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A generalization of the Hahn–Banach theorem

by Jolanta Plewnia (Kraków)

Abstract. If C is a non-empty convex subset of a real linear space E, p : E → R
is a sublinear function and f : C → R is concave and such that f ≤ p on C, then there
exists a linear function g : E → R such that g ≤ p on E and f ≤ g on C. In this result of
Hirano, Komiya and Takahashi we replace the sublinearity of p by convexity.

N. Hirano, H. Komiya and W. Takahashi gave the following generaliza-
tion of the well-known Hahn–Banach theorem (Theorem 1 of [2]):

If p is a sublinear function on a linear space E, C is a non-empty convex
subset of E and f is a concave functional on C such that f ≤ p on C, then
there exists a linear functional g on E such that f ≤ g on C and g ≤ p on E.

The main goal of this paper is to give a new version of the above theorem
with “sublinear” replaced by “convex”. This result can be derived from an
abstract Hahn–Banach theorem due to Rodé [6] (cf. also König [4]) or from
the Nikodem theorem [5].

Our proof, based on an idea from [2], is an application of a theorem of
Fan (Lemma 1).

In the proof of the main theorem we shall use the following two lemmas.

Lemma 1 (Fan). Let X be a non-empty compact convex subset of a Haus-
dorff linear topological space and {fν : ν ∈ I} a family of lower semicon-
tinuous convex functionals on X with values in (−∞,+∞]. If for any finite
set of indices ν1, . . . , νn and for any non-negative numbers λ1, . . . , λn with∑n
i=1 λi = 1, there is a y ∈ X such that

n∑
i=1

λifνi(y) ≤ 0 ,

then there exists an x ∈ X such that fν(x) ≤ 0, ν ∈ I.
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Lemma 2. If p is a convex function on a real linear space E and x0 ∈ E,
than there are a linear functional f and c ∈ R such that

c+ f(x) ≤ p(x) for x ∈ E ,
c+ f(x0) = p(x0) .

Lemma 2 is a special case of the Hahn–Banach theorem. In [2] an ana-
logue of Lemma 2 for sublinear functions was proved using the Markov–
Kakutani fixed-point theorem. Our lemma can be derived e.g. from Corol-
lary 11.2, p. 91 of [1].

Z. Kominek ([3], Lemma 1) has obtained a more general result (for a
midpoint convex functional on a non-empty algebraically open and convex
subset).

Using the above lemmas we obtain the following

Theorem. Let C be a non-empty convex subset of a real linear space E
and let p : E → R be a convex function. If f : C → R is a concave function
satisfying

f(x) ≤ p(x) for x ∈ C ,
then there exists a linear function g : E → R and a constant a ∈ R such that

g(x) + a ≤ p(x) for x ∈ E ,
f(x) ≤ g(x) + a for x ∈ C .

P r o o f. First assume that 0 ∈ C. Let F be the linear topological space
RE with the Tikhonov topology. Then define

J(E) :=
{
g : E → R : g

(
x+ y

2

)
=

1
2

[g(x) + g(y)], x, y ∈ E
}

B := {g ∈ J(E) : g ≤ p on E} ,
Bn := {g ∈ B : g(0) ≥ p(0)− n} for n ∈ N.

By Lemma 2, B is non-empty. We also have B =
⋃∞
n=1Bn, Bn ⊂ Bn+1 and

the Bn are convex and closed in F for all n ∈ N.
For each y ∈ E we have

p(0) = p

(
y − y

2

)
≤ 1

2
[p(y) + p(−y)] ,

whence
2p(0)− p(−y) ≤ p(y) .

Consequently, for every n ∈ N the set

Xn :=
∏
y∈E

[2p(0)− p(−y)− 2n, p(y)]

is non-empty, convex and compact in F .
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We also have Bn ⊂ Xn for n ∈ N. Indeed, each g ∈ Bn satisfies

g(0) ≥ p(0)− n ,
2g(0) = g(y) + g(−y) , y ∈ E ,

g(y) ≤ p(y) , y ∈ E.

Hence for every y ∈ E

2p(0)− 2n− p(−y) ≤ 2g(0)− g(−y) = g(y) ≤ p(y) .

Now for every n ∈ N we define

Cn := {x ∈ C : 2f(x)− p(2x) ≥ p(0)− n} .

It is easy to see that C =
⋃∞
n=1 Cn, the Cn are convex and Cn ⊂ Cn+1 for

n ∈ N.
Take x ∈ Cn. By Lemma 2 there exists g ∈ J(E) such that g ≤ p on E

and g(x) = p(x). Then

f(x) ≤ p(x) = g(x) = g

(
2x+ 0

2

)
=

1
2

[g(2x) + g(0)] ≤ 1
2

[p(2x) + g(0)] ,

whence

g(0) ≥ 2f(x)− p(2x) ≥ p(0)− n .
This means that g ∈ Bn; that is, for every x ∈ Cn there exists g ∈ Bn such
that g(x) = p(x). In particular, g(y) ≤ p(y) for all y ∈ E.

Fix n ∈ N for which 0 ∈ Cn. Define Gx : Bn → R for x ∈ Cn by

Gx(g) = f(x)− g(x) for g ∈ Bn .

It is easy to show that each Gx is convex. Moreover, it is lower semicontin-
uous, for if c ∈ R and Πx(g) = g(x) for g ∈ F , then

{g ∈ Bn : Gx(g) > c} = {g ∈ Bn : g(x) < f(x)− c}
= {g ∈ Bn : Πx(g) < f(x)− c}
= Bn ∩Π−1

x ((−∞, f(x)− c)) .
The last set is open in Bn in the Tikhonov topology.

Let x1, . . . , xm ∈ Cn and let λ1, . . . , λm ≥ 0 be such that
∑m
i=1 λi = 1.

Put z :=
∑m
i=1 λixi. Then there exists g ∈ Bn for which g(x) ≤ p(x), x ∈ E,

and g(z) = p(z). Moreover, we have
m∑
i=1

λiGxi(g) =
m∑
i=1

λif(xi)−
m∑
i=1

λig(xi) ≤ f
( m∑
i=1

λixi

)
− g
( m∑
i=1

λixi

)
= f(z)− g(z) ≤ f(z)− p(z) ≤ 0 .
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Hence by virtue of Lemma 1 there exists gn ∈ Bn such that Gx(gn) ≤ 0 for
all x ∈ Cn, i.e.,

f ≤ gn on Cn , gn ≤ p on E .

We put

X :=
∏
x∈E

[2f(0)− p(−x), p(x)] ∩ J(E) .

This set is compact, convex and non-empty. In fact, we have

f(0) ≤ gn(0) =
gn(x) + gn(−x)

2
≤ gn(x) + p(−x)

2
,

hence 2f(0)− p(−x) ≤ gn(x) ≤ p(x), whence gn ∈ X.
Now consider the functions Gx : X → R, x ∈ C, defined by

Gx(g) = f(x)− g(x) , g ∈ X .

Fix arbitrary x1, . . . , xm ∈ C and λ1, . . . , λm ≥ 0 with
∑m
i=1 λi = 1. For

sufficiently large n ∈ N we have 0, x1, . . . , xm ∈ Cn and we can find gn ∈ X
such that gn ≤ p on E and gn ≥ f on Cn. Consequently,

m∑
i=1

λiGxi
(gn) =

m∑
i=1

λif(xi)−
m∑
i=1

λign(xi)

≤ f
( m∑
i=1

λixi

)
− gn

( m∑
i=1

λixi

)
≤ 0 .

By Lemma 1 again there exists g0 ∈ X such that

g0(x) ≤ p(x) for x ∈ E ,
f(x) ≤ g0(x) for x ∈ C .

It is not difficult to see that there are a linear functional g : E → R and
a constant a ∈ R such that

g0(x) = g(x) + a for x ∈ E .
This ends the first part of the proof.

Now suppose that 0 6∈ C and take an arbitrary x0 ∈ C. Let C1 := C−x0

and define f1 : C1 → R and p1 : E → R by

f1(x) := f(x+ x0) for x ∈ C1 ,

p1(x) := p(x+ x0) for x ∈ E .
It is easily seen that f1 is concave, p1 is convex and

f1(x) ≤ p1(x) , x ∈ C1 .

Then there exists a linear function g : E → R and a constant c ∈ R such
that

f1(x) ≤ g(x) + c , x ∈ C1 ,
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g(x) + c ≤ p1(x) , x ∈ E .
Consequently,

f(x) ≤ g(x)− g(x0) + c , x ∈ C ,
g(x)− g(x0) + c ≤ p(x) , x ∈ E .

Setting a := c− g(x0) completes the proof.

R e m a r k. It is easy to check that Theorem 1 of [2] can be obtained as
a corollary to ours.

References

[1] A. Alex iewicz, Functional Analysis, Monografie Mat. 49, PWN, Warszawa 1969
(in Polish).

[2] N. Hirano, H. Komiya and W. Takahash i, A generalization of the Hahn–Banach
theorem, J. Math. Anal. Appl. 88 (1982), 333–340.

[3] Z. Kominek, On additive and convex functionals, Rad. Mat. 3 (1987), 267–279.
[4] H. Kön ig, On the abstract Hahn–Banach theorem due to Rodé, Aequationes Math.
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Révisé le 20.5.1992 et 16.7.1992


