A generalization of the Hahn-Banach theorem

by Jolanta Plewnia (Kraków)

Abstract. If C is a non-empty convex subset of a real linear space E, $p:E\to\mathbb{R}$ is a sublinear function and $f:C\to\mathbb{R}$ is concave and such that $f\le p$ on C, then there exists a linear function $g:E\to\mathbb{R}$ such that $g\le p$ on E and $f\le g$ on C. In this result of Hirano, Komiya and Takahashi we replace the sublinearity of p by convexity.

N. Hirano, H. Komiya and W. Takahashi gave the following generalization of the well-known Hahn–Banach theorem (Theorem 1 of [2]):

If p is a sublinear function on a linear space E, C is a non-empty convex subset of E and f is a concave functional on C such that $f \leq p$ on C, then there exists a linear functional g on E such that $f \leq g$ on C and $g \leq p$ on E.

The main goal of this paper is to give a new version of the above theorem with "sublinear" replaced by "convex". This result can be derived from an abstract Hahn–Banach theorem due to Rodé [6] (cf. also König [4]) or from the Nikodem theorem [5].

Our proof, based on an idea from [2], is an application of a theorem of Fan (Lemma 1).

In the proof of the main theorem we shall use the following two lemmas.

LEMMA 1 (Fan). Let X be a non-empty compact convex subset of a Hausdorff linear topological space and $\{f_{\nu} : \nu \in I\}$ a family of lower semicontinuous convex functionals on X with values in $(-\infty, +\infty]$. If for any finite set of indices ν_1, \ldots, ν_n and for any non-negative numbers $\lambda_1, \ldots, \lambda_n$ with $\sum_{i=1}^n \lambda_i = 1$, there is a $y \in X$ such that

$$\sum_{i=1}^{n} \lambda_i f_{\nu_i}(y) \le 0,$$

then there exists an $x \in X$ such that $f_{\nu}(x) \leq 0, \ \nu \in I$.

Key words and phrases: the Hahn-Banach theorem, convex functions.

¹⁹⁹¹ Mathematics Subject Classification: Primary 46A22.

48 J. Plewnia

LEMMA 2. If p is a convex function on a real linear space E and $x_0 \in E$, than there are a linear functional f and $c \in \mathbb{R}$ such that

$$c + f(x) \le p(x)$$
 for $x \in E$,
 $c + f(x_0) = p(x_0)$.

Lemma 2 is a special case of the Hahn–Banach theorem. In [2] an analogue of Lemma 2 for sublinear functions was proved using the Markov–Kakutani fixed-point theorem. Our lemma can be derived e.g. from Corollary 11.2, p. 91 of [1].

Z. Kominek ([3], Lemma 1) has obtained a more general result (for a midpoint convex functional on a non-empty algebraically open and convex subset).

Using the above lemmas we obtain the following

THEOREM. Let C be a non-empty convex subset of a real linear space E and let $p: E \to \mathbb{R}$ be a convex function. If $f: C \to \mathbb{R}$ is a concave function satisfying

$$f(x) \le p(x)$$
 for $x \in C$,

then there exists a linear function $g: E \to \mathbb{R}$ and a constant $a \in \mathbb{R}$ such that

$$g(x) + a \le p(x)$$
 for $x \in E$,
 $f(x) \le g(x) + a$ for $x \in C$.

Proof. First assume that $0 \in C$. Let F be the linear topological space \mathbb{R}^E with the Tikhonov topology. Then define

$$J(E) := \left\{ g : E \to \mathbb{R} : g\left(\frac{x+y}{2}\right) = \frac{1}{2}[g(x) + g(y)], \ x, y \in E \right\}$$
$$B := \left\{ g \in J(E) : g \le p \text{ on } E \right\},$$
$$B_n := \left\{ g \in B : g(0) > p(0) - n \right\} \quad \text{for } n \in \mathbb{N}.$$

By Lemma 2, B is non-empty. We also have $B = \bigcup_{n=1}^{\infty} B_n$, $B_n \subset B_{n+1}$ and the B_n are convex and closed in F for all $n \in \mathbb{N}$.

For each $y \in E$ we have

$$p(0) = p\left(\frac{y-y}{2}\right) \le \frac{1}{2}[p(y) + p(-y)],$$

whence

$$2p(0) - p(-y) \le p(y) .$$

Consequently, for every $n \in \mathbb{N}$ the set

$$X_n := \prod_{y \in E} [2p(0) - p(-y) - 2n, p(y)]$$

is non-empty, convex and compact in F.

We also have $B_n \subset X_n$ for $n \in \mathbb{N}$. Indeed, each $g \in B_n$ satisfies

$$g(0) \ge p(0) - n$$
,
 $2g(0) = g(y) + g(-y)$, $y \in E$,
 $g(y) < p(y)$, $y \in E$.

Hence for every $y \in E$

$$2p(0) - 2n - p(-y) \le 2g(0) - g(-y) = g(y) \le p(y).$$

Now for every $n \in \mathbb{N}$ we define

$$C_n := \{x \in C : 2f(x) - p(2x) \ge p(0) - n\}.$$

It is easy to see that $C = \bigcup_{n=1}^{\infty} C_n$, the C_n are convex and $C_n \subset C_{n+1}$ for $n \in \mathbb{N}$.

Take $x \in C_n$. By Lemma 2 there exists $g \in J(E)$ such that $g \leq p$ on E and g(x) = p(x). Then

$$\begin{split} f(x) &\leq p(x) = g(x) = g\bigg(\frac{2x+0}{2}\bigg) \\ &= \frac{1}{2}[g(2x) + g(0)] \leq \frac{1}{2}[p(2x) + g(0)]\,, \end{split}$$

whence

$$g(0) \ge 2f(x) - p(2x) \ge p(0) - n$$
.

This means that $g \in B_n$; that is, for every $x \in C_n$ there exists $g \in B_n$ such that g(x) = p(x). In particular, $g(y) \le p(y)$ for all $y \in E$.

Fix $n \in \mathbb{N}$ for which $0 \in C_n$. Define $G_x : B_n \to \mathbb{R}$ for $x \in C_n$ by

$$G_x(g) = f(x) - g(x)$$
 for $g \in B_n$.

It is easy to show that each G_x is convex. Moreover, it is lower semicontinuous, for if $c \in \mathbb{R}$ and $\Pi_x(g) = g(x)$ for $g \in F$, then

$$\{g \in B_n : G_x(g) > c\} = \{g \in B_n : g(x) < f(x) - c\}$$
$$= \{g \in B_n : \Pi_x(g) < f(x) - c\}$$
$$= B_n \cap \Pi_x^{-1}((-\infty, f(x) - c)).$$

The last set is open in B_n in the Tikhonov topology.

Let $x_1, \ldots, x_m \in C_n$ and let $\lambda_1, \ldots, \lambda_m \geq 0$ be such that $\sum_{i=1}^m \lambda_i = 1$. Put $z := \sum_{i=1}^m \lambda_i x_i$. Then there exists $g \in B_n$ for which $g(x) \leq p(x)$, $x \in E$, and g(z) = p(z). Moreover, we have

$$\sum_{i=1}^{m} \lambda_i G_{x_i}(g) = \sum_{i=1}^{m} \lambda_i f(x_i) - \sum_{i=1}^{m} \lambda_i g(x_i) \le f\left(\sum_{i=1}^{m} \lambda_i x_i\right) - g\left(\sum_{i=1}^{m} \lambda_i x_i\right)$$
$$= f(z) - g(z) \le f(z) - p(z) \le 0.$$

J. Plewnia

Hence by virtue of Lemma 1 there exists $g_n \in B_n$ such that $G_x(g_n) \leq 0$ for all $x \in C_n$, i.e.,

$$f \leq g_n$$
 on C_n , $g_n \leq p$ on E .

We put

$$X := \prod_{x \in E} [2f(0) - p(-x), p(x)] \cap J(E) \,.$$

This set is compact, convex and non-empty. In fact, we have

$$f(0) \le g_n(0) = \frac{g_n(x) + g_n(-x)}{2} \le \frac{g_n(x) + p(-x)}{2}$$

hence $2f(0) - p(-x) \le g_n(x) \le p(x)$, whence $g_n \in X$.

Now consider the functions $G_x: X \to \mathbb{R}, x \in C$, defined by

$$G_x(g) = f(x) - g(x), \quad g \in X.$$

Fix arbitrary $x_1, \ldots, x_m \in C$ and $\lambda_1, \ldots, \lambda_m \geq 0$ with $\sum_{i=1}^m \lambda_i = 1$. For sufficiently large $n \in \mathbb{N}$ we have $0, x_1, \ldots, x_m \in C_n$ and we can find $g_n \in X$ such that $g_n \leq p$ on E and $g_n \geq f$ on C_n . Consequently,

$$\sum_{i=1}^{m} \lambda_i G_{x_i}(g_n) = \sum_{i=1}^{m} \lambda_i f(x_i) - \sum_{i=1}^{m} \lambda_i g_n(x_i)$$

$$\leq f\left(\sum_{i=1}^{m} \lambda_i x_i\right) - g_n\left(\sum_{i=1}^{m} \lambda_i x_i\right) \leq 0.$$

By Lemma 1 again there exists $g_0 \in X$ such that

$$g_0(x) \le p(x)$$
 for $x \in E$,
 $f(x) \le g_0(x)$ for $x \in C$.

It is not difficult to see that there are a linear functional $g:E\to\mathbb{R}$ and a constant $a\in\mathbb{R}$ such that

$$g_0(x) = g(x) + a$$
 for $x \in E$.

This ends the first part of the proof.

Now suppose that $0 \notin C$ and take an arbitrary $x_0 \in C$. Let $C_1 := C - x_0$ and define $f_1 : C_1 \to \mathbb{R}$ and $p_1 : E \to \mathbb{R}$ by

$$f_1(x) := f(x + x_0)$$
 for $x \in C_1$,
 $p_1(x) := p(x + x_0)$ for $x \in E$.

It is easily seen that f_1 is concave, p_1 is convex and

$$f_1(x) \leq p_1(x)$$
, $x \in C_1$.

Then there exists a linear function $g: E \to \mathbb{R}$ and a constant $c \in \mathbb{R}$ such that

$$f_1(x) \leq g(x) + c$$
, $x \in C_1$,

$$g(x) + c \le p_1(x), \quad x \in E.$$

Consequently,

$$f(x) \le g(x) - g(x_0) + c, \quad x \in C,$$

 $g(x) - g(x_0) + c \le p(x), \quad x \in E.$

Setting $a := c - g(x_0)$ completes the proof.

 Remark . It is easy to check that Theorem 1 of [2] can be obtained as a corollary to ours.

References

- [1] A. Alexiewicz, Functional Analysis, Monografie Mat. 49, PWN, Warszawa 1969 (in Polish).
- [2] N. Hirano, H. Komiya and W. Takahashi, A generalization of the Hahn-Banach theorem, J. Math. Anal. Appl. 88 (1982), 333–340.
- [3] Z. Kominek, On additive and convex functionals, Rad. Mat. 3 (1987), 267-279.
- [4] H. König, On the abstract Hahn-Banach theorem due to Rodé, Aequationes Math. 34 (1987), 89-95.
- [5] K. Nikodem, On the support of midconvex operators, ibid. 42 (1991), 182-189.
- [6] G. Rodé, Eine abstrakte Version des Satzes von Hahn-Banach, Arch. Math. (Basel) 31 (1978), 474-481.

INSTITUTE OF MATHEMATICS PEDAGOGICAL UNIVERSITY PODCHORĄŻYCH 2 30-084 KRAKÓW, POLAND

> Reçu par la Rédaction le 16.11.1991 Révisé le 20.5.1992 et 16.7.1992