ANNALES
POLONICI MATHEMATICI
LVIIL1 (1993)

On homeomorphic and diffeomorphic solutions
of the Abel equation on the plane

by ZBIGNIEW LESNIAK (Krakéw)

Abstract. We consider the Abel equation

plf ()] = ¢(z) +a

on the plane R27 where f is a free mapping (i.e. f is an orientation preserving homeomor-
phism of the plane onto itself with no fixed points). We find all its homeomorphic and
diffeomorphic solutions ¢ having positive Jacobian. Moreover, we give some conditions
which are equivalent to f being conjugate to a translation.

The aim of this paper is to find all homeomorphic and diffeomorphic
solutions with positive Jacobian of the Abel equation

(1) olf (@)] = (z) +a

on the plane R?2. We assume that a # (0,0) and f is an orientation pre-
serving homeomorphism of the plane onto itself with no fixed points (such
a homeomorphism will be called a free mapping). By a curve is meant a
homeomorphic image of a straight line. A curve is said to be a line (an open
line in [4]) if it is a closed set.

1. We note that the existence of homeomorphic solutions ¢ of (1) is
equivalent to f being conjugate to the translation T'(z) = x + a (i.e. f =
¢ ' oT oy, where ¢ is a homeomorphism). S. Andrea [1] has proved that
a free mapping f is conjugate to a translation if and only if

(H)  for all 7,3y € R? there exists a curve segment C with endpoints x,y
such that f"[C] — oo as n — Foo, where f is the nth iterate of f.

In the present paper we give some other conditions equivalent to (H).

We introduce the following conditions:
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8 Z. Lesniak

(A)  There exists a homeomorphism ¢ of the plane onto itself satisfy-

ing (1).
(A’)  There exists a homeomorphism ¢ of the plane into itself satisfy-
ing (1).
(B)  There exists a line K such that
(2) KN fIK] =0,
(3) U’ f[U°] =0,
(4) U ot ==,
nez

where U? := M° U f[K] and M° is the strip bounded by K and
fIK]. (See Fig. 1.)

K] K fIK] FPE]

F MO MO MO

Fig. 1

Fig. 2

(C) There exist a family of curves {C,, : @ € I'} and a line K such that
(5) flCal =C, forael,
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(6) CanNCp=0 fora,pel, a4,

(7) card(KNC,)=1 forael,

(8) U C, =R?%  (See Fig. 2.)
acl

We shall show

THEOREM 1. If f is a free mapping, then conditions (A), (A’), (B) and
(C) are equivalent.

2. First note the following

LEMMA 1. Let a = (a1,as) € R*\ {(0,0)} and T(z) := x +a for z € R?.
Then there exists a homeomorphism 1 of the plane onto itself such that
(9) T(x) =y~ o(z) + (1,0)].

Proof. Set

1 a .
(21, 22) = <—1171, — 2 +$2> ifa; #0,
ajq a

1
1
(a1, 29) = <—$2,$1> ifa; =0.
a2

By Lemma 1, from now on we may assume that a = (1,0).
LEMMA 2. If f is a free mapping, then (A") implies (B).
Proof. Since ¢ is a homeomorphism, p[R?] is a region. Moreover, ¢[R?]
= p[R?] + (1,0). Put T(z1,22) := (z1 + 1,22) and T%(z1,22) := (21, 2)
for (z1,x2) € ¢[R?]. Write L := {(z1,22) € ¢[R?] : z1 = 0}. Since T"[L] =
{(z1,22) € p[R?] : 1 = n} for n € Z, we have
(10) T'LINT™[Ll =0 forn,mé€eZ, n#m.
Put L™ := T"[L], N" := {(z1,22) € ¢p[R?] : 21 € (n,n+ 1)} and W" :=
N™U L™ for n € Z. Note that
N" =T"[N°] forn€Z,
Wonw» =0 fornezZ\{0}, |JW"=¢R.
(ASYA

Put K := ¢~ ![L] and K" := f"[K] for n € Z. By (A’), po f" =T" o,
whence

(11) ffopt=ptoT™.
Hence
(12) K" = f"le ' L] = o HT"[L]] = o7 [L"].

Therefore, by (10), K" N K™ = () for n,m € Z,n # m.
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Since K = ¢~ '[L] and L is closed in ¢[R?], the curve K is a line, and so
is K™ = f"[K] for every n € Z.

For each n € Z, denote by M™ the strip bounded by K" and K"*!,
Since ¢ is a homeomorphism,

(13) M™ =@ '[N"] forneZ.
Hence by (11) we have
(14) MO = e N = T TN = T N = M
for n € Z.
Put U := M"™ U K"*! for n € Z. Then by (12) and (13),
Un —_ (’D_I[Nn ULn—‘rl] _ (’D—I[Wn]

and by (14),
U" = MO U fIK] = U
Hence
U fn[UO] — U Un = C,D_l[ U Wn] :RQ
nezZ neZ neZ
and

fIUNU =0 nU° = ' Wi N =9.
This completes the proof.

THEOREM 2. Let f be a free mapping of the plane onto itself and let
a = (aj,a3) € R*\ {(0,0)}. Assume that condition (B) is satisfied. Let
0o : U U K — R? be continuous and suppose

(15) wolf(x)] =¢o(x)+a forze K.
Then:

(a) There exists a unique solution ¢ of (1) such that
(16) o(x) = po(z) for zc UPUK.

This solution @ is continuous.

(b) If g is one-to-one and o[U°]N (po[U°] +ka) = 0 for all k € Z\ {0}
then ¢ is a homeomorphism.

(c) If @o is one-to-one, po[K] is a line and @o[K|ND~ # 0 for ally € R,
where D, = {(x1,x2) € R2 : asx — a9 = v}, then ¢ is a homeomorphism.

(d) If o is one-to-one, poK| is a line, @o[K] N Dy # 0 for all v € R,
and @o[int U] = N, where N is the strip bounded by po|K] and po|K]+a,
then ¢ is a homeomorphism of R? onto itself. (See Fig. 3.)

Proof. Since KN f[K] =0,
fPIKIN "MK =0 forneZ.
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wolK]—a  wolK]  @olK]+a wolK]+2a
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Fig. 3

Moreover, for each n € Z, the curve f"[K] is a line, since so is K. Denote
by M™ the strip bounded by f"[K] and f*"*![K]. Let U" := M" U f"*1[K]
for n € Z. Since f is a homeomorphism,

U" = frU° forneZ.
Furthermore, for every n € Z, f"[K] lies in the strip between f"~1[K] and
K], P KINM™ = () and fH KN M™ ! = (). Otherwise we would
have fP=U°] N f*[U°] # 0, which contradicts (3).

Define ¢ : R? — R? by setting

(17) o(x) =@olf ")) +ka, xzcU* keZ.

It is clear that ¢ is a unique solution of (1) satisfying (16) and that ¢ is
continuous in J,, ., int U™.

Take any x¢ € K. We now show that ¢ is continuous at xg. Let P be a
closed disc with centre at zo such that PN f~1[K] # 0 and PN f[K] # 0.
Then PN f~1[K] and PN f[K] are compact. Let R be an open disc with
centre at ¢ and radius smaller than min{o(xq, PNf~[K]), o(z0, PNf[K])},
where p is the Euclidean metric on the plane. Then we have

(18) RNf ' K]=0 and RNfIK]=0.

Put Ry := RN intU°, Ry := RN intU !, Ry ;== RN K. Then p(z) =
wo(z) for z € Ry, and ¢(x) = @o[f(x)] —a for x € Ro U Ry. As zp € Ry we
hence get p(20) = po(zo) by (15).
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Let xp, — o, z, € R. If 2, € R1 U Ry, then
Jim o(zg) = lim go(zx) = wo(@0) = ¢(20)

because g is continuous in Ry URg C K UU. If z;, € Ry, then f(z},) € U°
and f(zx) — f(xo) € U°. Thus

Jim o(zg) = lim (o[ f(zr)] — a) = polf(0)] — a = po(zo) = p(z0)

because ¢ is continuous in UY and zg € K. Consequently, ¢ is continuous
at g € K.

Let 29 € R? \ U,z int U, There exists an m € Z such that zo € U™ \
int U™ = f™*+1[K]. Let V be a neighbourhood of z such that VN f™[K] = ()
and VN f™T2[K] = 0 (proceed as in the proof of the existence of R satisfying
(18)). Note that V. C U™ Uint U™*! thus f~™ 1[V] c U~ Uint U° and
f~™71V] is a neighbourhood of f~™ () € K.

Take any sequence {z;} in V such that x;, — zo. Then f~™ 1(z;) —
f~™ (zo). Since ¢ is continuous on K and f~™ 1(zy) € K, we have
elf 7" Haw)] — @lf 7™ (x0)]. From (17) we have

(o) = olf ™ (x)] + (m + 1)a
and
o(zr) = wo[f ™ H(z1)] + (m+1)a for k€ N.
Thus ¢(x) — ¢(zo). Consequently, ¢ is continuous on the plane.
Now assume, in addition, that ¢ is one-to-one in U°UK and oo (z)+na ¢
0olU°] for all z € U and n € Z \ {0}. We show that ¢ is one-to-one in the

plane. Suppose z,y € R? and p(z) = ¢(y). By (4), x € U* and y € U’ for
some k,l € Z. From (17) it follows that

o(x) = wo[f (@) + ka, o(y) = wolf (W) +la.

Therefore

wolf *(@)] = wolf ()] + (L = K)a.
Suppose that [ —k # 0. Then @o[f ! (y)] + (I — k)a & wo[UY], since f~1(y) €
UY. Hence @o[f % ()] & po[U°], which is a contradiction, since f~*(x) € U°.
Thus | = k, and consequently x = y. Note that ¢, being a continuous one-
to-one mapping of R? into R?, is a homeomorphism (see [3], p. 186).

Now we show (c). Note that ¢[K] + a = ¢[f[K]]. Moreover, as D, N
wo[K] # 0, we have D, Ny [f[K]] # 0. Since @liy; po is continuous and one-
to-one, it is a homeomorphism and ¢[int U] is a region. Moreover, ¢(z) &
o[int U?), for every x € KUf[K], since ¢ is one-to-one in UYUK . Hence each
y € p[K]Ug[f[K]] is a boundary point of p[int U], since (g is continuous on
U°U K. Therefore p[int U] C N°, because po[K]|N D, # 0 and @o[f[K]] N
D., # () for v € R and ¢y[K] is a line.
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Let 2,y € R2. Then = € U* and y € U' for some k,l € Z. Assume that

¢(x) = ¢(y). Then

wolf*(@)] = ol f ()] + (I — k)a.
Since o[U°] € N° U po[f[K]], we have | — k = 0, whence z = y. Thus ¢ is
continuous and one-to-one, and hence a homeomorphism.

Assume, in addition, that po[int U%] = N°. Put W9 := NOU (p[K] + a).
Then WO = ¢[U°]. Let y € R% Then there exists an n € Z such that
y —na € WO Take an z € U such that ¢(z) = y — na. Then by (1),

elf"(x)] = p(z) +na=y.
Thus ¢[R?] = R2. Consequently, ¢ is a homeomorphism of R? onto itself
satisfying (1). This completes the proof.

Obviously, we also have the following

Remark 1. Let f be a free mapping of the plane onto itself and let
a = (ar,az) € R?\{(0,0)}. Assume that condition (B) is satisfied. Let ¢ be
any homeomorphic solution of equation (1). Let g := ¢|youx. Then

(a) o is one-to-one and ¢o[U°] N (po[U°] + ka) = 0 for k € Z\ {0};

(b) if ¢ is a homeomorphism of R? onto itself, then g is one-to-one,
woK] is a line, po[K] N D, # 0 for v € R, and ¢o[int U] = N, where D,
and N° are as in the statement of Theorem 2.

From part (d) of Theorem 2 we have
COROLLARY 1. If fis a free mapping, then (B) implies (A).
From Lemma 2, Corollary 1 and the fact that (A) implies (A’) we have

COROLLARY 2. Let f be a free mapping. Then conditions (A), (A’) and
(B) are equivalent.

Now we are going to prove

LEMMA 3. Let f be a free mapping. Then (A) implies (C).

Proof. Put L := {(z1,22) € R? : 1 = 0}, and D, := {(z1,22) € R?:
19 = a} for a € R. Let K := ¢ ![L] and C, := ¢~ ![D,] for a € R, where
¢ is a homeomorphism satisfying @ o f = T o with T'(z1,22) = (1 +1, 22)
for z1,29 € R. Let I :=R. Since fop ' = ¢ ' oT and T[D,] = D, for
a € R, we have

flCal = ¢ T[Dy)] = ¢ ' [Do] =Cs for a €R.

Moreover, note that

ConNCs=¢ ' DyNDsl=0 fora,feR, a4,

U Ca= go_l[ U Da] = p ![R?] = R?

a€eR aceR
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and
card(K N C,) = cardp '[L N D,] = card(L N D,) = 1
for @ € R. This completes the proof.

THEOREM 3. Let f be a free mapping. Then condition (C) implies (B).

Proof. Suppose that (C) holds.

1. First, we show that for the line K which appears in (C), K N f[K]=0.

Suppose zp € K N f[K]. On account of (8), zy € C, for some a € I.
By (5) we get f~1(xq) € Cy, and clearly f~!(zg) € K. Since card(KNCy,) =
1, 2o = f~1(x0). Hence x is a fixed point of f, a contradiction.

2. Now we prove that

card(f"[K]NCy) =1 foraclandneZ.
Fix any a € I. Let n € Z \ {0}. Take g € K NC,. By (5),
fn($0) € fn[K] nCa .

Suppose there exist y1,y2 € f"[K] N C, such that y; # yo. Then f~"(y1),
f™"(y2) € KNC, and f~™(y1) # f~"(y2), which contradicts (7).

3. Let # € C,. We now prove that, for every n € Z, f"*1(z) lies between
f™(z) and f**2(x) on the curve C,. For any z,y € C, denote by (x,y) the
segment of C,, with endpoints z,y. Let (z,y) := (z,y) \ {z,y}.

Let n € Z. If f*2(z) € (f™(x), f*(x)) C C,, then

FU™@), [0 (@) = (F72 (), [ (@) © (f" (@), [ (@) -
Hence by Brouwer’s Theorem f has a fixed point, which is impossible. Simi-
larly, if f*(z) € (f*"(z), f""2(z)) C Cq, then

FHU @), [ (@) = (@), f(2)) € (f"FH (@), 772 ()

Hence f~! has a fixed point, contradiction again. Thus

(19) frii(z) € (F"(x), fr72 ().

4. Now we show that (3) holds. Since, f"[K] is a line for all n € Z,
R?\ f*[K] consists of two unbounded regions, called the side domains of
fMK]. Since KN f[K] = 0, we have f*[K]N f"T1[K] = 0 for all n € Z. For
each n € Z, denote by M™ the strip between the lines f"[K] and f"*1[K].
Let M? be the side domain of f""![K] which does not contain the line
f"[K], and M™ the side domain of f"[K| which does not contain f"+![K].
Then

M"U fMKJUM™U "I KJUMY =R? forn€Z.
Now we show that f""?[K] C M for n € Z. Suppose otherwise. Then for
some n € Z,

(20) fPK] c M™U K] UM™,
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since f"T2[K] N f**K] = 0. Take any z9 € K. By (8), z9 € C, for
some o € I. By (5), f™"(z9) € C, for all n € Z. From (20) we obtain
[ 2(zg) € M™ U f*[K]U M™. Thus by (19),

Co C M™U f[KJUM™ U {f"(20)},
since
S (o), "2 (wo) € MU fPKJUM™,  fPHHUK]NCo = {f" ! (20)}

and C,, has no self-intersections. Consequently, we have shown that for each
a€el,

Co CM™U fM"K]JUM"™ U f"T K] =R*\ M7},
which contradicts (8). Thus f"*2[K]C M for all n€Z. Hence M", n€Z,
are mutually disjoint and f*[K]NK = 0 for n € Z\ {0}. Since f is a
homeomorphism, we have

(21) fMM°) =M™ forneZ.
Thus f*[M°] N M° = () for n € Z \ {0}. Moreover, for every n € Z\ {0},
frIMO U FIE N (MO U FIK]) = (f[MPTU PP E]) N (MO U fIKD) = 0.

Thus, for all n € Z\ {0}, f*[U°]NU° =0, where U° = M° U f[K].
5. To complete the proof we show that

U Fiv) - 2.
neZ

For each a € I let KN C, =: {z,} and C° = (x,, f(4)) C C,. First,
we show that (J,., C = M°.

Suppose that g € CY and 2o ¢ M°. Then C9 has either a common
point with K different from x,, or a common point with f[K] different from
f(z4), which is impossible.

For each o € I denote by CO* the set of all x € C,, such that f(z,) €
(To, ) C Cq, and by C2~ the set of all x € C,, such that x, € (z, f(xq)
C C,.

Take any zo € M. Then zy € C, for some o € I. Suppose that zq €
C%F. Since card(C, N f[K]) = 1 and f(z4) € Co N f[K], we have CIT N
f[K] = 0. Hence CJ" is contained either in M? or in M° UK UM?". Since
2(z0) € COT N MY, we have COT C MY, whence zp € MY, but this is
impossible, since zq € M°.

Now suppose o € C%~. Since card(C, N K) =1 and z, € C, N K, we
have C9~ N K = (. Hence CJ~ is contained either in M° or in MU f[K]U
M?. Since f~(zo) € CO~ N MP, we have C3~ C M?, whence z¢g € M?,
and this is also impossible. Consequently,

(22) Jcd=m°.

acl
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For every a € I and every n € Z, let C" := (f"(x4), " (24)) C C.
Since f is a homeomorphism, we have by (5),
(23) C" = f"[CY foracTandnecZ.
Hence, for all n € Z, we get by (21) and (22),
=M= e =Jer.

acl acl
Let mo € R2. If there exists an n € Z such that zo € f"[K], then
zg € [ HUP]. Now assume that zg € R?\ U,y f"[K]. Then zg € C, for
some « € I. Since f™(z,) — 00 as n — Foo (see [1], Prop. 1.2), there is an
n € Z such that o € C. Hence by (22) and (23),
o € frCa) C frMP°] C fr[U°].
Consequently, R? = J,,, f"[U°]. This completes the proof.

Note that Theorem 1 is a consequence of Corollary 2, Lemma 3 and
Theorem 3.
Moreover, from the proof of Theorem 3 we have the following

COROLLARY 3. Let f be a free mapping. Let K be a line on the plane. If
K satisfies condition (C), then it also satisfies (B).

3. In this section we study diffeomorphic solutions of equation (1). First
we quote the following

LEMMA 4 (see [5]). If the functions f and ¢ are of class CP (p > 0) in a
region U C R™ such that f[U] C U, then for z € U,

(f?xl.afq.al Z Z bgi g; )@ Lf (@)]

k=1 ]17 ?]k 1
qg=1,...,p, where
ak
Giy i (T) = m@( ),

1k

bfll fk (x) may be expressed by means of sums and products of al(z),.

cval e (@)ad g (2) = o oa 1i(®), k= 1,...,p, and f =
1y+--, fn). Consequently, bjl“‘j’“ are o class Cr=atk=1 " In particular,
1...2¢q
ble f;’(x) =al(x)-...- aZZ (x).

Now let f be a free mapping. Assume that condition (B) is satisfied.
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DEFINITION (see [5]) . Let ¢ be a continuous function defined in U°UK,
p times continuously differentiable in int UY. We write

ak

Viy..ir (T0) = rli»na}oo m¢($)a k=1,....p,
x€int U
for xg € K U f[K] (provided this limit exists). The function v is said to be
of class C? in U° U K if all the functions v, v, . .. ,¥i, .., are continuous in

UUK.

All diffeomorphic solutions of equation (1) having positive Jacobian can
be obtained from the following

THEOREM 4. Let f be a free CP mapping of the plane having positive
Jacobian at every x € R? and let a = (a1,a2) € R\ {(0,0)}. Assume that
condition (B) is satisfied. Let 1) be a CP function from UUK into the plane
which satisfies

Vlf(@)] = () +a forzeK,
SN @, @) = v, (@)

k=1 ji,...jk=1

Jk

forx e K,q=1,...,p,11,...,1q = 1,2, where the functions bg;‘_'_'lq are those

occurring in Lemma 4. Then there ezists a unique solution ¢ of equation (1)
such that
o) =yY) forzcUUK.

This solution is of class CP in the plane. Moreover, if 1 is one-to-one, the
Jacobian, jac, v, is positive for x € int U, and det[(x),12(x)] > 0 for
x € KU f[K], and either

YU N (Q[U°) + ka) =0 for k€ Z\ {0}
or

YIKINDy #0 foryeR and ¢[K] is a line,
where D, = {(z1,22) € R? : asry — aywo = v}, then ¢ is an orientation
preserving diffeomorphism of class CP having positive Jacobian.
Proof. Define ¢ by setting

(24) p(x) = ¢[f (@) +ka, zeU" ke,

where U¥ = f*[U"]. For p = 0 we have Theorem 1. Let p > 0. From (24)
it follows that ¢ is of class C? in (J, ., int U*.

Let o € K. Then there exists an open disc R with centre at xy such
that RN f~1[K] = 0 and RN f[K] = 0 (see the proof of Theorem 2). The
proof of ¢ being C? in R runs in the same way as that of Theorem 3.1 in
[5], part 2.
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Let zg € R?\J, oz int U*. There is an m € Z such that f~™ !(zg) € K.
We have already proved that ¢ is C? in a neighbourhood R of f~™ 1(x).
The function f™*! is a CP map of R onto a neighbourhood f™*![R] of z.
Since ¢ is a solution of (1), we have

(w0) = @lf " H(wo)] + (m + 1)a.
Hence ¢ is CP in f™T1R].

Now assume, in addition, that 1) is one-to-one, () + ka & ¥[U°] for
z€U%and k € Z\ {0} [or Y[K]|N D, # 0 for all v € R and ¢[K] is a line],
jac, ¥ > 0 for z € int U® and det[t); (), 1(x)] > 0 for z € K U f[K]. On
account of Theorem 2, ¢ is a homeomorphism.

If x € U° then jac, o = jac,v > 0. If z € f[K], then jac,p =
det[ih1 (), 12 (x)] > 0, since (Op/0x1)(x) = ¢1(x) and (Jp/dxs)(x) = P2 (x)
for z € f[K]. Thus jac, ¢ > 0 for x € U°.

Let # € R2. Then z € f"[U"] for some n € Z. Since o(z) = ¢[f " (x)] +
na, we have
Hence jac, ¢ > 0, since f~"(x) € U° and jac, f~™ > 0. Thus ¢ preserves
orientation. Since ¢ is invertible and of class CP, and jac, ¢ # 0 for x € R?,
o~ Lis CP (see e.g. [6], p. 205). This completes the proof.
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