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On homeomorphic and diffeomorphic solutions

of the Abel equation on the plane

by Zbigniew Leśniak (Kraków)

Abstract. We consider the Abel equation

ϕ[f(x)] = ϕ(x) + a

on the plane R
2, where f is a free mapping (i.e. f is an orientation preserving homeomor-

phism of the plane onto itself with no fixed points). We find all its homeomorphic and
diffeomorphic solutions ϕ having positive Jacobian. Moreover, we give some conditions
which are equivalent to f being conjugate to a translation.

The aim of this paper is to find all homeomorphic and diffeomorphic
solutions with positive Jacobian of the Abel equation

(1) ϕ[f(x)] = ϕ(x) + a

on the plane R
2. We assume that a 6= (0, 0) and f is an orientation pre-

serving homeomorphism of the plane onto itself with no fixed points (such
a homeomorphism will be called a free mapping). By a curve is meant a
homeomorphic image of a straight line. A curve is said to be a line (an open

line in [4]) if it is a closed set.

1. We note that the existence of homeomorphic solutions ϕ of (1) is
equivalent to f being conjugate to the translation T (x) = x + a (i.e. f =
ϕ−1 ◦ T ◦ ϕ, where ϕ is a homeomorphism). S. Andrea [1] has proved that
a free mapping f is conjugate to a translation if and only if

(H) for all x, y ∈ R
2 there exists a curve segment C with endpoints x, y

such that fn[C] → ∞ as n→ ∓∞, where fn is the nth iterate of f .

In the present paper we give some other conditions equivalent to (H).
We introduce the following conditions:
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8 Z. Leśniak

(A) There exists a homeomorphism ϕ of the plane onto itself satisfy-
ing (1).

(A′) There exists a homeomorphism ϕ of the plane into itself satisfy-
ing (1).

(B) There exists a line K such that

(2) K ∩ f [K] = ∅,

(3) U0 ∩ f [U0] = ∅,

(4)
⋃

n∈Z

fn[U0] = R
2 ,

where U0 := M0 ∪ f [K] and M0 is the strip bounded by K and
f [K]. (See Fig. 1.)

Fig. 1

Fig. 2

(C) There exist a family of curves {Cα : α ∈ I} and a line K such that

(5) f [Cα] = Cα for α ∈ I,
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(6) Cα ∩ Cβ = ∅ for α, β ∈ I, α 6= β ,

(7) card(K ∩Cα) = 1 for α ∈ I ,

(8)
⋃

α∈I

Cα = R
2. (See Fig. 2.)

We shall show

Theorem 1. If f is a free mapping , then conditions (A), (A′), (B) and

(C) are equivalent.

2. First note the following

Lemma 1. Let a = (a1, a2) ∈ R
2 \ {(0, 0)} and T (x) := x+ a for x ∈ R

2.

Then there exists a homeomorphism ψ of the plane onto itself such that

(9) T (x) = ψ−1[ψ(x) + (1, 0)] .

P r o o f. Set

ψ(x1, x2) =

(

1

a1
x1,−

a2

a1
x1 + x2

)

if a1 6= 0 ,

ψ(x1, x2) =

(

1

a2
x2, x1

)

if a1 = 0 .

By Lemma 1, from now on we may assume that a = (1, 0).

Lemma 2. If f is a free mapping , then (A′) implies (B).

P r o o f. Since ϕ is a homeomorphism, ϕ[R2] is a region. Moreover, ϕ[R2]
= ϕ[R2] + (1, 0). Put T (x1, x2) := (x1 + 1, x2) and T 0(x1, x2) := (x1, x2)
for (x1, x2)∈ ϕ[R2]. Write L := {(x1, x2)∈ ϕ[R2] : x1 = 0}. Since Tn[L] =
{(x1, x2) ∈ ϕ[R2] : x1 = n} for n ∈ Z, we have

(10) Tn[L] ∩ Tm[L] = ∅ for n,m ∈ Z, n 6= m.

Put Ln := Tn[L], Nn := {(x1, x2) ∈ ϕ[R2] : x1 ∈ (n, n + 1)} and Wn :=
Nn ∪ Ln+1 for n ∈ Z. Note that

Nn = Tn[N0] for n ∈ Z ,

W 0 ∩Wn = ∅ for n ∈ Z \ {0},
⋃

n∈Z

Wn = ϕ[R2] .

Put K := ϕ−1[L] and Kn := fn[K] for n ∈ Z. By (A′), ϕ ◦ fn = Tn ◦ϕ,
whence

(11) fn ◦ ϕ−1 = ϕ−1 ◦ Tn .

Hence

(12) Kn = fn[ϕ−1[L]] = ϕ−1[Tn[L]] = ϕ−1[Ln] .

Therefore, by (10), Kn ∩Km = ∅ for n,m ∈ Z, n 6= m.



10 Z. Leśniak

Since K = ϕ−1[L] and L is closed in ϕ[R2], the curve K is a line, and so
is Kn = fn[K] for every n ∈ Z.

For each n ∈ Z, denote by Mn the strip bounded by Kn and Kn+1.
Since ϕ is a homeomorphism,

(13) Mn = ϕ−1[Nn] for n ∈ Z .

Hence by (11) we have

(14) fn[M0] = fn[ϕ−1[N0]] = ϕ−1[Tn[N0]] = ϕ−1[Nn] = Mn

for n ∈ Z.
Put Un := Mn ∪Kn+1 for n ∈ Z. Then by (12) and (13),

Un = ϕ−1[Nn ∪ Ln+1] = ϕ−1[Wn]

and by (14),

Un = fn[M0 ∪ f [K]] = fn[U0] .

Hence
⋃

n∈Z

fn[U0] =
⋃

n∈Z

Un = ϕ−1
[

⋃

n∈Z

Wn
]

= R
2

and

f [U0] ∩ U0 = U1 ∩ U0 = ϕ−1[W 1 ∩W 0] = ∅ .

This completes the proof.

Theorem 2. Let f be a free mapping of the plane onto itself and let

a = (a1, a2) ∈ R
2 \ {(0, 0)}. Assume that condition (B) is satisfied. Let

ϕ0 : U0 ∪K → R
2 be continuous and suppose

(15) ϕ0[f(x)] = ϕ0(x) + a for x ∈ K .

Then:

(a) There exists a unique solution ϕ of (1) such that

(16) ϕ(x) = ϕ0(x) for x ∈ U0 ∪K .

This solution ϕ is continuous.

(b) If ϕ0 is one-to-one and ϕ0[U
0]∩ (ϕ0[U

0]+ka) = ∅ for all k ∈ Z\{0}
then ϕ is a homeomorphism.

(c) If ϕ0 is one-to-one, ϕ0[K] is a line and ϕ0[K]∩Dγ 6= ∅ for all γ ∈ R,
where Dγ = {(x1, x2) ∈ R

2 : a2x1−a1x2 = γ}, then ϕ is a homeomorphism.

(d) If ϕ0 is one-to-one, ϕ0[K] is a line, ϕ0[K] ∩Dγ 6= ∅ for all γ ∈ R,
and ϕ0[intU0] = N0, where N0 is the strip bounded by ϕ0[K] and ϕ0[K]+a,
then ϕ is a homeomorphism of R

2 onto itself. (See Fig. 3.)

P r o o f. Since K ∩ f [K] = ∅,

fn[K] ∩ fn+1[K] = ∅ for n ∈ Z .
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Fig. 3

Moreover, for each n ∈ Z, the curve fn[K] is a line, since so is K. Denote
by Mn the strip bounded by fn[K] and fn+1[K]. Let Un := Mn ∪ fn+1[K]
for n ∈ Z. Since f is a homeomorphism,

Un = fn[U0] for n ∈ Z .

Furthermore, for every n ∈ Z, fn[K] lies in the strip between fn−1[K] and
fn+1[K], fn−1[K]∩Mn = ∅ and fn+1[K]∩Mn−1 = ∅. Otherwise we would
have fn−1[U0] ∩ fn[U0] 6= ∅, which contradicts (3).

Define ϕ : R
2 → R

2 by setting

(17) ϕ(x) = ϕ0[f
−k(x)] + ka, x ∈ Uk, k ∈ Z .

It is clear that ϕ is a unique solution of (1) satisfying (16) and that ϕ is
continuous in

⋃

n∈Z
intUn.

Take any x0 ∈ K. We now show that ϕ is continuous at x0. Let P be a
closed disc with centre at x0 such that P ∩ f−1[K] 6= ∅ and P ∩ f [K] 6= ∅.
Then P ∩ f−1[K] and P ∩ f [K] are compact. Let R be an open disc with
centre at x0 and radius smaller than min{̺(x0, P∩f−1[K]), ̺(x0, P∩f [K])},
where ̺ is the Euclidean metric on the plane. Then we have

(18) R ∩ f−1[K] = ∅ and R ∩ f [K] = ∅ .

Put R1 := R ∩ intU0, R2 := R ∩ intU−1, R0 := R ∩K. Then ϕ(x) =
ϕ0(x) for x ∈ R1, and ϕ(x) = ϕ0[f(x)] − a for x ∈ R2 ∪R0. As x0 ∈ R0 we
hence get ϕ(x0) = ϕ0(x0) by (15).
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Let xk → x0, xk ∈ R. If xk ∈ R1 ∪R0, then

lim
k→∞

ϕ(xk) = lim
k→∞

ϕ0(xk) = ϕ0(x0) = ϕ(x0) ,

because ϕ0 is continuous in R1 ∪R0 ⊂ K ∪U0. If xk ∈ R2, then f(xk) ∈ U0

and f(xk) → f(x0) ∈ U0. Thus

lim
k→∞

ϕ(xk) = lim
k→∞

(ϕ0[f(xk)] − a) = ϕ0[f(x0)] − a = ϕ0(x0) = ϕ(x0) ,

because ϕ0 is continuous in U0 and x0 ∈ K. Consequently, ϕ is continuous
at x0 ∈ K.

Let x0 ∈ R
2 \

⋃

k∈Z
intUk. There exists an m ∈ Z such that x0 ∈ Um \

intUm = fm+1[K]. Let V be a neighbourhood of x0 such that V ∩fm[K] = ∅
and V ∩fm+2[K] = ∅ (proceed as in the proof of the existence of R satisfying
(18)). Note that V ⊂ Um ∪ intUm+1, thus f−m−1[V ] ⊂ U−1 ∪ intU0 and
f−m−1[V ] is a neighbourhood of f−m−1(x0) ∈ K.

Take any sequence {xk} in V such that xk → x0. Then f−m−1(xk) →
f−m−1(x0). Since ϕ is continuous on K and f−m−1(x0) ∈ K, we have
ϕ[f−m−1(xk)] → ϕ[f−m−1(x0)]. From (17) we have

ϕ(x0) = ϕ0[f
−m−1(x0)] + (m+ 1)a

and

ϕ(xk) = ϕ0[f
−m−1(xk)] + (m+ 1)a for k ∈ N .

Thus ϕ(xk) → ϕ(x0). Consequently, ϕ is continuous on the plane.

Now assume, in addition, that ϕ is one-to-one in U0∪K and ϕ0(x)+na 6∈
ϕ0[U

0] for all x ∈ U0 and n ∈ Z \ {0}. We show that ϕ is one-to-one in the
plane. Suppose x, y ∈ R

2 and ϕ(x) = ϕ(y). By (4), x ∈ Uk and y ∈ U l for
some k, l ∈ Z. From (17) it follows that

ϕ(x) = ϕ0[f
−k(x)] + ka, ϕ(y) = ϕ0[f

−l(y)] + la .

Therefore

ϕ0[f
−k(x)] = ϕ0[f

−l(y)] + (l − k)a .

Suppose that l− k 6= 0. Then ϕ0[f
−l(y)]+ (l− k)a 6∈ ϕ0[U

0], since f−l(y) ∈
U0. Hence ϕ0[f

−k(x)] 6∈ ϕ0[U
0], which is a contradiction, since f−k(x)∈ U0.

Thus l = k, and consequently x = y. Note that ϕ, being a continuous one-
to-one mapping of R

2 into R
2, is a homeomorphism (see [3], p. 186).

Now we show (c). Note that ϕ[K] + a = ϕ[f [K]]. Moreover, as Dγ ∩
ϕ0[K] 6= ∅, we have Dγ ∩ϕ0[f [K]] 6= ∅. Since ϕ|int U0 is continuous and one-
to-one, it is a homeomorphism and ϕ[intU0] is a region. Moreover, ϕ(x) 6∈
ϕ[intU0], for every x ∈ K∪f [K], since ϕ is one-to-one in U0∪K. Hence each
y ∈ ϕ[K]∪ϕ[f [K]] is a boundary point of ϕ[intU0], since ϕ0 is continuous on
U0 ∪K. Therefore ϕ[intU0] ⊂ N0, because ϕ0[K]∩Dγ 6= ∅ and ϕ0[f [K]]∩
Dγ 6= ∅ for γ ∈ R and ϕ0[K] is a line.
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Let x, y ∈ R
2. Then x ∈ Uk and y ∈ U l for some k, l ∈ Z. Assume that

ϕ(x) = ϕ(y). Then

ϕ0[f
−k(x)] = ϕ0[f

−l(y)] + (l − k)a .

Since ϕ0[U
0] ⊂ N0 ∪ ϕ0[f [K]], we have l − k = 0, whence x = y. Thus ϕ is

continuous and one-to-one, and hence a homeomorphism.
Assume, in addition, that ϕ0[intU0] = N0. Put W 0 := N0 ∪ (ϕ[K] + a).

Then W 0 = ϕ[U0]. Let y ∈ R
2. Then there exists an n ∈ Z such that

y − na ∈W 0. Take an x ∈ U0 such that ϕ(x) = y − na. Then by (1),

ϕ[fn(x)] = ϕ(x) + na = y .

Thus ϕ[R2] = R
2. Consequently, ϕ is a homeomorphism of R

2 onto itself
satisfying (1). This completes the proof.

Obviously, we also have the following

R e m a r k 1. Let f be a free mapping of the plane onto itself and let
a = (a1, a2) ∈ R

2 \{(0, 0)}. Assume that condition (B) is satisfied. Let ϕ be
any homeomorphic solution of equation (1). Let ϕ0 := ϕ|U0∪K . Then

(a) ϕ0 is one-to-one and ϕ0[U
0] ∩ (ϕ0[U

0] + ka) = ∅ for k ∈ Z \ {0};
(b) if ϕ is a homeomorphism of R

2 onto itself, then ϕ0 is one-to-one,
ϕ0[K] is a line, ϕ0[K] ∩Dγ 6= ∅ for γ ∈ R, and ϕ0[intU0] = N0, where Dγ

and N0 are as in the statement of Theorem 2.

From part (d) of Theorem 2 we have

Corollary 1. If f is a free mapping , then (B) implies (A).

From Lemma 2, Corollary 1 and the fact that (A) implies (A′) we have

Corollary 2. Let f be a free mapping. Then conditions (A), (A′) and

(B) are equivalent.

Now we are going to prove

Lemma 3. Let f be a free mapping. Then (A) implies (C).

P r o o f. Put L := {(x1, x2) ∈ R
2 : x1 = 0}, and Dα := {(x1, x2) ∈ R

2 :
x2 = α} for α ∈ R. Let K := ϕ−1[L] and Cα := ϕ−1[Dα] for α ∈ R, where
ϕ is a homeomorphism satisfying ϕ◦f = T ◦ϕ with T (x1, x2) = (x1 +1, x2)
for x1, x2 ∈ R. Let I := R. Since f ◦ ϕ−1 = ϕ−1 ◦ T and T [Dα] = Dα for
α ∈ R, we have

f [Cα] = ϕ−1[T [Dα]] = ϕ−1[Dα] = Cα for α ∈ R .

Moreover, note that

Cα ∩ Cβ = ϕ−1[Dα ∩Dβ ] = ∅ for α, β ∈ R, α 6= β ,
⋃

α∈R

Cα = ϕ−1
[

⋃

α∈R

Dα

]

= ϕ−1[R2] = R
2
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and

card(K ∩ Cα) = cardϕ−1[L ∩Dα] = card(L ∩Dα) = 1

for α ∈ R. This completes the proof.

Theorem 3. Let f be a free mapping. Then condition (C) implies (B).

P r o o f. Suppose that (C) holds.
1. First, we show that for the line K which appears in (C), K ∩ f [K]=∅.
Suppose x0 ∈ K ∩ f [K]. On account of (8), x0 ∈ Cα for some α ∈ I.

By (5) we get f−1(x0) ∈ Cα, and clearly f−1(x0) ∈ K. Since card(K∩Cα) =
1, x0 = f−1(x0). Hence x0 is a fixed point of f , a contradiction.

2. Now we prove that

card(fn[K] ∩ Cα) = 1 for α ∈ I and n ∈ Z .

Fix any α ∈ I. Let n ∈ Z \ {0}. Take x0 ∈ K ∩ Cα. By (5),

fn(x0) ∈ f
n[K] ∩Cα .

Suppose there exist y1, y2 ∈ fn[K] ∩ Cα such that y1 6= y2. Then f−n(y1),
f−n(y2) ∈ K ∩Cα and f−n(y1) 6= f−n(y2), which contradicts (7).

3. Let x ∈ Cα. We now prove that, for every n ∈ Z, fn+1(x) lies between
fn(x) and fn+2(x) on the curve Cα. For any x, y ∈ Cα denote by 〈x, y〉 the
segment of Cα with endpoints x, y. Let (x, y) := 〈x, y〉 \ {x, y}.

Let n ∈ Z. If fn+2(x) ∈ (fn(x), fn+1(x)) ⊂ Cα, then

f(〈fn(x), fn+1(x)〉) = 〈fn+2(x), fn+1(x)〉 ⊂ 〈fn(x), fn+1(x)〉 .

Hence by Brouwer’s Theorem f has a fixed point, which is impossible. Simi-
larly, if fn(x) ∈ (fn+1(x), fn+2(x)) ⊂ Cα, then

f−1(〈fn+1(x), fn+2(x)〉) = 〈fn+1(x), fn(x)〉 ⊂ 〈fn+1(x), fn+2(x)〉 .

Hence f−1 has a fixed point, contradiction again. Thus

(19) fn+1(x) ∈ (fn(x), fn+2(x)) .

4. Now we show that (3) holds. Since, fn[K] is a line for all n ∈ Z,
R

2 \ fn[K] consists of two unbounded regions, called the side domains of
fn[K]. Since K ∩ f [K] = ∅, we have fn[K]∩ fn+1[K] = ∅ for all n ∈ Z. For
each n ∈ Z, denote by Mn the strip between the lines fn[K] and fn+1[K].
Let Mn

+ be the side domain of fn+1[K] which does not contain the line
fn[K], and Mn

−
the side domain of fn[K] which does not contain fn+1[K].

Then

Mn
−
∪ fn[K] ∪Mn ∪ fn+1[K] ∪Mn

+ = R
2 for n ∈ Z .

Now we show that fn+2[K] ⊂ Mn
+ for n ∈ Z. Suppose otherwise. Then for

some n ∈ Z,

(20) fn+2[K] ⊂Mn
−
∪ fn[K] ∪Mn ,
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since fn+2[K] ∩ fn+1[K] = ∅. Take any x0 ∈ K. By (8), x0 ∈ Cα for
some α ∈ I. By (5), fn(x0) ∈ Cα for all n ∈ Z. From (20) we obtain
fn+2(x0) ∈M

n
−
∪ fn[K] ∪Mn. Thus by (19),

Cα ⊂Mn
−
∪ fn[K] ∪Mn ∪ {fn+1(x0)} ,

since

fn(x0), f
n+2(x0) ∈M

n
−
∪ fn[K] ∪Mn, fn+1[K] ∩ Cα = {fn+1(x0)}

and Cα has no self-intersections. Consequently, we have shown that for each
α ∈ I,

Cα ⊂Mn
−
∪ fn[K] ∪Mn ∪ fn+1[K] = R

2 \Mn
+ ,

which contradicts (8). Thus fn+2[K]⊂Mn
+ for all n∈Z. Hence Mn, n∈Z,

are mutually disjoint and fn[K] ∩ K = ∅ for n ∈ Z \ {0}. Since f is a
homeomorphism, we have

(21) fn[M0] = Mn for n ∈ Z .

Thus fn[M0] ∩M0 = ∅ for n ∈ Z \ {0}. Moreover, for every n ∈ Z \ {0},

fn[M0 ∪ f [K]] ∩ (M0 ∪ f [K]) = (fn[M0] ∪ fn+1[K]) ∩ (M0 ∪ f [K]) = ∅ .

Thus, for all n ∈ Z \ {0}, fn[U0] ∩ U0 = ∅, where U0 = M0 ∪ f [K].
5. To complete the proof we show that

⋃

n∈Z

fn[U0] = R
2 .

For each α ∈ I let K ∩ Cα =: {xα} and C0
α = (xα, f(xα)) ⊂ Cα. First,

we show that
⋃

α∈I C
0
α = M0.

Suppose that x0 ∈ C0
α and x0 6∈ M0. Then C0

α has either a common
point with K different from xα or a common point with f [K] different from
f(xα), which is impossible.

For each α ∈ I denote by C0+
α the set of all x ∈ Cα such that f(xα) ∈

(xα, x) ⊂ Cα, and by C0−
α the set of all x ∈ Cα such that xα ∈ (x, f(xα))

⊂ Cα.
Take any x0 ∈ M0. Then x0 ∈ Cα for some α ∈ I. Suppose that x0 ∈

C0+
α . Since card(Cα ∩ f [K]) = 1 and f(xα) ∈ Cα ∩ f [K], we have C0+

α ∩
f [K] = ∅. Hence C0+

α is contained either in M0
+ or in M0

−
∪K ∪M0. Since

f2(x0) ∈ C0+
α ∩M0

+, we have C0+
α ⊂ M0

+, whence x0 ∈ M0
+, but this is

impossible, since x0 ∈M0.
Now suppose x0 ∈ C0−

α . Since card(Cα ∩K) = 1 and xα ∈ Cα ∩K, we
have C0−

α ∩K = ∅. Hence C0−
α is contained either in M0

−
or in M0 ∪ f [K]∪

M0
+. Since f−1(x0) ∈ C0−

α ∩M0
−

, we have C0−
α ⊂ M0

−
, whence x0 ∈ M0

−
,

and this is also impossible. Consequently,

(22)
⋃

α∈I

C0
α = M0 .
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For every α ∈ I and every n ∈ Z, let Cn
α := (fn(xα), fn+1(xα)) ⊂ Cα.

Since f is a homeomorphism, we have by (5),

(23) Cn
α = fn[C0

α] for α ∈ I and n ∈ Z .

Hence, for all n ∈ Z, we get by (21) and (22),

Mn = fn[M0] =
⋃

α∈I

fn[C0
α] =

⋃

α∈I

Cn
α .

Let x0 ∈ R
2. If there exists an n ∈ Z such that x0 ∈ fn[K], then

x0 ∈ fn−1[U0]. Now assume that x0 ∈ R
2 \

⋃

n∈Z
fn[K]. Then x0 ∈ Cα for

some α ∈ I. Since fn(xα) → ∞ as n→ ∓∞ (see [1], Prop. 1.2), there is an
n ∈ Z such that x0 ∈ Cn

α . Hence by (22) and (23),

x0 ∈ fn[C0
α] ⊂ fn[M0] ⊂ fn[U0] .

Consequently, R
2 =

⋃

n∈Z
fn[U0]. This completes the proof.

Note that Theorem 1 is a consequence of Corollary 2, Lemma 3 and
Theorem 3.

Moreover, from the proof of Theorem 3 we have the following

Corollary 3. Let f be a free mapping. Let K be a line on the plane. If

K satisfies condition (C), then it also satisfies (B).

3. In this section we study diffeomorphic solutions of equation (1). First
we quote the following

Lemma 4 (see [5]). If the functions f and ϕ are of class Cp (p > 0) in a

region U ⊂ R
n such that f [U ] ⊂ U , then for x ∈ U ,

∂q

∂xi1 . . . ∂xiq

ϕ[f(x)] =

q
∑

k=1

n
∑

j1,...,jk=1

bj1...jk

i1...iq
(x)ϕj1...jk

[f(x)] ,

q = 1, . . . , p, where

ϕi1...ik
(x) =

∂k

∂xi1 . . . ∂ik

ϕ(x) ,

bj1...jk

i1...iq
(x) may be expressed by means of sums and products of aj

i (x), . . .

. . . , aj
i1,...,iq−k+1

(x), aj
i1,...,ik

(x) = ∂k

∂xi1
...∂xik

fj(x) , k = 1, . . . , p, and f =

(f1, . . . , fn). Consequently , bj1...jk

i1...iq
are of class Cp−q+k−1. In particular ,

b
j1...jq

i1...iq
(x) = aj1

i1
(x) · . . . · a

jq

iq
(x) .

Now let f be a free mapping. Assume that condition (B) is satisfied.



Abel equation on the plane 17

Definition (see [5]) . Let ψ be a continuous function defined in U0∪K,
p times continuously differentiable in intU0. We write

ψi1...ik
(x0) = lim

x→x0

x∈int U0

∂k

∂xi1 . . . ∂xik

ψ(x), k = 1, . . . , p ,

for x0 ∈ K ∪ f [K] (provided this limit exists). The function ψ is said to be
of class Cp in U0 ∪K if all the functions ψ,ψi, . . . , ψi1...ip

are continuous in
U0 ∪K.

All diffeomorphic solutions of equation (1) having positive Jacobian can
be obtained from the following

Theorem 4. Let f be a free Cp mapping of the plane having positive

Jacobian at every x ∈ R
2 and let a = (a1, a2) ∈ R

2 \ {(0, 0)}. Assume that

condition (B) is satisfied. Let ψ be a Cp function from U0∪K into the plane

which satisfies

ψ[f(x)] = ψ(x) + a for x ∈ K ,
q

∑

k=1

2
∑

j1,...,jk=1

bj1...jk

i1...iq
(x)ψj1...jk

[f(x)] = ψi1...iq
(x)

for x ∈ K, q = 1, . . . , p, i1, . . . , iq = 1, 2, where the functions bj1...jk

i1...iq
are those

occurring in Lemma 4. Then there exists a unique solution ϕ of equation (1)
such that

ϕ(x) = ψ(x) for x ∈ U0 ∪K .

This solution is of class Cp in the plane. Moreover , if ψ is one-to-one, the

Jacobian, jacx ψ, is positive for x ∈ intU0, and det[ψ1(x), ψ2(x)] > 0 for

x ∈ K ∪ f [K], and either

ψ[U0] ∩ (ψ[U0] + ka) = ∅ for k ∈ Z \ {0}

or

ψ[K] ∩Dγ 6= ∅ for γ ∈ R and ψ[K] is a line,

where Dγ = {(x1, x2) ∈ R
2 : a2x1 − a1x2 = γ}, then ϕ is an orientation

preserving diffeomorphism of class Cp having positive Jacobian.

P r o o f. Define ϕ by setting

(24) ϕ(x) = ψ[f−k(x)] + ka, x ∈ Uk, k ∈ Z,

where Uk = fk[U0]. For p = 0 we have Theorem 1. Let p > 0. From (24)
it follows that ϕ is of class Cp in

⋃

k∈Z
intUk.

Let x0 ∈ K. Then there exists an open disc R with centre at x0 such
that R ∩ f−1[K] = ∅ and R ∩ f [K] = ∅ (see the proof of Theorem 2). The
proof of ϕ being Cp in R runs in the same way as that of Theorem 3.1 in
[5], part 2.
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Let x0 ∈ R
2 \

⋃

k∈Z
intUk. There is an m ∈ Z such that f−m−1(x0) ∈ K.

We have already proved that ϕ is Cp in a neighbourhood R of f−m−1(x0).
The function fm+1 is a Cp map of R onto a neighbourhood fm+1[R] of x0.
Since ϕ is a solution of (1), we have

ϕ(x0) = ϕ[f−m−1(x0)] + (m+ 1)a .

Hence ϕ is Cp in fm+1[R].
Now assume, in addition, that ψ is one-to-one, ψ(x) + ka 6∈ ψ[U0] for

x ∈ U0 and k ∈ Z \ {0} [or ψ[K] ∩Dγ 6= ∅ for all γ ∈ R and ψ[K] is a line],
jacx ψ > 0 for x ∈ intU0 and det[ψ1(x), ψ2(x)] > 0 for x ∈ K ∪ f [K]. On
account of Theorem 2, ϕ is a homeomorphism.

If x ∈ U0, then jacx ϕ = jacx ψ > 0. If x ∈ f [K], then jacx ϕ =
det[ψ1(x), ψ2(x)] > 0, since (∂ϕ/∂x1)(x) = ψ1(x) and (∂ϕ/∂x2)(x) = ψ2(x)
for x ∈ f [K]. Thus jacx ϕ > 0 for x ∈ U0.

Let x ∈ R
2. Then x ∈ fn[U0] for some n ∈ Z. Since ϕ(x) = ϕ[f−n(x)]+

na, we have
jacx ϕ = jacf−n(x) ϕ · jacx f

−n .

Hence jacx ϕ > 0, since f−n(x) ∈ U0 and jacx f
−n > 0. Thus ϕ preserves

orientation. Since ϕ is invertible and of class Cp, and jacx ϕ 6= 0 for x ∈ R
2,

ϕ−1 is Cp (see e.g. [6], p. 205). This completes the proof.
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Reçu par la Rédaction le 1.8.1990
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