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Asymptotic properties of Markov operators
defined by Volterra type integrals

by Karol Baron and Andrzej Lasota (Katowice)

Abstract. New sufficient conditions for asymptotic stability of Markov operators
are given. These criteria are applied to a class of Volterra type integral operators with
advanced argument.

Introduction. We shall study asymptotic properties of the iterates (Pn)
of the operator

(0.1) Pf(x) =
λ(x)∫
0

K(x, y) f(y) dy

where

(0.2) K(x, y) = − ∂

∂x
H(Q(λ(x))−Q(y))

and Q,λ,−H are given nonnegative and nondecreasing functions defined on
the half line R+ = [0,∞). The precise assumptions concerning the kernel
K will be formulated in Section 2.

Operators of the form (0.1), (0.2) appear in mathematical models of
the cell cycle [5], [10], [11], [12] and in a model of the electrical activity of
neurons [7].

In the special case when H(x) = e−x, a sufficient condition for asymp-
totic stability of the sequence (Pn) was recently given in [2]. It has the form

(0.3) lim inf
x→∞

(Q(λ(x))−Q(x)) > 1.

In the general situation, with arbitrary H, condition (0.3) was replaced
in [7] by
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(0.4) lim inf
x→∞

Q(λ(x))
Q(x)

> 1.

Since Q(x) and λ(x) converge to +∞ as x→ +∞, inequality (0.4) is much
more restrictive than (0.3). In particular, (0.4) is not satisfied in some cases
important for applications. The purpose of the present paper is to formulate
a sufficient condition of the form (0.3) for asymptotic stability of (Pn) valid
for a large class of functions.

The organization of the paper is as follows. Section 1 contains some
auxiliary definitions and theorems from the theory of Markov operators.
Our results in this area are based on special properties of integral and Har-
ris operators [1]. In particular, our Theorem 1.2 extends a recent result of
J. Malczak [8]. In Section 2 we discuss the asymptotic properties of the
iterates of the operator P given by formulas (0.1), (0.2).

1. Markov operators. Let (X,A, µ) be a σ-finite measure space. De-
note by D = D(X,A, µ) the subset of L1 = L1(X,A, µ) which contains all
(normalized) densities, i.e.

D = {f ∈ L1 : f ≥ 0, ‖f‖ = 1}

where ‖ · ‖ stands for the norm in L1. A linear mapping P : L1 → L1 is
called a Markov operator if P (D) ⊂ D.

Let a Markov operator P be given. A density f is called stationary (or
invariant) if Pf = f . The operator P is called asymptotically stable if there
is a density f∗ such that

(1.1) lim
n→∞

‖Pnf − f∗‖ = 0 for f ∈ D .

Of course, a density f∗ satisfying condition (1.1) is necessarily stationary
and unique.

In order to present a simple criterion for the existence of a stationary
density we must recall the notion of Banach limits [4]. A Banach limit L
is a linear functional defined on the space l∞ of bounded sequences (an) =
(a1, a2, . . .) of real numbers which satisfies the following conditions:

(i) L(an) ≥ 0 if ai ≥ 0 (i = 1, 2, . . .),
(ii) L(a1, a2, . . .) = L(a2, a3, . . .),
(iii) L(1, 1, . . .) = 1.

If (an) is convergent then L(an) = limn→∞ an, and if lim sup an ≤ c then
L(an) ≤ c.

Theorem 1.1. Let P : L1(X,A, µ)→ L1(X,A, µ) be a Markov operator
and L a Banach limit. Assume that there exists a set A ∈ A, µ(A) <∞, a
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number δ > 0 and a density f such that

(1.2) L
( ∫

(X\A)∪E

Pnf dµ
)
< 1 for E ⊂ A with µ(E) < δ .

Then P admits a stationary density.

The proof of this result was given by J. Soca la [9]. It should be noted,
however, that in Soca la’s statement a stronger form of condition (1.2) was
used. Namely, the functional L was replaced by lim sup. The above formu-
lation was proposed by T. Komorowski and J. Tyrcha [3].

Now consider an operator P of the form

(1.3) Pf(x) =
∫
X

k(x, y) f(y) dµ(y)

where k : X ×X → R is a stochastic kernel , i.e. k is jointly measurable on
X ×X and satisfies

(1.4)
k(x, y) ≥ 0 for (x, y) ∈ X ×X ,∫
X

k(x, y) dµ(x) = 1 for y ∈ X .

From (1.4) it follows immediately that P is a Markov operator; it is called
an integral Markov operator .

For integral Markov operators the existence of an invariant density and
a simple transitivity condition imply asymptotic stability. To formulate this
criterion precisely recall that in the theory of Markov operators the support
of an f ∈ L1(X,A, µ) is defined up to a set of measure zero by the formula

supp f = {x ∈ X : f(x) 6= 0} .
We say that a Markov operator P overlaps supports if for every f, g ∈ D
there is a positive integer n0 = n0(f, g) such that

(1.5) µ(suppPn0f ∩ suppPn0g) > 0 .

Observe that condition (1.5) implies that

µ(suppPnf ∩ suppPng) > 0 for n ≥ n0(f, g) .

In fact,

suppPnf ∩ suppPng ⊃ suppPn−n0(min{Pn0f, Pn0g}) .

Theorem 1.2. An integral Markov operator which overlaps supports and
has a stationary density f∗ > 0 a.e. is asymptotically stable.

P r o o f. Define a new measure space (X,A, µ) with dµ = f∗dµ and con-
sider the operator

(1.6) Pf = (1/f∗)P (f · f∗) .
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Observe that for every f ∈ L1(µ) the product f · f∗ belongs to L1(µ). It is
evident that P is an integral operator on L1(µ) and that

(1.7) P1X = 1X .

(Here and in the sequel 1E denotes the characteristic function of the subset
E of X.) Now we are going to use a well known decomposition property
of integral Markov operators satisfying P1X ≤ 1X (see [1], Ch. VIII). The
space X may be written in the form

(1.8) X = X1 ∪X2, X1 =
⋃
i

Wi

where the family {Wi} is at most countable. The sets X1, X2 and Wi are
measurable, disjoint (X1 ∩ X2 = ∅, Wi ∩Wj = ∅ for i 6= j) and have the
following properties:

(i) For every f ∈ L1(µ) with supp f ⊂ X2 and for every g ∈ L∞(µ),

(1.9) lim
n→∞

∫
X

g · Pnf dµ = 0 .

(ii) For every i there is a j such that P1Wi
= 1Wj

.

(iii) Every set Wi is either cyclic or wandering. In the first case P k1Wi =
1Wi

for a positive integer k; in the second, all sets Win (n = 0, 1, . . .) defined
by 1Win

= Pn1Wi
are distinct and hence disjoint.

(iv) For every cyclic Wi with period k and for every f ∈ L1(µ) vanishing
outside Wi,

(1.10) lim
n→∞

∥∥∥Pnkf − ( ∫
Wi

f dµ/µ(Wi)
)

1Win

∥∥∥
L1(µ)

= 0 .

We shall show that in our case the decomposition formula (1.8) reduces
to X = W1. In fact, µ(X2) ≤ µ(X) = 1 and we may take f = 1X2 , g = 1X in
(1.9). Since P preserves the integral with respect to µ this gives µ(X2) = 0.
Assume that Wi is wandering. Then

suppPn(f∗ · 1Wi
) ∩ suppPn(f∗ · 1Wi1) = suppPn1Wi

∩ suppPn1Wi1

= Win ∩Wi,n+1 = ∅
for every n, which contradicts (1.5) and shows that there are no wandering
sets. Assume now that Wi is cyclic with period k ≥ 2. Then, as previously,

suppP kn(f∗ · 1Wi
) ∩ suppP kn(f∗ · 1Wi1) = Wi,kn ∩Wi,kn+1

= Wi ∩Wi1 = ∅
for every n. Consequently, each Wi is cyclic with period k=1. Assume that
there are two such sets, say W1 and W2. Then

suppPn(f∗ · 1W1) ∩ suppPn(f∗ · 1W2) = W1 ∩W2 = ∅
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for every n, which again contradicts (1.5). Thus there is exactly one cyclic
set with cycle length k = 1. We denote this set by W1. According to (1.10)
with µ(W1) = µ(X) = 1, k = 1, we obtain

(1.11) lim
n→∞

∥∥∥Pnf − ( ∫
X

f dµ
)

1X
∥∥∥
L1(µ)

= 0

for every f ∈ L1(µ). Evidently, for every f ∈ D(µ) we have f/f∗ ∈ L1(µ)
and

‖Pnf − f∗‖L1(µ) =
∥∥∥f∗Pn(f/f∗)− f∗

∫
X

(f/f∗) dµ
∥∥∥
L1(µ)

=
∥∥∥Pn(f/f∗)−

( ∫
X

(f/f∗) dµ
)

1X
∥∥∥
L1(µ)

.

From this and (1.11) we get (1.1).

Corollary 1.1. Let P : L1(X,A, µ) → L1(X,A, µ) be an integral
Markov operator which has a positive stationary density f∗ (f∗ > 0 a.e.).
Assume, moreover , that there exists a set A ∈ A, µ(A) > 0, with the follow-
ing property. For every f ∈ D there is a positive integer n0 = n0(f) such
that

Pn0f(x) > 0 for a.e. x ∈ A .

Then P is asymptotically stable.

Theorems 1.1 and 1.2 do not match well. In fact, the invariant density
existing by Theorem 1.1 need not be positive on the whole space X, which is
an important assumption in Theorem 1.2. This situation may be improved
by studying P restricted to the support of the invariant density.

Let a Markov operator P : L1(X,A, µ)→ L1(X,A, µ) be given. It is well
known that for all nonnegative f, f∗ ∈ L1(X) the inclusion supp f ⊂ supp f∗
implies suppPf ⊂ suppPf∗. In particular, if f∗ = Pf∗ and supp f∗ = C
then

supp f ⊂ C implies suppPf ⊂ C .

This property allows us to consider P on the space L1(C) of all functions
from L1(X) with supports contained in C. We will denote P restricted to
L1(C) by PC .

Theorem 1.3. Let P : L1(X,A, µ)→ L1(X,A, µ) be a Markov operator
having an invariant density f∗. Assume that the operator PC with C =
supp f∗ is asymptotically stable. Assume, moreover , that there is a δ > 0
such that

(1.12) sup
n

∫
C

Pnf dµ ≥ δ for f ∈ D(X) .

Then P : L1(X)→ L1(X) is also asymptotically stable.
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P r o o f. According to the lower bound function theorem (see [6], Ch. 5)
in order to prove (1.1) it is sufficient to find a nonnegative h ∈ L1(X),
‖h ‖ > 0, such that

(1.13) lim
n→∞

‖ (Pnf − h)− ‖ = 0 for f ∈ D(X)

where ‖ · ‖ stands for the norm in L1(X). Define h = 1
2δf∗ and fix an

f ∈ D(X). According to (1.12) there is an integer m such that

η :=
∫
C

Pmf dµ ≥ 1
2 δ .

For n ≥ m we have

(1.14) Pnf = Pn−m(1X\CPmf) + Pn−mC (1CPmf) .

Since PC is asymptotically stable with invariant density f∗ we also have

(1.15) lim
n→∞

‖Pn−mC (1CPmf)− ηf∗ ‖ = 0 .

From (1.14) and the inequality h ≤ ηf∗ it follows that

‖ (Pnf − h)− ‖ ≤ ‖Pn−mC (1CPmf)− ηf∗ ‖
for n ≥ m. This and (1.15) imply (1.13).

Using Theorems 1.2 and 1.3 it is easy to derive the following

Corollary 1.2. Let P : L1(X,A, µ) → L1(X,A, µ) be an integral
Markov operator which overlaps supports and has an invariant density f∗.
Set C = supp f∗. If there is a δ > 0 such that (1.12) is satisfied , then P is
asymptotically stable.

P r o o f. According to Theorem 1.3 it is enough to prove that the operator
PC is asymptotically stable. Evidently,

PCf(x) =
∫
C

k(x, y) f(y) dµ(y)

for every f ∈ L1(C) and

0 =
∫
C

f∗(y) dµ(y)−
∫
C

PCf∗(x) dµ(x)

=
∫
C

(
1−
∫
C

k(x, y) dµ(x)
)
f∗(y) dµ(y) ,

whence ∫
C

k(x, y) dµ(x) = 1 for a.e. y ∈ C .

This shows that PC is an integral Markov operator. Thus we can apply
Theorem 1.2 to PC and its asymptotical stability follows.
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2.Volterra operators. In this section we shall consider the integral op-
erator P defined by (0.1) and (0.2) under the following general assumptions
(K1) and (K2):

(K1) H : [ 0,∞)→ [ 0,∞) is nonincreasing, absolutely continuous and

H(0) = 1, lim
x→∞

H(x) = 0 .

(K2) Q : [ 0,∞) → [ 0,∞) and λ : [ 0,∞) → [ 0,∞) are nondecreasing,
absolutely continuous and

Q(0) = λ(0) = 0, lim
x→∞

Q(x) = lim
x→∞

λ(x) =∞ .

The above conditions (K1) and (K2) are assumed in the whole of this
section and will not be repeated in the statements of the theorems. Moreover,
all measure-theoretic notions refer to the standard Lebesgue measure m on
[ 0,∞).

We start with the following lemma from [7].

Lemma 2.1. If W : [ 0,∞)→ [ 0,∞) is measurable and f ∈ D, then

(2.1)
∞∫
0

W (Q(λ(x)))Pf(x) dx =
∞∫
0

f(y) dy
∞∫
0

W (x+Q(y))h(x) dx

where
h(x) = −H ′(x) .

Using Theorem 1.1 we prove the following theorem concerning the exis-
tence of a stationary density for P .

Theorem 2.1. If there exists an α ∈ (0, 1 ] such that

(2.2)
∞∫
0

xαh(x) dx < lim inf
x→∞

((Q(λ(x)))α −Q(x)α) ,

then the operator P given by formulas (0.1), (0.2) has a stationary density.

P r o o f. Evidently, P is an integral Markov operator defined on
L1([ 0,∞)). Define

σ =
∞∫
0

xαh(x) dx .

Using (2.2) we can find positive numbers ε, % and x0 such that

(2.3) σ + ε < % < (Q(λ(x)))α −Q(x)α for x ≥ x0 .

We are going to show that for every f ∈ D there exists an integer n0(f)
such that

(2.4)
x0∫
0

1
n

n∑
k=1

P k f(x) dx ≥ ε

2M
for n ≥ n0(f)
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where

(2.5) M := sup
[ 0,x0 ]

| (Q(λ(x)))α −Q(x)α − % | .

Using (2.1) with W (x) = xα and f ∈ D we have
∞∫
0

(Q(λ(x)))αPf(x) dx =
∞∫
0

f(y) dy
∞∫
0

(x+Q(y))αh(x) dx(2.6)

≤
∞∫
0

f(y) dy
∞∫
0

(xα +Q(y)α)h(x) dx

= σ +
∞∫
0

f(y)Q(y)α dy .

Fix f ∈ D such that

(2.7)
∞∫
0

Q(x)αf(x) dx <∞

and define

(2.8) fn =
1
n

n∑
k=1

P kf for n = 1, 2, . . .

From (2.3), (2.6) and (2.7) it follows that
∞∫
0

(Q(λ(x)))αPfn(x) dx ≤ σ +
∞∫
0

Q(x)αfn(x) dx

and that the integral on the right hand side is finite for every n. Hence
∞∫
0

((Q(λ(x)))α −Q(x)α)fn(x) dx ≤ σ +
1
n

∞∫
0

(Q(λ(x)))αPf(x) dx .

Since σ < %− ε, there exists a positive integer n0(f) such that
∞∫
0

((Q(λ(x)))α −Q(x)α)fn(x) dx ≤ %− ε for n ≥ n0(f) .

On the other hand, taking into account (2.3) we have
∞∫
0

((Q(λ(x)))α −Q(x)α)fn(x) dx

≥
x0∫
0

((Q(λ(x)))α −Q(x)α)fn(x) dx+ %
∞∫
x0

fn(x) dx .
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Consequently,
x0∫
0

((Q(λ(x)))α −Q(x)α)fn(x) dx ≤ %− ε− %
∞∫
x0

fn(x) dx

= %
x0∫
0

fn(x) dx− ε

for n ≥ n0(f), which together with (2.5) gives

−M
x0∫
0

fn(x) dx ≤
x0∫
0

((Q(λ(x)))α −Q(x)α − %)fn(x) dx ≤ −ε

for n ≥ n0(f). This implies (2.4) and even a stronger inequality with the
right hand side ε/M. The above argument was valid for f satisfying (2.7).
To get (2.4) for every f ∈ D it is enough to observe that the set of all f ∈ D
such that (2.7) holds is dense in D.

Now we are going to show that there exists a δ > 0 such that∫
E

Pf(x) dx ≤ ε

4M
for f ∈ D and E ⊂ [ 0, x0 ] ,m(E) ≤ δ .

In fact, since h is integrable we can find a γ > 0 such that∫
F

h(x) dx ≤ ε

4M
for m(F ) ≤ γ .

Further, since Q ◦ λ is absolutely continuous, there exists a δ > 0 such that

m(Q(λ(E))) ≤ γ for E ⊂ [ 0, x0 ], m(E) ≤ δ .

Now let E ⊂ [ 0, x0 ] be measurable and m(E) ≤ δ. Setting W = 1Q(λ(E))

we have 1E ≤W ◦Q ◦ λ, which according to (2.1) gives∫
E

Pf(x) dx =
∞∫
0

1E(x)Pf(x) dx ≤
∞∫
0

W (Q(λ(x)))Pf(x) dx

=
∞∫
0

f(y) dy
∞∫
0

W (x+Q(y))h(x) dx

=
∞∫
0

f(y) dy
∫

Q(λ(E))−Q(y)

h(x) dx ≤ ε

4M

for every f ∈ D.
In order to verify condition (1.2) fix an f ∈ D and a positive integer

n≥n0(f) such that (2.4) is satisfied. Fix a measurable set E⊂ [ 0, x0 ] with
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m(E) ≤ δ. Then∫
E

fn(x) dx =
∫
E

P

(
1
n

n−1∑
k=0

P kf

)
dx ≤ ε

4M

and using (2.4) we obtain∫
(x0,∞)∪E

fn(x) dx = 1−
x0∫
0

fn(x) dx+
∫
E

fn(x) dx

≤ 1− ε

2M
+

ε

4M
= 1− ε

4M

for n ≥ n0(f). Now let L0 be a Banach limit and let

L(ak) = L0

(
1
k

k∑
i=1

ai

)
for every bounded sequence (ak) of real numbers. Evidently, L is also a
Banach limit and

L
( ∫

(x0,∞)∪E

Pnf(x) dx
)

= L0

( ∫
(x0,∞)∪E

fn(x) dx
)
≤ 1− ε

4M
,

which shows that (1.2) with A = [ 0, x0 ] is satisfied.

Now we use Corollary 1.2 to find a sufficient condition for the asymptotic
stability of the operator P given by (0.1), (0.2).

Theorem 2.2. If there exists a positive number α ≤ 1 such that (2.2)
holds, and a nonnegative number c such that

(2.9) h(x) > 0 for a.e. x ≥ c ,

then the operator P given by (0.1), (0.2) is asymptotically stable.

P r o o f. According to Theorem 2.1 the operator P has a stationary den-
sity f∗. Define C = supp f∗ and fix positive numbers ε, %, x0 such that (2.3)
holds. Further, choose a positive number a such that

λ(a) ≥ x0, Q(λ(a)) ≥ c+Q(x0) ,

and define

A = {x ≥ a : (Q ◦ λ)′(x) > 0} .

Since Q ◦ λ is absolutely continuous and limx→∞Q(λ(x)) = ∞, the set
A is unbounded (ess supA = ∞). Finally, define the number M by (2.5).
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If x ∈ A, then

f∗(x) = Pf∗(x) = (Q ◦ λ)′(x)
λ(x)∫
0

h(Q(λ(x))−Q(y))f∗(y) dy

≥ (Q ◦ λ)′(x)
x0∫
0

h(Q(λ(x))−Q(y))f∗(y) dy

and

(Q ◦ λ)′(x) > 0, h(Q(λ(x))−Q(y)) > 0 for y ∈ [ 0, x0 ] .

From (2.4) with f = f∗ it follows that
x0∫
0

f∗(y) dy > 0 .

This shows that f∗(x) > 0 for x ∈ A and that A ⊂ C. Using (2.4) it is also
easy to show that

(2.10) sup
n

∫
C

Pnf(x) dx ≥ ε

2M

∞∫
Q(λ(a))

h(u) du for f ∈ D .

In fact, according to (2.4) for every density f there is a positive integer k
such that

x0∫
0

P kf(x) dx ≥ ε

2M

and consequently,∫
C

P k+1f(x) dx ≥
∫
A

P k+1f(x) dx

=
∫
A

(Q ◦ λ)′(x) dx
λ(x)∫
0

h(Q(λ(x))−Q(y))P kf(y) dy

≥
∫
A

(Q ◦ λ)′(x) dx
x0∫
0

h(Q(λ(x))−Q(y))P kf(y) dy

=
x0∫
0

P kf(y) dy
∞∫
a

(Q ◦ λ)′(x)h(Q(λ(x))−Q(y)) dx

≥
x0∫
0

P kf(y) dy
∞∫

Q(λ(a))

h(u) du ≥ ε

2M

∞∫
Q(λ(a))

h(u) du .

Finally, observe that for every density f there exists a positive number
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b = b(f) such that

Pf(x) > 0 for x ∈ [ b,∞) ∩A .

To show this choose b0 > 0 such that
∫ b0
0
f(y) dy > 0, and b > 0 such that

λ(b) ≥ b0, Q(λ(b)) ≥ c+Q(b0). For x ∈ [ b,∞) ∩A we then have

Pf(x) ≥ (Q ◦ λ)′(x)
b0∫
0

h(Q(λ(x))−Q(y))f(y) dy > 0 .

Setting d = d(f, g) = max{b(f), b(g)} we obtain

m(suppPf ∩ suppPg) ≥ m([ d,∞) ∩A) > 0 for f, g ∈ D .

Thus all the requirements of Corollary 1.2 are satisfied and the proof is
complete.

The following example shows that assumption (2.9) in the statement of
Theorem 2.2 is essential.

Example 2.1. Let h : [ 0,∞) → [ 0,∞) be an integrable function such
that

∞∫
0

h(x) dx = 1 and h(x) = 0 for x ≥
√
c− c

where c ∈ (0, 1) is a constant. Consider the operator P : L1 → L1 given by
the formula

(2.11) Pf(x) =


1

2
√
x

√
x∫

0

h(
√
x− y)f(y) dy for x ∈ (0, 1) ,

2
2x−1∫
0

h(2x− y − 1)f(y) dy for x ≥ 1 .

In this case Q(x) = x,

λ(x) =
{√

x for x ∈ [ 0, 1 ] ,
2x− 1 for x > 1 ,

H(x) = 1−
x∫

0

h(t) dt ,

and evidently the assumptions (K1) and (K2) are satisfied. Moreover, for
every α ∈ (0, 1 ],

∞∫
0

xαh(x) dx < 1 <∞ = lim
x→∞

((Q(λ(x)))α −Q(x)α) .

According to Theorem 2.1 the operator P has a stationary density. Using
(2.11) it is easy to verify the following property of P . If supp f ⊂ [ 1,∞)
then suppPf ⊂ [ 1,∞) and if supp f ⊂ (0, c) then suppPf ⊂ (0, c). Since
c < 1, condition (1.1) cannot be satisfied with an f∗ independent on f . Thus
P is not asymptotically stable.



Markov operators 173

In the previous results concerning the operator (0.1), (0.2) an important
role was played by condition (2.2). Thus a natural question arises: What
could we say about the behaviour of (Pnf) when (2.2) is not satisfied? A
partial answer to this question may be given by showing that if an opposite
condition to (2.2) is satisfied then the operator P is sweeping [2].

We say that a Markov operator P : L1([ 0,∞)) → L1([ 0,∞)) is
sweeping if

(2.12) lim
n→∞

r∫
0

Pnf(x) dx = 0 for every f ∈ D and r ≥ 0 .

Theorem 2.3. Assume that

(2.13) sup
x≥x0

((Q(λ(x)))β −Q(x)β) <
∞∫
0

xβh(x) dx <∞

for an x0 ≥ 0 and β ≥ 1 and that
∞∫

Q(λ(x0))

h(x) dx > 0 .

Then the operator P given by (0.1), (0.2) is sweeping.

P r o o f. Define

z0 = (Q(λ(x0))) β , w(z) =
{
e−εz0 for z ∈ [ 0, z0 ] ,
e−εz for z > z0 ,

and

V (x) = w((Q(λ(x)))β)

where ε > 0 will be chosen later. We shall show that there exists a nonneg-
ative constant γ < 1 such that

(2.14)
∞∫
0

V (x)Pf(x) dx ≤ γ
∞∫
0

V (x)f(x) dx for f ∈ D .

Since V (x) admits a positive minimum on every compact set this inequality
implies (2.12) (see also [2]).

According to (2.13) there exists a number % such that

sup
x≥x0

((Q(λ(x)))β −Q(x)β) < % <
∞∫
0

xβh(x) dx .

Define

I(y) =
∞∫
0

w((x+Q(y))β)
V (y)

h(x) dx for y ≥ 0 .
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If y ≤ x0, then V (y) = w(z0) and

I(y) ≤
∞∫
0

w(xβ)
V (y)

h(x) dx =
Q(λ(x0))∫

0

w(xβ)
w(z0)

h(x) dx+
∞∫

Q(λ(x0))

w(xβ)
w(z0)

h(x) dx

=
Q(λ(x0))∫

0

h(x) dx+
∞∫

Q(λ(x0))

h(x)e−ε(x
β−z0) dx

= 1−
∞∫

Q(λ(x0))

h(x)(1− e−ε(x
β−z0)) dx =: γ1(ε) < 1 .

If y > x0, then (Q(λ(y)))β −Q(y)β < % and, since w(z) ≤ e−εz for z ≥ 0,

w((x+Q(y))β)
V (y)

≤ e−ε(x+Q(y))β

e−ε(Q(λ(y)))β
≤ e−ε(x+Q(y))β

e−ε(%+Q(y)β)
≤ e−ε(x

β−%);

consequently,

I(y) ≤
∞∫
0

h(x)e−ε(x
β−%) dx =: γ2(ε) .

From Lemma 2.1 it follows that
∞∫
0

V (x)Pf(x) dx =
∞∫
0

f(y) dy
∞∫
0

w((x+Q(y))β)h(x) dx

=
∞∫
0

f(y)V (y)I(y) dy

≤ γ1(ε)
x0∫
0

V (y)f(y) dy + γ2(ε)
∞∫
x0

V (y)f(y) dy

for every density f . Since γ1(ε) < 1 for every ε > 0, in order to show (2.14)
with a constant γ < 1 it is enough to prove that there exists and ε > 0 such
that γ2(ε) < 1. But the function γ2 is differentiable on [ 0,∞) and

γ′2(ε) = −
∞∫
0

h(x)(xβ − %)e−ε(x
β−%) dx ,

whence

γ′2(0) = %−
∞∫
0

xβh(x) dx < 0 .

Consequently, for sufficiently small ε > 0 we have γ2(ε) < γ2(0) = 1, which
completes the proof.
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