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Some results on stability and on characterization
of K-convexity of set-valued functions

by Tiziana Cardinali (Perugia), Kazimierz Nikodem (Bielsko-Bia la)
and Francesca Papalini (Perugia)

Abstract.We present a stability theorem of Ulam–Hyers type for K-convex set-valued
functions, and prove that a set-valued function is K-convex if and only if it is K-midconvex
and K-quasiconvex.

1. Introduction. In this paper we study two different problems:

(i) stability of the K-convexity of a set-valued function;
(ii) characterization of K-convex set-valued functions.

The first problem has been studied for functions: in 1941 D. H. Hyers [5]
proved that the property of additivity is stable, i.e. if a function f satisfies

(1.1) |f(x+ y)− f(x)− f(y)| ≤ ε ,

where ε is a given positive number, then there exists an additive function g
such that

(1.2) |f(x)− g(x)| ≤ ε .

In 1952 D. H. Hyers and S. M. Ulam [6] stated that the property of convexity
is stable, that is, for every function f : D → R, where D is a convex subset
of Rn, satisfying the inequality

(1.3) f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + ε ,

for all x, y ∈ D, t ∈ [0, 1] and some ε > 0, there exists a convex function
g : D → R and a constant kn, depending only on the dimension of the
domain, such that

(1.4) g(x) ≤ f(x) ≤ g(x) + knε , ∀x ∈ D .
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In 1984 P. W. Cholewa [3] gave a different proof of the theorem of Hyers
and Ulam.

Later, in 1988, K. Nikodem [10]1 showed that the property of quasicon-
vexity of a function is also stable.

For the second problem, in 1989 K. Nikodem [10]2 obtained the following
characterization for convex functions defined on an open subset of Rn:

(1.5) f is convex⇔ f is midconvex and quasiconvex.

Next Z. Kominek [7] and F. A. Behringer [2] showed that (1.5) is also
true for functions defined on any convex subset of a real vector space, not
necessarily open.

In Section 3 of our note we prove (cf. Theorem 1) that if D is a con-
vex subset of Rn, K a convex cone in Rm and B the closed unit ball of
Rm, then for every set-valued function F : D → n(Rm) (cf. (2.1)) satisfy-
ing

(1.3)1 tF (x) + (1− t)F (y) ⊂ F (tx+ (1− t)y) +K + εB

for all x, y ∈ D, t ∈ [0, 1] and some ε > 0, there exists a convex set-valued
function G : D → n(Rm) such that

(1.4)1 F (x) ⊂ G(x) ⊂ F (x) +K + jn+mεB , ∀x ∈ D ,

where the constant jn+m depends only on the dimension of Rn+m.
In Section 4 we prove (cf. Corollary 1) that if D is a convex subset of a

real vector space, K a closed convex cone of a real topological vector space
Y , t∈(0, 1) and F : D → C(Y ) (cf. (2.2)) a set-valued function, then, under
some assumption on Y (cf. Remark 1),

(1.5)1 F is K-convex⇔ F is K-t-convex and K-quasiconvex.

This result contains the mentioned theorems proved in [10]2, in [7] and
in [2].

Finally, we want to observe that our Theorem 3 is a generalization to
set-valued functions of a result of N. Kuhn [8] stating that t-convex (single-
valued) functions are midconvex.

2. Let X be a real vector space and Y be a real topological vector space
(satisfying the T0 separation axiom). For α, β ∈ R and S, T ⊂ Y we put
αS + βT = {y ∈ Y : y = αs+ βt, s ∈ S, t ∈ T}. We define

n(Y ) = {S ⊂ Y : S 6= ∅},(2.1)
C(Y ) = {S ⊂ Y : S compact, S 6= ∅},(2.2)

BC(Y ) = {S ⊂ Y : S bounded, convex, S 6= ∅} .(2.3)
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We assume that D is a nonempty convex subset of X and K is a convex
cone in Y . For fixed t ∈ (0, 1), we say that a set-valued function F : D →
n(Y ) is K-t-convex if

tF (x) + (1− t)F (y) ⊂ F (tx+ (1− t)y) +K

for all x, y ∈ D. If t = 1/2, F is called K-midconvex .
We say that F is K-quasiconvex if for every convex set A ⊂ Y the lower

inverse image of A−K, i.e. the set

F−(A−K) = {x ∈ D : F (x) ∩ (A−K) 6= ∅} ,

is convex (cf. [10]3, (2.5)).
In the case that Y is a normed space, let B be the closed unit ball in Y

and ε a nonnegative number. We say that F : D → n(Y ) is ε-K-convex if

(2.4) tF (x) + (1− t)F (y) ⊂ F (tx+ (1− t)y) +K + εB

for all x, y ∈ D and t ∈ [0, 1]. We recall that F is K-convex if it satisfies
(2.4) with ε = 0. If F satisfies (2.4) with ε = 0 and K = {0} it is said to be
convex .

F : D → n(Y ) is said to be weakly K-upper bounded on a set A ⊂ D iff

(2.5) there exists a bounded set B ⊂ Y such that A ⊂ F−(B −K).

Finally, we denote by

GrF = {(x, y) ∈ X × Y : x ∈ D, y ∈ F (x)}

the graph of the set-valued function F .

3. In this section we present, for ε-K-convex set-valued functions, a the-
orem analogous to the stability theorem for functions proved by D. H. Hyers
and S. M. Ulam in [6] and by P. W. Cholewa in [3].

Using a method similar to Cholewa’s [3] we first prove

Lemma 1. Let X be a real vector space, Y a normed space, D a convex
subset of X and K a convex cone in Y. If a set-valued function F : D → n(Y )
is ε-K-convex , then for all p ∈ N, x0, . . . , xp ∈ D and t0, . . . , tp ∈ [0, 1] with
t0 + . . .+ tp = 1, we have

(3.1) t0F (x0) + . . .+ tpF (xp) ⊂ F (t0x0 + . . .+ tpxp) +K + jpεB

where jp = min{kp, hp}, kp = (p2 + 3p)/(2p + 2), and hp = m ∈ N is such
that 2m−1 ≤ p < 2m.

P r o o f. For p = 1 the inclusion (3.1) is clear because j1 = k1 = h1 = 1.
Now fix p > 1 and assume that (3.1) holds for all natural n < p. Take
x0, . . . , xp ∈ D and t0, . . . , tp ∈ [0, 1] with t0 + . . . + tp = 1. Without loss
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of generality we may assume that t0 ≥ 1/(p+ 1). Let t = t1 + . . .+ tp and
t′i = ti/t for i = 1, . . . , p; then t ≤ p/(p+ 1). Thus

(3.2) t0F (x0) + . . .+ tpF (xp) = t0F (x0) + t[t′1F (x1) + . . .+ t′pF (xp)]

⊂ t0F (x0) + t[F (t′1x1 + . . .+ t′pxp) +K + kp−1εB]

⊂ F (t0x0 + . . .+ tpxp) +K + εB +
p

p+ 1
kp−1εB

= F (t0x0 + . . .+ tpxp) +K + kpεB .

Now, let m ∈ N be such that 2m−1 ≤ p < 2m. Put r = [p/2]; then r < 2m−1

and p− r − 1 < 2m−1. Setting a = t0 + . . .+ tr and b = tr+1 + . . .+ tp, we
have

(3.3) t0F (x0) + . . .+ tpF (xp)

= a

[
t0
a
F (x0) + . . .+

tr
a
F (xr)

]
+ b

[
tr+1

b
F (xr+1) + . . .+

tp
b
F (xp)

]
⊂ aF

(
t0
a
x0 + . . .+

tr
a
xr

)
+ bF

(
tr+1

b
xr+1 + . . .+

tp
b
xp

)
+K + ahrεB + bhp−r−1εB

⊂ F (t0x0 + . . .+ tpxp) +K + (1 + ahr + bhp−r−1)εB

⊂ F (t0x0 + . . .+ tpxp) +K + [1 + a(m− 1) + b(m− 1)]εB

= F (t0x0 + . . .+ tpxp) +K + hpεB .

From (3.2) and (3.3) we obtain the assertion.

Theorem 1. Let D be a convex subset of Rn and K be a convex cone
in Rm. If a set-valued function F : D → n(Rm) is ε-K-convex , then there
exists a convex set-valued function G : D → n(Rm) such that

F (x) ⊂ G(x) ⊂ F (x) +K + jn+mεB

for all x ∈ D.

P r o o f. Let W be the convex hull of the graph of F . We define G : D →
n(Rm) by

G(x) = {y ∈ Rm : (x, y) ∈W} , x ∈ D .

Then G is convex because GrG = W is convex. Moreover, F (x) ⊂ G(x)
for all x ∈ D. To prove the second inclusion fix an x ∈ D and take an
arbitrary y ∈ G(x). Then (x, y) ∈ W . By the Carathéodory Theorem (cf.
[12], Theorem 17.1) we have

(x, y) =
n+m∑
i=0

ti(xi, yi) ,
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with some (xi, yi) ∈ GrF and t0, . . . , tn+m ∈ [0, 1], t0 + . . . + tn+m = 1.
Hence, using Lemma 1, we get

y =
n+m∑
i=0

tiyi ∈
n+m∑
i=0

tiF (xi) ⊂ F (x) +K + jn+mεB .

Since this holds for all y ∈ G(x), the proof is complete.

4. In this section we give two necessary and sufficient conditions for a
set-valued function to be K-convex. We first need the following lemma which
is an analogue of a result obtained for functions by C. T. Ng and K. Nikodem
(cf. [9], Lemma 6).

Lemma 2. Let K be a closed convex cone in a real topological vector space
Y. If F : [0, 1] → C(Y ) is K-midconvex on [0, 1] and K-convex on (0, 1),
then it is K-convex on [0, 1].

P r o o f. Fix x, y ∈ [0, 1] and t ∈ (0, 1), and put z = tx + (1 − t)y. Let
u = (x+ z)/2 and v = (y + z)/2. Then u, v ∈ (0, 1) and z = tu + (1 − t)v.
Since F is K-convex on (0, 1) we get

(4.1) tF (u) + (1− t)F (v) ⊂ F (z) +K .

On the other hand, by the K-midconvexity of F on [0, 1],

(4.2)
F (x) + F (z)

2
⊂ F (u) +K and

F (y) + F (z)
2

⊂ F (v) +K .

Therefore, by (4.2) and (4.1),

tF (x) + (1− t)F (y) + F (z) ⊂ t(F (x) + F (z)) + (1− t)(F (y) + F (z))
⊂ 2tF (u) + 2(1− t)F (v) +K

⊂ 2F (z) +K ⊂ F (z) + F (z) +K .

The set F (z) +K is convex and closed, and F (z) is bounded; so the law of
cancellation (cf. [11]) yields the assertion.

Theorem 2. Let X be a real vector space, Y a real topological vector
space, D a convex subset of X and K a closed convex cone in Y. More-
over , assume that there exists a family (Bn)n, Bn∈BC(Y ) (cf. (2.3)), such
that

(4.3) Y =
⋃
n∈N

(Bn −K) .

Then a set-valued function F : D → C(Y ) is K-convex if and only if it is
K-midconvex and K-quasiconvex.
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P r o o f. The necessity is trivial (cf. [10]3, Theorem 2.9). Now suppose F is
K-midconvex and K-quasiconvex. Fix x, y∈D, and define H : [0, 1]→ C(Y )
by

(4.4) H(t) = F (tx+ (1− t)y) , ∀t ∈ [0, 1] .

Clearly H is K-quasiconvex; therefore for all n ∈ N, the set

(4.5) H−(Bn −K) = {t ∈ [0, 1] : H(t) ∩ (Bn −K) 6= ∅}

is an interval in R. In view of (4.3) we have⋃
n∈N

H−(Bn −K) = [0, 1] ,

and so we can find a natural number p such that

(4.6) intH−(Bp −K) 6= ∅ .

By the K-midconvexity of F it follows that H is K-midconvex on [0, 1], and
(cf. (4.5) and (4.6)) H is weakly K-upper bounded (cf. (2.5)) on H−(Bp−K),
which has nonempty interior; then using Corollary 3.3 of [10]3 we deduce
that H is K-continuous on (0, 1). Consequently, H is K-convex on (0, 1)
(cf. [10]3, Theorem 3.1 or [1], Theorem 4.2) and so it follows by Lemma 2
that H is K-convex on [0, 1]. Therefore, by (4.4),

tF (x) + (1− t)F (y) = tH(1) + (1− t)H(0) ⊂ H(t) +K

= F (tx+ (1− t)y) +K ,

which proves the K-convexity of F .

R e m a r k 1. The assumption (4.3) is trivially satisfied if Y is a normed
space. It is also fulfilled if there exists an order unit in Y , i.e. an element
e∈Y such that for every y∈Y we can find an n∈N with y∈ne−K (then
we can assume Bn = {ne}). In particular, if intK 6= ∅, then every element
of intK is an order unit in Y .

Theorem 3. Let X be a real vector space, Y be a real topological vector
space, D a convex subset of X and K a closed convex cone in Y. Let t be a
fixed number in (0, 1). If a set-valued function F : D → C(Y ) is K-t-convex ,
then it is K-midconvex.

P r o o f. Observe first that F (x) +K is convex for all x ∈ D because

tF (x) + (1− t)F (x) ⊂ F (x) +K

and F (x) +K is closed.
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Let x, y ∈ D; using the K-t-convexity of F we get

t(1− t)F (x) + t(1− t)F (y) + [1− 2t(1− t)]F
(
x+ y

2

)
⊂ t
[
(1− t)F (x) + tF

(
x+ y

2

)]
+ (1− t)

[
tF (y) + (1− t)F

(
x+ y

2

)]
⊂ tF

(
(1− t)x+ t

x+ y

2

)
+ (1− t)F

(
ty + (1− t)x+ y

2

)
+K

⊂ F
(
x+ y

2

)
+K

⊂ 2t(1− t)F
(
x+ y

2

)
+ [1− 2t(1− t)]F

(
x+ y

2

)
+K .

Since the set 2t(1 − t)F
(

x+y
2

)
+ K is convex and closed and the set

[1− 2t(1− t)]F
(

x+y
2

)
is bounded, by the law of cancellation we obtain

t(1− t)F (x) + t(1− t)F (y) ⊂ 2t(1− t)F
(
x+ y

2

)
+K .

Hence
1
2

[F (x) + F (y)] ⊂ F
(
x+ y

2

)
+K ,

which was to be proved.

R e m a r k 2. In the case of real (single-valued) functions the above result
is a consequence of the theorem of N. Kuhn [8]. The idea of the presented
proof is taken from Lemma 1 of [4].

As an immediate consequence of Theorems 2 and 3 we obtain the fol-
lowing

Corollary 1. Let X be a real vector space, Y a real topological vector
space, D a convex subset of X , K a closed convex cone in Y and t a fixed
number in (0, 1). Moreover , assume that there exists a family (Bn)n, Bn ∈
BC(Y ), such that

Y =
⋃
n∈N

(Bn −K) .

Then a set-valued function F : D → C(Y ) is K-convex if and only if it is
K-t-convex and K-quasiconvex.

R e m a r k 3. Observe that, in the case where K = {0}, it is sufficient to
require that the values of the set-valued function in Lemma 2, Theorem 2,
Theorem 3 and Corollary 1 are closed and bounded (and not necessarily
compact). The corresponding proofs are similar to those given above.
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