COROLLARY 3.6. [J_1| =139 =(3|/2=(9+1)/2 (cf. (3.7)). m
PROPOSITION 3.7.

. jq—2—n Zf/fZOa
(q—2—/<a)a—m1n{,31 fr——1.m

PROPOSITION 3.8. max(Z —J,) = N,.

K

Proof. Owing to Proposition 3.4, it is enough to show that k € 7, if
k > N,. To this end, assume ¢ > 2 because the case ¢ = 1 is covered by
Proposition 3.2. Next, assume k # ¢ — 2 and N, < k < g. Then, by (3.5),
0<g—k<g—N,=(¢q—2-k)a, whence, due to Propositions 3.7 and 3.5,
k € J,, and we are done. Finally, assume that n =k > g (= Ny—2). Then

ng:=k—(g—1)ab>(a—1)(b—1) by (3.4),

whence, by Proposition 3.2, ny = pa + ob for exactly one pair (g,0) > (0,0)
and o < a. Hence, (1.2) and z,y € Ny are satisfied if

r=0+(q—1—4)b and y=o0c+ja

for ¢ consecutive values of j, j =0,...,q— 1, whence, by (3.2), the congru-
ence (1.4) is satisfied for one of these j’s. Thus k € 7. m

C
K

COROLLARY 3.9. 3 is the set of k-omitted integers. m
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Proof of Theorem 3.1. The first part of the Theorem follows from
Proposition 3.8. As for the counting part, let

J.=0.—-{9,9—1,....,9—a+1}.

Then, by (3.7), Proposition 3.8 and formula (3.5), |J,/| = |Jx| —a for k <
q — 2. Moreover, using Proposition 3.3, one can see that, for each x > 0,

Ve :J,_1d2n—n+a

is a bijection onto J, — {(k¢+ )b | k=0,1,...,a — 1}, a set of cardinality
|Jx] — a, by (3.7), (3.4) and (3.1). Hence, |J,_1| = |J,| for each x > 0,
which, due to (3.7) and Corollaries 3.6 and 3.9, ends the proof. m

The following result extends Corollary 3.9 and Proposition 3.3 and re-
duces determining v,,, the number of x-representations of n, to the mem-
bership problem for the residue (n mod gab) (cf. [9] for ¢ = 1).

COROLLARY 3.10. (A) The set of integers n such that n € Ny and vy, =
k, k € N, is J¢ of cardinality (g +1)/2 if k = 0, else ((k — 1)qab+ J.) U
(kgab + 3%.) of cardinality qab. Hence, kqab + T3, is the set of integers n
such that vy, > k+ 1, k> 0. Moreover,

(B) For n € Ny, vy is |[n/(qab)| + 1 or [n/(gab)| according as (n mod
qab) is representable (€ J,) or is not (€ J},). m

K

Theorem 3.1 is equivalent to a part of the next result. Moreover, the
author’s paper [13] referred to above contains a result equivalent to the
non-counting parts of this result in case ¢ = 2 and Kk = —1.

THEOREM 3.11. Given any integers mg, my and

ni=amg+bmy, Ny=n+g—(¢q—1—-¢Ex)a (=n+gifqg=1)
(see (3.4) for g) where
Ex=(k+1—myg—myp) (modgq), 0<ée,<gq,
all integers n, n > n, which cannot be represented as integer linear combina-
tions xa + yb under assumptions (3.2) and (3.3) and requirements x > my,
y>my and x +y =k (mod q) are in the interval [n, N|, their number is
(g +1)/2 (which is independent of k) and N, is the largest of them. On

the other hand, the uniqueness of (z,y) is implied by either of the following
inequalities: mg < x < Mg+ qb, mp <y < mp+qa. m

4. Algorithms. Let g(A,q) < oo and ¢t > 1. Then two algorithms for
evaluating the integers N, and (2, can be presented. One, (W): a toroidal
lattice-of-lights, extends Wilf’s circle-of-lights [15], and another one, (N): a
minimum-path algorithm, devised after Nijenhuis’ [7].
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The algorithm (W) processes consecutive integers n € Ny using the
following simple rule. (n =) 0 is O-representable; any n € N is (k + 1)-
representable iff n — a; is k-representable for some ¢ = 1,2,...,t where
k € Lgy. The corresponding information (0: no (or light off) or 1: yes (light
on)) on n and any k is put at position (r, k), r = (n mod a;), of the re-
sulting doubly cyclic (toroidal) 0-1 list of size qa;. Additionally, RP[k], the
number of k-representable integers, is updated and the a;th of consecutive
k-representable integers n is recorded as N[k]. The process stops at the
first n which is the a;th of consecutive fully representable integers. Then
output is N, = N[k] — a1 and 2, = n+ 1 — RP[k]. Thus, since t < a,
space complexity is O(ga). Since g > aj — 1, time complexity can be shown
to be O(tqg) or O((t + q)g) depending on the (data structure dealing with
0-1 vectors and) implementation. As a by-product the algorithm gives the
following inequality which is not sharp in general but, for ¢ = 1, it improves
on one due to Wilf:

(4.1) g<(qat—2)a;—1 fort>2.

Proof. This is true if ¢t = 2 (and ¢ = 1). Else, if not all lights are
on, each full sweep around the lattice increases the number of lights which
are on because otherwise (it would only cause the rotation of lights and) g
would be infinite, contrary to Theorem 1.2. We may stop at n such that at
most z := [a;/a1] — 1 lights are left off. Then ¢ < n + za;. Since 1 is at
(0,0) due to the initial condition, the first sweep adds at least two new 1’s
(ift >2or ¢ >1). Thus, n < (gqa; — 2 — z)at, whence the result follows. m

The bound (4.1) on g can be improved considerably. Erdés-Graham’s
important upper bound for g(A,1) (see [3]) (whose simple proof can be
found in Rodseth [10]) can be extended to any admissible ¢. Adapting
Rodseth’s argument to formula (2.10) with m = ga; gives the result. Let
gA be the sum of ¢ copies of the set A, let A9 = ¢AU {0} — {qa;}, and let
h=2la;/(t—1+1/q)|. Then

No(A, q) < max Z y;b; —qa;  with max over y;’s from Ny such
b€ Ao that Y y; < h and some of y;’s
are small,

< g TiQ; — qag
~ x;€Np, sz<qh xt<q

<(gh—q+1)ar—1 —a; (for K =0),
and

NK(Avq)SNO(Aaq)_FKal’ "{:0317"'7(]_17
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whence

(4.2) 9(A,q) <2qar_1|ar/(t—1+1/q)] — (¢ — 1)(at—1 —a1) — as .

Therefore g is O(qa? /t) (and so is £2,; for any k because 2, < g+1). It can be
seen that the bound (4.2) is sharp in the sense that, for each ¢ > 1 and each
t > 2, there is an A with |A| = ¢, a; large enough and g(A, q) = O(qa?/t),
O indicating the exact order of magnitude.

The algorithm (N) is more efficient but is also only pseudo-polynomial
(i.e., a common bound on complexities is a polynomial in ¢, ¢ and some
a;). The algorithm is based on generating all ¢?a; integers n,. as sums
of generators a;, see formulae (2.10)—(2.11) with m = qa;, the smallest
possible value of m. It maintains a heap (i.e., a binary tree) of x-heaps
whose entries are available sums which are put in increasing order along
paths going from the root of the k-heap, k-heaps being similarly ordered
by their roots. The algorithm starts by taking 0 as mgg. Next, if n,., is
identified (as the smallest available sum) and removed from the heap, the
algorithm accommodates each of the sums s = n,, +a; in the (x +1)-heap,
i.e., inserts s as the (r,xk + 1)-entry where r = (s mod m) provided that
the entry either has not appeared yet or is larger than s. Time of labour
associated with each s is O(log,(g?a1)). The space and time complexities
of the algorithm are O(t + ¢?a;) and O(tq?a; logy(q2a1)), respectively. Our
complexity estimates correct some of those by Nijenhuis [7].

For the set A = {271,277,281,283} (dealt with by Wilf [15] for ¢ = 1),
our computer programs (W) and (N) found data presented in Table 1 for
g =5,3,1 in stated seconds on PC AT 386 (20 MHz) (A) and XT (8 MHz)
(X), respectively. Notice that ¢ = 2 (or any even ¢) is not allowed.

Table 1

q=>5 q=3 g=1
N n N n N n
63699 32099 | 38225 19316 | 13022 6533
63 970 32098 | 38496 19 316
62 886 32097 | 37954 19 316
63 157 32 098
63 428 32 099

Time (seconds): WA WX 9.12 65.14 4.12 28.95 0.94 6.37
NA NX 1.27  9.29 0.44 3.13 0.01 0.33

= w N = Ol

Programs (N) and (W) can easily be supplemented so as to generate ¢?a;
integers ng{) (this is the smallest k-representable integer in the residue class
of » modulo gay), together with an explicit representation of each of them.
This can yield all sets Jy, of omitted integers [and some representations of
the remaining ones].
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5. Problems and concluding remarks. A natural, though not easy,
problem is to study the function k +— (N, {2;) in case t > 3. Partial
questions can be of interest.

(a) Formulae (3.5) in case t = 2 and many examples of pairs (A,q)
with ¢t > 3 suggest that N, € {g —ja1 | 1 =0,1,...,9— 1}, g = g(A,q).
Nevertheless, this is not the case in general. Namely, if @ and b are relatively
prime natural numbers, a < b and b — a is odd then, for A = {a,b,a + b}
and ¢ = 2, one has g = g(A,2) = ab— a = Np mod 2 and ab/2 = (2,; for both
k = 0, 1; moreover,

Namon_{g—I—a—b:ab—b if b < 2a,

g—a otherwise.

(For the proof, use representations by the set {a, b} with ¢ = 1, see Section 3.
In particular, all omitted integers there and half of the set {ia,jb | i =
0,...,b—1;7=1,...,a—1} can coincide with our k-omitted integers.) It is
easily seen, however, that all N,;’s are in the closed interval [g— (¢ —1)a, g].
In fact, use (2.7) and (2.10) with m = ga; to see that all integers n,., + a1
are (kK + 1)-representable and their residues modulo ga; form a complete
system, whence

Nyii1 < Ny +ay for all pairs K,k + 1 in Z.
Hence, the result follows.

(b) For ¢ = 1, it is known [8] that 2 > (g + 1)/2. For any ¢, by
using the transformation n — ¢ — n as in Proposition 3.5, one can prove
maxy §2,, > (g + 1)/2 or, more generally,

max {2, +min {2, > g+ 1.

Characterize all (or find more interesting examples of) pairs (A, q) with
t > 3 such that (2, = const on L, (¢ > 1) where possibly const = (¢ +1)/2
(¢ > 1) (cp. t =2 above or supersymmetric semigroups in [4] for ¢ = 1).

(c) Characterize (A,q) with ¢ > 1 and ¢ = |A| > 2 such that 02, >
g(A,q)/2 for all k € L,. Characterize A such that this holds for all admissi-
ble ¢ (or—on the contrary—does not hold for almost all such ¢). Determine
the largest admissible integer ¢, denote it by £(.A), such that

(5.1) 2.>9(Aq)/2 foralkelL,.

Let &'(A) be the largest integer k such that (5.1) holds for all admissible
q < k. Notice that & < ¢ forallt>2. If t =1 then ¢ = o0 and £ =1 (and
A = {1}). Characterize A with ¢ = ¢.

In what follows, A = Ay, == {a,a+1,...,a+1t—1} with t > 2, a set
of consecutive generators (dealt with in [8]) with ¢ elements, a being the
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smallest. One can see now that &’ = co = £ iff t — 1 divides a, iff 2,, = const
on L, for each ¢; moreover, const = (¢ +1)/2iff a =1 =g or ¢ =2 and
t—1|a—1, or finally, t — 1| a — 2 with the restriction that ¢ = 1 if ¢ > 4.
On the other hand, for t > 3, we have ¢’ =t and £ = a if t —1|a — 1 unless
a=1and then ¢ =2 =¢.
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