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The ∗-holonomy group of
the Stefan suspension of a diffeomorphism

by Andrzej Pia̧tkowski ( Lódź)

Abstract. The definition of a Stefan suspension of a diffeomorphism is given. If Gg
is the Stefan suspension of the diffeomorphism g over a Stefan foliation G, and G0 ∈ G
satisfies the condition g|G0 = idG0 , then we compute the ∗-holonomy group for the leaf
F0 ∈ Gg determined byG0. A representative element of the ∗-holonomy along the standard
imbedding of S1 into F0 is characterized. A corollary for the case when G0 contains only
one point is derived.

0. Introduction. Our base is the notion of a Stefan foliation intro-
duced in [4]. In the present paper, “∗-holonomy” has the same meaning as
holonomy defined in [2]. This new terminology is introduced in order to
distinguish it from Ehresmann holonomy ([1], [5]).

Let N be a smooth manifold and let G be a Stefan foliation of N . Let
g : N → N be a diffeomorphism which maps leaves into leaves. In Section 1
we define the Stefan suspension of g over G.

Let G0 ∈ G satisfy the condition g|G0 = idG0 , let F be the Stefan sus-
pension of g over G and let F0 ∈ F be determined by G0. Section 2 contains
theorems on the ∗-holonomy group of F0. Theorem (2.1) asserts that this
group is isomorphic to the product of the ∗-holonomy group of G0 and the
group generated by the ∗-holonomy along the standard imbedding of S1

into F0. Theorem (2.2) says that, for an arbitrary transversal Σ containing
y0 ∈ G0, there exists a representative element of the ∗-holonomy conjugate
to g|Σ. As a corollary we obtain the following fact: if G0 contains the sin-
gle point y0, then the ∗-holonomy group of F0 is isomorphic to the group
generated by the class of the diffeomorphism g.

We adopt the terminology and notation from [2]. The only exception is
the symbol ∗-Holx0(F , ϕ) instead of Holx0(F , ϕ) used in [2].
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1. A Stefan suspension of a diffeomorphism. Let N be a smooth
manifold of dimension n and G a Stefan foliation of N . Let g : N → N be a
diffeomorphism which maps leaves of G into leaves of G.

In N×R, define the equivalence relation ∼ in the following way: (y, t) ∼
(y′, t′) if and only if t−t′ = k ∈ Z and y′ = gk(y). In other words, consider on
N×R the diffeomorphism g(y, t) = (g−1(y), t+1). Then (y, t) ∼ (y′, t′) if and
only if (y′, t′) = gk(y, t) for some k ∈ Z. It is well known that M := N×R/∼
is a manifold of dimension n+1 and the canonical projection π : N×R→M
is a covering.

Consider inN×R a foliation F0 := G×R̃ ([5]) where R̃ is the foliation of R
consisting of a single leaf. Note that F0 is invariant under the diffeomorphism
g. It is easy to see that there exists a Stefan foliation F of M such that
F0 =π∗(F) ([3], [5]). Leaves of F are submanifolds ofM of the form π(G×R)
where G ∈ G and the foliation F is locally isomorphic to F0. The foliation
F is called the Stefan suspension of g over G.

A simple computation proves that the following facts hold:

(1.1) If ψ is a distinguished chart of G around y0, then ψ ◦ g is a distin-
guished chart of this foliation around g−1(y0) with the domain g−1(Dψ).

(1.2) If ψ is a distinguished chart of G around y0, and t0 ∈ R, then the
mapping

ϕ : π(Dψ × (t0 − 1/2, t0 + 1/2)) 3 π(y, t)
7→ (t− t0, ψ(y)) ∈ (−1/2, 1/2)× Uψ ×Wψ

(y ∈ Dψ, t ∈ (t0 − 1/2, t0 + 1/2)) is a distinguished chart of F around
π(y0, t0) ∈M .

Introduce the following notation for the natural projections: pr1 : Uψ ×
Wψ → Uψ, pr2 : Uψ × Wψ → Wψ, Pr1 : (−1/2, 1/2) × Uψ × Wψ →
(−1/2, 1/2)× Uψ = Uϕ and Pr2 : (−1/2, 1/2)× Uψ ×Wψ →Wψ = Wϕ.

2. The ∗-holonomy group of a Stefan suspension. Let G0 ∈ G be
a leaf for which

(1) g|G0 = idG0 .

Let F0 = π(G0 × R) ∈ F . Note that F0 = G0 × S1 by (1). Denote by pG0

and pS1 the natural projections of F0 onto G0 and S1, respectively. We have

(2) π1(F0) ∼= π1(G0)× π1(S1) .

It is easy to check that each element of π1(G0) commutes with each element
of π1(S1) in π1(F0).

Let y0 ∈ G0 and x0 = π(y0, 0). Fix a distinguished chart ψ of G around
y0 and let ϕ be the distinguished chart of F defined as in (1.2) with t0 = 0.
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At the point x0 consider the loop

γ : [0, 1] 3 s 7→ π(y0, s) ∈ F0 .

Under the above assumptions, we prove the following

(2.1) Theorem. ∗-Holx0(F , ϕ) ∼= ∗-Holy0(G, ψ)× 〈[fγ;ϕ,ϕ]〉.

(Here, 〈[fγ;ϕ,ϕ]〉 denotes the subgroup of Aϕ/≡ generated by [fγ;ϕ,ϕ].)

P r o o f. Define

Φ : ∗-Holy0(G, ψ)× 〈[fγ;ϕ,ϕ]〉 → ∗-Holx0(F , ϕ)

by the formula

(3) Φ(hG,ψ([α]), [fγ;ϕ,ϕ]k) = hF,ϕ([α] · [γ]k)

(with h being the holonomy homomorphism of the respective foliation),
where k ∈ Z, α is a loop in G0 at y0 and α : [0, 1] 3 s 7→ π(α(s), 0) ∈ F0.

By using chains of charts described in (1.2), it is easy to check that the
definition of Φ is correct. Note that Φ takes its values in ∗-Holx0(F , ϕ) by
(3).

We show that Φ is a group homomorphism. Using the commutativity
mentioned after (2), we have

hF,ϕ([α]) · [fγ;ϕ,ϕ]k = hF,ϕ([α]) · hF,ϕ([γ]k) = hF,ϕ([α] · [γ]k)

= hF,ϕ([γ]k · [α]) = [fγ;ϕ,ϕ]k · hF,ϕ([α]) .

Therefore, by simple computations, we get

Φ((hG,ψ([α]), [fγ;ϕ,ϕ]k) · (hG,ψ([α′]), [fγ;ϕ,ϕ]k
′
))

= Φ(hG,ψ([α]), [fγ;ϕ,ϕ]k) · Φ(hG,ψ([α′]), [fγ;ϕ,ϕ]k
′
) .

Define
Ψ : ∗-Holx0(F , ϕ)→ ∗-Holy0(G, ψ)× 〈[fγ;ϕ,ϕ]〉

by the formula

(4) Ψ(hF,ϕ([δ])) = (hG,ψ([pG0 ◦ δ]), [fγ;ϕ,ϕ]k)

where δ is a loop in F0 at x0 and k is an integer such that [pS1 ◦ δ] = [β]k

with β : [0, 1] 3 s 7→ e2πis ∈ S1.
We show that the above definition is correct. Fix δ for a moment. For

each s ∈ [0, 1], take an arbitrary distinguished chart ψ(s) (ψ(0) = ψ(1) = ψ)
of G around y(s) := pG0 ◦ δ(s). Let t : [0, 1]→ R be the unique lift of pS1 ◦ δ
to the universal covering of S1 with t(0) = 0. Note that

(5) δ(s) = π(y(s), t(s)) .

Define a distinguished chart ϕ(s) around δ(s) as in (1.2), using the chart
ψ(s) and setting t0 = t(s). From the family {ϕ(s) : s ∈ [0, 1]} choose a finite
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subfamily {ϕ0, ϕ1, . . . , ϕr} (with ϕ0 = ϕ(0), ϕr = ϕ(1) and ϕi = ϕ(si) for
i = 1, . . . , r − 1) such that the sequence

C̃ = (ϕ0, 0;ϕ1, s1; . . . ;ϕr, 1;ϕ0, 1)

is a chain along δ. We prove that the sequence

C = (ψ0, 0;ψ1, s1; . . . ;ψr, 1)

is a chain along pG0 ◦ δ, where ψ0 = ψ(0) = ψ(1) = ψr = ψ and ψi = ψ(si)

for i = 1, . . . , r − 1. To this end, we prove

Lemma A. If s̃ ∈ δ−1(Dϕi)si (the connected component of δ−1(Dϕi)
containing si), then t(s̃) ∈ (t(si)− 1/2, t(si) + 1/2).

P r o o f. It follows directly from the definitions of ϕi, t and from (5) that

t(δ−1(Dϕi)si) ⊂ (t(si)− 1/2, t(si) + 1/2) .

In particular, t(s̃) ∈ (t(si)− 1/2, t(si) + 1/2).

Lemma A implies

Lemma B. δ−1(Dϕi
)si
⊂ (pG0 ◦ δ)−1(Dψi

)si
.

P r o o f. If s̃ ∈ δ−1(Dϕi
)si

, then π(y(s̃), t(s̃)) = π(y′, t′) for some y′ ∈
Dψi , t

′ ∈ (t(si) − 1/2, t(si) + 1/2) and, using Lemma A, we obtain y(s̃) =
(pG0 ◦ δ)(s̃) ∈ Dψi , which gives the assertion.

Directly from Lemma B it follows that if δ−1(Dϕi
)si
∩ δ−1(Dϕi+1)si+1 6=

∅, then (pG0 ◦ δ)−1(Dψi)si ∩ (pG0 ◦ δ)−1(Dψi+1)si+1 6= ∅. Thus C is a chain
along pG0 ◦ δ.

We now show that the ∗-holonomy diffeomorphism determined by the
part

(ϕ0, 0;ϕ1, s1; . . . ;ϕr, 1)

of C̃ is equal to fC . Indeed, let s̃i ∈ δ−1(Dϕi
)si
∩ δ−1(Dϕi+1)si+1 , i =

0, 1, . . . , r − 1. Then, by Lemmas A and B, we have

(6) fϕi,ϕi+1;δ(s̃i)(w) = fψi,ψi+1;y(s̃i)(w) .

Suppose now that

(7) hF,ϕ([δ]) = hF,ϕ([δ′]) .

Take chains C̃ and C̃′ constructed as above along δ and δ′, respectively.
Then fC̃ ≡ fC̃′ . Along the curve η = δ ∗ δ′−1 we can construct a chain C by
composing links of C̃ and links of C̃′ in opposite order. We have

C = (ϕ0, 0;ϕ1, (1/2)s1; . . . ;ϕr, 1/2;ϕ0, 1/2;ϕ0, 1/2;
ϕ′r′ , 1/2;ϕ′r′−1, 1− (1/2)s′r′−1; . . . ;ϕ′1, 1− (1/2)s′1;ϕ0, 1) .
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By [2], the ∗-holonomy does not depend on the choice of the chain. We can
cross out in C two links of the form (ϕ0, 1/2). We get the chain

C = (ϕ0, 0;ϕ1, (1/2)s1; . . . ;ϕr, 1/2;ϕ′r′ , 1/2; . . . ;ϕ′1, 1− (1/2)s′1;ϕ0, 1) .

Then
f−1
C′ ◦ fC = fC ≡ fC = f−1

C̃′
◦ fC̃ ≡ idW

by (6). Thus fC ≡ fC′ , so

(8) hG,ψ([pG0 ◦ δ]) = hG,ψ([pG0 ◦ δ′]) .

Therefore, the first coordinate of Ψ is correctly defined.
Note that from the properties of the isomorphism ζ : π1(F0, x0) →

π1(G0, y0)× π1(S1, 1) it follows that

(9) [δ] = [pG0 ◦ δ] · [pS1 ◦ δ]

for every loop δ in F0 at x0, where, for arbitrary curves α : [0, 1]→ G0, ε :
[0, 1] → S1, we define α : [0, 1] 3 s 7→ π(α(s), 0) ∈ F0 and ε : [0, 1] 3 s 7→
(y0, ε(s)) ∈ G0 × S1 = F0.

Since hF,ϕ is a homomorphism, (7) implies

(10) hF,ϕ([pG0 ◦ δ]) · hF,ϕ([pS1 ◦ δ]) = hF,ϕ([pG0 ◦ δ′]) · hF,ϕ([pS1 ◦ δ′]) .

We have
hG,ψ([pG0 ◦ δ]) = hG,ψ([pG0 ◦ δ′])

by (8). It follows that hF,ϕ([pG0 ◦ δ]) = hF,ϕ([pG0 ◦ δ′]). Thus, multiplying
(10) by the inverse of hF,ϕ([pG0 ◦ δ]), we obtain

hF,ϕ([pS1 ◦ δ]) = hF,ϕ([pS1 ◦ δ′]),

which means that
[fγ;ϕ,ϕ]k = [fγ;ϕ,ϕ]k

′

where k, k′ are integers such that [pS1 ◦ δ] = [β]k, [pS1 ◦ δ′] = [β]k
′
. Conse-

quently, the second coordinate of Ψ is correctly defined.
It is easy to check that Ψ is the inverse of Φ.

Let Σ be an arbitrary transversal of G containing y0 ([5]). Then Σ′ =
g(Σ) is a transversal of G containing y0. We have

(2.2) Theorem. There exist a distinguished chart ϕ of F around x0 and
a chain C̃ ∈ Cγϕ,ϕ such that the diagram

(11)
G

fC̃−→ G′

σ
y τ

y
Ω

g|Σ−→ Ω′
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commutes. Here G,G′ are open neighbourhoods of 0 in Wϕ, Ω,Ω′ are open
neighbourhoods of y0 in Σ,Σ′, respectively , and the vertical mappings are
diffeomorphisms compatible with the induced foliations.

P r o o f. Let x0 = π(y0, 0). Take a distinguished chart ψ of G around y0
such that ψ−1({0}×Wψ)⊂Σ ([2]). Then ψ′ = ψ ◦g is a distinguished chart
of G around y0 by (1.1). Set

C̃ = (ϕ, 0;ϕ′, 1/2;ϕ, 1)

where ϕ and ϕ′ are defined by

ϕ : π(Dψ × (−1/2, 1/2)) 3 π(y, t) 7→ (t, ψ(y)) ∈ (−1/2, 1/2)× Uψ ×Wψ ,

ϕ′ : π(Dψ′ × (0, 1)) 3 π(y, t) 7→ (t− 1/2, ψ′(y)) ∈ (−1/2, 1/2)× Uψ ×Wψ .

We show that C̃ is a chain along γ. Obviously, ϕ is a chart around γ(0)=γ(1)
and ϕ′ is a chart around γ(1/2). Thus all three terms of C̃ are links. Since

γ−1(Dϕ) = [0, 1/2) ∪ (1/2, 1] and γ−1(Dϕ′) = (0, 1) ,

we have

γ−1(Dϕ)0 ∩ γ−1(Dϕ′)1/2 = (0, 1/2) 6= ∅ ,
γ−1(Dϕ′)1/2 ∩ γ−1(Dϕ)1 = (1/2, 1) 6= ∅ .

In order to define a ∗-holonomy diffeomorphism, take the points γ(1/4) and
γ(3/4). By the definition of ϕ and ϕ′ we have

fC̃ (w) = Pr2 ϕϕ′
−1(Pr1 ϕ′γ(3/4),Pr2 ϕ′ϕ−1(Pr1 ϕγ(1/4), w))(12)

= pr2 ψgψ
−1(0, w) .

It is easy to check that the mappings σ : Wψ 3w 7→ ψ−1(0, w) ∈ Σ and
pr2 ψ|Σ′ are regular at 0 and y0, respectively, by the transversality of Σ and
Σ′. Consequently, there exist open neighbourhoods G,G′ of 0 in Wϕ and
Ω,Ω′ of y0 in Σ and Σ′, respectively, such that σ is a diffeomorphism of G
onto Ω and pr2 ψ|Σ′ is a diffeomorphism of Ω′ onto G′. Set τ=(pr2 ψ|Ω′)−1.
The diffeomorphisms σ and τ are compatible with the induced foliations
since ψ is a distinguished chart.

By (12), we have the commutativity of diagram (11).

Consider the case when G0 = {y0}. Let A be the set of all diffeomor-
phisms k : U → V (U, V are open neighbourhoods of y0 in N) such that
k(y0) = y0 and k is compatible with the foliations G|U and G|V . In A we in-
troduce the relation ≡ quite analogously to that in Aϕ,ϕ ([2]). Then the set
A/≡ with multiplication determined by superposition of diffeomorphisms
is a group. Moreover, note that g ∈ A. From Theorems (2.1) and (2.2) we
immediately get
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(2.4) Corollary. If G0 = {y0} and g(y0) = y0, then ∗-Holx0(F , ϕ) is
isomorphic to the subgroup of A/≡ generated by the equivalence class of the
diffeomorphism g.
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