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Dynamical systems with multiplicative
perturbations: the strong convergence of measures

by Katarzyna Horbacz (Katowice)

Abstract. We give sufficient conditions for the strong asymptotic stability of the
distributions of dynamical systems with multiplicative perturbations. We apply our results
to iterated function systems.

0. Introduction. We consider the effect of stochastic perturbation on
discrete time multiplicative dynamical systems. For this purpose we study
the behaviour of the sequence of distributions corresponding to a given sys-
tem. Our aim is to establish simple criteria for the asymptotic stability of
the distributions of the state variables.

In some aspects our definitions and criteria are similar to those in [3],
[4] and [6]. There are, however, important differences. First, we prove the
asymptotic stability of the distributions corresponding to a multiplicative
dynamical system without the assumption that the perturbations have an
absolutely continuous distribution. This was the main assumption in [3], [4].

In [6] the general case xn+1 = T (xn, ξn) is considered, with the sequence
of perturbations ξn having an arbitrary distribution. However, in this case
the authors only prove that the sequence of distributions of xn is weakly
convergent to a unique distribution.

We restrict ourselves to the case of multiplicative perturbations. We
introduce the concept of the asymptotic stability of measures, and prove a
sufficient stability criterion for strong asymptotic stability.

We use lower bound measure techniques [8]. Using this technique we
study (in a particular case) the asymptotic behaviour of the Barnsley it-
erated function system [1], [2]. Iterated function systems are particularly
useful in studying fractals.
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1. Formulation of the problem. Let m denote the standard Lebesgue
measure on the d-dimensional Euclidean space Rd. Let V be a closed subset
of Rd such that m(V ) > 0 and let Y ⊂ Rk be Borel measurable.

We consider the dynamical system

(1) xn+1 = S(xn)ξn for n = 0, 1, . . . ,

where S : V → Rdk is a Borel measurable transformation such that S(V ) · Y
⊂ V and the ξn are k-dimensional random vectors with values in Y . We
assume that the random vectors ξ0, ξ1, . . . are independent and identically
distributed, i.e., the measure

ϕ(A) = Prob(ξn ∈ A) for A ⊂ Y, A a Borel set,

is the same for all n. We also assume that the initial value x0 is a random
vector independent of the sequence of perturbations {ξn}.

Our goal is the study of the asymptotic behaviour of the sequence {xn}.
Since the ξn are random, the behaviour of xn is uncertain even with a speci-
fied x0. Thus, we adopt the strategy of studying the sequence of distributions

µn(B) = Prob(xn ∈ B)

where B is a Borel subset of V .
The first step is to find a recurrence relation for the µn. We have

µn+1(B) = E(1B(xn+1)), B ⊂ V, B a Borel set,

where 1B denotes the characteristic (indicator) function of B. On the other
hand, since xn and ξn are independent, the expectation E(1B(xn+1)) is
evidently

E(1B(S(xn)ξn)) =
∫
X

∫
V

1B(S(x)y)µn(dx)ϕ(dy) .

It follows immediately that

µn+1(B) =
∫
X

∫
V

1B(S(x)y)µn(dx)ϕ(dy) .

Thus, for a given initial measure µ0, evolution of the measures corresponding
to the system (1) is described by the sequence of iterates {Pnµ0}, where

(2) Pµ(B) =
∫
X

∫
V

1B(S(x)y)µ(dx)ϕ(dy) .

2. Strong asymptotic stability. In studying the asymptotic properties
of the sequence of iterates {Pn} it is convenient to introduce the definition
of a Markov operator and asymptotic stability.

Let (X,A) be a measure space with a σ-field A. Denote by

N(X) = (N(X,A), ‖ · ‖)
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the linear space of all finite σ-additive functions on X equipped with the
norm ‖ν‖ = |ν|(X); here |ν| = ν+ + ν− and

ν+(A) = ν(A ∩H), ν−(A) = −ν(A ∩H ′) for A ∈ A, ν ∈ N(X) ,

where H,H ′ is Hahn’s decomposition of X for ν.
Let

N+(X) = {ν ∈ N(X) : ν ≥ 0}
be the set of all finite measures on (X,A),

Np(X) = {ν ∈ N+(X) : ‖ν‖ = 1}

the set of all probability measures on (X,A), and

Na(X) = {ν ∈ N(X) : ν � m}

the set of all measures absolutely continuous with respect to the Lebesgue
measure m.

A linear operator P : N(X) → N(X) is called a Markov operator if
Pν ∈ Np(X) for ν ∈ Np(X). It is clear that the operator P defined by (2)
is a Markov operator.

We say that a Markov operator P is strongly asymptotically stable if
there exists a unique measure µ∗ ∈ Np(X) such that Pµ∗ = µ∗ and

(3) lim
n→∞

‖Pnµ− µ∗‖ = 0 for µ ∈ Np(X) .

In considering the asymptotic stability of the measures Pnµ we will use
lower bound measure techniques.

A measure µ̃ ∈ N+(X) is called a lower measure for P if

lim
n→∞

‖(Pnµ− µ̃)−‖ = 0 for µ ∈ Np(X) .

A lower measure µ̃ is called nontrivial if ‖µ̃‖ > 0.
The importance of lower measures is a consequence of the following the-

orem:

Theorem 1. A Markov operator P is strongly asymptotically stable if
and only if there is a nontrivial lower measure for P.

The proof may be found in [8].

Now we turn to the multiplicative dynamical system (1). Papers [3], [4]
give sufficient conditions for asymptotic stability in terms of the evolution
of densities under the assumption that the perturbations have an absolutely
continuous distribution. However, by considering the recurrence relation for
(1) we may also derive another sufficient condition for the asymptotic be-
haviour of the model system in terms of the convergence properties of mea-
sures.
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Theorem 1 will be our main tool in studying the asymptotic stability
of the operator P defined by (2). We start with a criterion for asymptotic
stability in the case where 0 ∈ Y and S : V → Rdk is arbitrary.

Theorem 2. If the random vectors ξn satisfy

(4) ϕ({0}) = Prob(ξn = 0) > 0 ,

then the operator P given by (2) is strongly asymptotically stable.

P r o o f. Set η = ϕ({0}) and consider the sequence µn = Pnµ for a
µ ∈ Np(V ). By (2), we have

Pµn(B) =
∫
X

∫
V

1B(S(x)y)µn(dx)ϕ(dy)

≥
∫
V

1B(0)ϕ({0})µn(dx) = 1B(0)η for B ⊂ V,B a Borel set.

Defining the measure µ̃ by

µ̃(B) =
{
η if 0 ∈ B,
0 if 0 6∈ B

for B a Borel set, we obtain Pnµ(B) ≥ µ̃(B) for n = 1, 2, . . . Thus, P has
nontrivial lower measure µ̃, and by Theorem 1 the proof is complete.

Asymptotic stability of P is in general more difficult to demonstrate in
the case when the condition (4) is not satisfied. However, if V = Y = [0, 1]
then the following theorem gives an answer to this problem.

Theorem 3. Assume that S : [0, 1]→ [0, 1] and the random variables ξn
have values in [0, 1]. If there exist constants ε ∈ (0, 1] and r > 0 such that

(5) inf{S(x) : x ∈ [0, ε]} > 0

and

(6) ϕ(A) ≥ rm(A)

for every Borel sets A ⊂ [0, ε], then the operator P defined by (2) is strongly
asymptotically stable.

P r o o f. Fix µ ∈ Np([0, 1]) and set µn = Pnµ for n = 0, 1 . . . For every
Borel set B ⊂ [0, 1] we have

µn+1(B) =
∫

[0,1]

∫
[0,1]

1B(S(x)y)µn(dx)ϕ(dy)(7)

≥
∫

[0,ε]

ϕ

(
B

S(x)
∩ [0, 1]

)
µn(dx)
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≥ µn([0, ε]) inf
x∈[0,ε]

ϕ

(
B

S(x)
∩ [0, 1]

)
.

Set δ = ϕ([0, ε]); according to (6) we have δ ≥ rε > 0. Furthermore,

µn([0, ε]) =
∫

[0,1]

∫
[0,1]

1[0,ε](S(x)y)µn−1(dx)ϕ(dy)(8)

≥
∫

[0,1]

ϕ([0, ε])µn−1(dx) = δ .

Setting c = infx∈[0,ε] S(x) and using (5)–(8) gives

µn+1(B) ≥ δ inf
x∈[0,ε]

ϕ

(
B

S(x)
∩ [0, 1]

)
≥ δ inf

z∈[c,1]
ϕ

(
B

z
∩ [0, ε]

)
(9)

≥ δr inf
z∈[c,1]

1
z
m(B ∩ [0, εz]) ≥ δrm(B ∩ [0, εc]) .

Hence

µ̃(B) = δrm(B ∩ [0, εc]) for B ⊂ [0, 1], B a Borel set,

defines a nontrivial lower measure for P , which completes the proof.

3. Remarks. Now we consider connections between the strong asymp-
totic stability of measures and the asymptotic stability of densities.

Let (X,A, λ) be a σ-finite measure space. A linear operator P : L1(X)→
L1(X) is called a Markov operator if P (D(X)) ⊂ D(X), where

D(X) = {f ∈ L1(X) : f ≥ 0, ‖f‖1 = 1}
is the set of densities and ‖ · ‖1 stands for the norm in L1(X).

We say that the Markov operator P : L1(X)→ L1(X) is asymptotically
stable in L1(X) if there exists f∗ ∈ D(X) such that Pf∗ = f∗ and

lim
n→∞

‖Pnf − f∗‖1 = 0 for f ∈ D(X) .

R e m a r k 1. Assume that the distribution ϕ of the random vectors ξn is
absolutely continuous, V = Y ⊂ R and S(x) > 0 for x ∈ V . Then for every
initial distribution µ0 all the distributions µn with n ≥ 1 are absolutely
continuous. Denote by g the density of ϕ. Then the density fn of µn is
fn = Pn−1f1 where

f1(x) =
∫
V

g

(
x

S(y)

)
1

S(y)
1V

(
x

S(y)

)
µ0(dy)

and

Pf(x) =
∫
V

f(y)g
(

x

S(y)

)
1

S(y)
1V

(
x

S(y)

)
dy, f ∈ L1(V ) .
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Thus, if ϕ is absolutely continuous we may state a sufficient condition
for asymptotic stability in terms of the evolution of densities. This case was
studied in [3], [4].

Further, if P is asymptotically stable in L1(V ) then P given by (2) is
strongly asymptotically stable and the sequence of measures µn = Pnµ0 is
strongly convergent to the absolutely continuous measure

µ∗(B) =
∫
B

f∗(x) dx, B ⊂ V, B a Borel set,

where f∗ is the stationary density of P .

For f ∈ L1(X,A, λ), f ≥ 0 we define

λf (A) =
∫
A

f(x)λ(dx) , A ∈ A .

R e m a r k 2. If the Markov operator P : N(X) → N(X) is strongly
asymptotically stable and P (Na(X)) ⊂ Na(X) then the operator P : L1(X)
→ L1(X) defined by Pf = d(Pλf )/dλ, f ∈ L1(X), is asymptotically stable
in L1(X).

4. Iterated function systems. In this section we study the strong
asymptotic stability of an iterated function system [1], [2].

Consider N given continuous transformations

wi : A→ A , i = 1, . . . , N ,

on a closed set A ⊂ Rd. Fix a probability vector (p1, . . . , pN ) with pi > 0
and

∑N
i=1 pi = 1. Next choose x0 ∈ A and define the sequence {xn} by

successively choosing

(10) xn+1 ∈ {w1(xn), . . . , wN (xn)} for n = 0, 1, . . . ,

in such a way that xn+1 = wi(xn) with probability pi.
We can easily reformulate the iterated function system of (10) within

our framework. Assume that Y is the set of all sequences {0, . . . , 1, . . . , 0}
where 1 is in the ith place, i = 1, . . . , N . Further, consider a sequence of
independent random vectors ξn with values in Y such that

Prob(ξi
n = 1) = pi ,

where ξi
n denotes the ith coordinate of ξn. Define S : A→ RdN by setting

(11) S(x) = (w1(x), . . . , wN (x)) .

Now,

(12) xn+1 = S(xn) · ξn
gives the required sequence of random variables.
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In this case the operator P governing the evolution of the measures
corresponding to the iterated function system (11), (12) is given by

(13) Pµ(B) =
N∑

i=1

pi

∫
A

1B(wi(x))µ(dx) for µ ∈ N(A) .

Now consider the particular case when for some integer i0 ∈ {1, . . . , N}
the function wi0 is constant on a set B.

Proposition 1. Assume that for some integer i0 ∈ {1, . . . , N} the func-
tion wi0 : A→ A is constant on some set B ⊂ A of positive measure. Then
the iterated function system (11), (12) is strongly asymptotically stable.

P r o o f. Choose µ ∈ Np(A) and set µn = Pnµ for n = 0, 1, . . . From (13)
we immediately obtain

µn+1(E) =
N∑

i=1

pi

∫
A

1E(wi(x))µn(dx)

≥ pi0

∫
B

1E(wi0(x))µn(dx) for E ⊂ A, E a Borel set.

Since wi0(x) = c for x ∈ B where c = (c1, . . . , cd), we have

(14) µn+1(E) ≥ pi01E(c)µn(B) .

Furthermore,

µn(B) = Pnµ(B) ≥ pi0

∫
A

1B(wi0(x))µn−1(dx)

= pi0 1B(c)µn−1(A) = pi0 1B(c) for n = 1, 2, . . .

Thus, we obtain

µn+1(E) ≥ p2
i0 1E∩B(c) for E ⊂ A,E a Borel set.

Hence the formula

µ̃(E) =
{
p2

i0
if c ∈ E ∩B,

0 if c 6∈ E ∩B,
for E ⊂ A,E a Borel set, defines a nontrivial lower measure for P , and by
Theorem 1 the proof is complete.

Next we consider the case where all transformations wi : A → A are
nonsingular, i.e. m(w−1

i (E)) = 0 whenever m(E) = 0. It is evident that in
this case the condition of Proposition 1 is not satisfied.

Since the operator P corresponding to the iterated function system (11),



92 K. Horbacz

(12) is given by

Pµ(E) =
N∑

i=1

pi

∫
A

1E(wi(x))µ(dx) , E ⊂ A, E a Borel set,

or

Pµ(E) =
N∑

i=1

pi µ(w−1
i (E))

and the wi are nonsingular, we obtain

(15) P (Na(A)) ⊂ Na(A) .

As a consequence, if f = dµ/dm then Pf = d(Pµ)/dm is given by the
formula

(16) Pf =
N∑

i=1

pi Pwi
f

where Pwi
is the Frobenius–Perron operator corresponding to wi.

Example 1. Let A = [0, 1]. Consider

(17) w1(x) =

{ x

1− x
for x ∈ [0, 1

2 ),

2x− 1 for x ∈ [ 12 , 1],
w2(x) = x for x ∈ [0, 1] .

We will show that for every probability vector (p1, p2) with 0 < pi < 1,
i = 1, 2, and p1 + p2 = 1 the iterated function system (17) is not strongly
asymptotically stable.

It is evident that w1 and w2 are nonsingular. Thus the operator P cor-
responding to (17) given by

(18) Pµ(E) = p1µ(w−1
1 (E)) + p2µ(w−1

2 (E))

satisfies P (Na([0, 1])) ⊂ Na([0, 1]).
Assume that P is strongly asymptotically stable. Then applying Remark

2 we obtain the asymptotic stability in L1([0, 1]) of the operator P given by

Pf = p1Pw1f + p2Pw2f , f ∈ L1([0, 1]) .

Since

Pw1f(x) =
1

(1 + x)2
f

(
x

1 + x

)
+

1
2
f

(
1
2

+
x

2

)
, Pw2f(x) = f(x) ,

we deduce that

Pf(x) = p1

(
1

(1 + x)2
f

(
x

1 + x

)
+

1
2
f

(
1
2

+
x

2

))
+ p2f(x)
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is asymptotically stable in L1([0, 1]). Therefore there exists f∗ ∈ D([0, 1])
such that Pf∗ = f∗, i.e.

f∗(x) = p1Pw1f∗(x) + p2 f∗(x) .

Thus there exists f∗ ∈ D([0, 1]) such that Pw1f∗ = f∗. But this is impossible,
since the equation Pw1f = f has no solution in L1([0, 1]) except f ≡ 0
(see [7]).

Consequently the iterated function system (17) is not strongly asymp-
totically stable.
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Révisé le 18.5.1992


