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Isolated intersection multiplicity
and regular separation of analytic sets

by Piotr Tworzewski (Kraków)

Abstract. An isolated point of intersection of two analytic sets is considered. We give
a sharp estimate of their regular separation exponent in terms of intersection multiplicity
and local degrees.

1. Separation. Let M be an m-dimensional normed complex vector
space. Following ([4], IV.7) we say that a pair of closed sets X, Y in an
open subset G of M satisfies the condition (S) at a point a ∈ G if either
a 6∈ X ∩ Y , or a ∈ X ∩ Y and

%(z,X) + %(z, Y ) ≥ c%(z,X ∩ Y )p

for z in a neighbourhood of a, for some c, p > 0 (%(·, Z) denotes the distance
function to the set Z ⊂M).

In the sequel we will consider only isolated points of the intersection of
X and Y .

We say that X and Y are p-separated at a ∈ G if a is an isolated point
of X ∩ Y and the pair X,Y satisfies the condition (S) at a, with exponent
p and some constant c > 0.

As a simple consequence of properties of (S) (see [4], IV.7.1) we get the
following lemma.

Lemma 1.1. Let H1 ⊂ G and H2 be open subsets of normed , finite-
dimensional complex vector spaces and let f : H1 → H2 be a biholomor-
phism. Then closed subsets X and Y of G are p-separated at a point a ∈ H1

if and only if f(X ∩H1) and f(Y ∩H1) are p-separated at f(a).
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By the above lemma our condition can be carried over—in a classical
manner—to the case of manifolds. (In this paper all manifolds are assumed
to be second-countable.)

Namely, we say that closed subsets X,Y of an m-dimensional complex
manifold M are p-separated at a ∈M if for some (and hence for every) chart
ϕ : Ω → G ⊂ Cm such that a ∈ Ω, the sets ϕ(X ∩Ω), ϕ(Y ∩Ω), closed in
G, are p-separated at ϕ(a).

It is clear that if X and Y are p-separated at a ∈M and X ∩ Y = {a},
then the pair X,Y satisfies the “condition of regular separation” (see [4],
IV.7.1).

Now, suppose that X and Y are analytic subsets of M and a ∈ M is
an isolated point of X ∩ Y. The principal topic of our research is a detailed
study of the set

P = {p > 0 : X and Y are p-separated at a} ,
and of the best exponent

p0 = p0(X,Y ; a) = inf P .

If dimM = m ≥ 1, then a standard calculation yields p0 ≥ 1. Obviously,
p0 = 0 for m = 0.

Lemma 1.2. Let M be an open subset of a normed , finite-dimensional
complex vector space. Suppose that a is an accumulation point of X. Then
X and Y are p-separated at a if and only if there exists a neighbourhood U
of a and c > 0 such that

%(x, Y ) ≥ c|x− a|p for x ∈ X ∩ U .
P r o o f. It suffices to show that the above condition implies that X and Y

are p-separated at a. Without loss of generality we can assume that c ∈ (0, 1)
and U is contained in the ball B(a, 1). Since a is an accumulation point of
X, we see that p ≥ 1.

Fix r>0 such that B(a, 2r)⊂U . If z∈B(a, r) then there exist x∈X ∩
B(a, 2r) and y ∈ Y ∩B(a, 2r) such that %(z,X) = |z−x| and %(z, Y ) = |z−y|.
An easy computation shows that

l = %(z,X) + %(z, Y ) ≥ |x− y| ≥ %(x, Y ) ≥ c|x− a|p .
Moreover,

l ≥ %(z,X) = |z − x| ≥ c|z − x|p .
Combining these inequalities we deduce that

l ≥ c

2
(|x− a|p + |z − x|p) ≥ c

2p
|z − a|p for z ∈ B(a, r) ,

and the proof is complete.

We now state a result which we shall frequently use.
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Lemma 1.3. Let M be a complex manifold. If a ∈M and p > 0 then the
following conditions are equivalent :

(1) X and Y are p-separated at a,
(2) X × Y and ∆M are p-separated at (a, a),

where ∆M = {(x, x) ∈M2 : x ∈M} is the diagonal in M2.

P r o o f. Without loss of generality we can assume that M is an open
subset of a normed complex vector space N with dimN ≥ 1 .

Consider N2 with the norm |(x, y)| = |x|+ |y|. Observe that, for z ∈M ,

%((z, z), X × Y ) = %(z,X) + %(z, Y ), |(z, z)− (a, a)| = 2|z − a| .
Lemma 1.2 now shows that condition (2) is satisfied if and only if

%(z,X) + %(z, Y ) ≥ c|z − a|p ,
in a neighbourhood of a , for some c > 0 . This completes the proof.

2. Multiplicity of isolated intersection. For the convenience of the
reader we repeat, from [1], basic definitions and facts on isolated intersec-
tions of analytic sets.

Let Z be a pure k-dimensional locally analytic subset of a complex man-
ifold M of dimension m. Let N be a submanifold of M of dimension n such
that N intersects Z at an isolated point a ∈M . We denote by Fa(Z,N) the
set of all locally analytic subsets V of M satisfying:

(1) V has pure dimension m− k,
(2) Na ⊂ Va,
(3) a is an isolated point of V ∩ Z,

where Na, Va denote the germs of N and V at a.
Observe that for V ∈ Fa(Z,N) the intersection of Z and V is proper at

a and we can consider the classical intersection multiplicity i (Z · V ; a) in
the sense of Draper [2] (cf. [9]). We define

ĩ (Z ·N ; a) = min{i (Z · V ; a) : V ∈ Fa(Z,N)},
Pa(Z,N) = {V ∈ Fa(Z,N) : i (Z · V ; a) = ĩ (Z ·N ; a)} .

Note that ([1], Th. 4.4) gives the full characterization of the family Pa(Z,N).
Having disposed of this preliminary step we can now turn to the general

case. Let X,Y be pure dimensional locally analytic subsets of a complex
manifold M such that a is an isolated point of X ∩ Y . The positive integer

i (X · Y ; a) = ĩ ((X × Y ) ·∆M ; (a, a))

is defined to be the multiplicity of intersection of X and Y at a.
If Y is a submanifold the definition of i (X ·Y ; a) presented above coin-

cides with that of ĩ (X · Y ; a) introduced earlier.
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Finally, observe that in the case Y = {a} we get

i (X · Y ; a) = ĩ (X · Y ; a) = degaX ,

where degaX is the classical degree (the Lelong number) of X at a (see e.g.
[1], [2]).

3. Main results. In this part we apply the “diagonal construction” to
separation of analytic sets. Let us begin with the following theorem moti-
vated by [7].

Theorem 3.1. Let Z be a pure dimensional analytic subset and let N be
a closed submanifold of a complex manifold M of dimension m ≥ 1. Suppose
that a ∈M is an isolated point of Z ∩N and set

P = {p > 0 : Z and N are p-separated at a} .
Then

1) p0 = inf P ∈ P ∩Q,
2) 1 ≤ p0 ≤ i (Z ·N ; a)− dega Z + 1.

P r o o f. Let V ∈ Pa(Z;N) (see Section 2). We know that i (Z ·N ; a) =
i (V ·N ; a), and ([1], Th. 4.4) implies that Va is a germ of a manifold. Suppose
that dimZ = k, dimN = n.

We can assume, by using Lemma 1.1 if necessary, that:

• M = B ×D × Cn, where B and D are the unit balls in Ck, Cm−n−k
respectively,
• N = {0} × Cn, 0 ∈ Cm−n,
• V = {0} ×D × Cn, 0 ∈ Ck,
• Z ∩ V = {0},
• π|Z : Z → B × D is proper, where π : M → B × D is the natural

projection.

In this situation, by ([1], Th. 4.4, Lemma 2.4), we obtain C0(π(Z)) ∩
({0} × D) = {0}, where C0(π(Z)) is the tangent cone of the set π(Z) at
0 ∈ Cm−n. An easy computation and ([7], Th. (1.2)) show that there exists
an open neighbourhood W ⊂ B × D of 0 ∈ Cm−n and a constant A > 0
such that

(∗) (x, y) ∈ π(Z) ∩W ⇒ |y| ≤ A|x| .
After these preparations let us define

Q = {q > 0 : ∃c̃ > 0 : |z|+ |y| ≤ c̃ |x|q for (x, y, z) ∈ Z
in some neighbourhood of 0} .

By ([7], Th. (1.2)) we get:

1′) q0 = supQ ∈ (Q ∩Q) ∪ {+∞},
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2′) d−1 ∈ Q,

where d = i (Z ·N ; 0)− deg0 Z + 1.
Now, observe that Lemma 1.2 implies that Z and N are p-separated at

0 ∈ Cm if there exists c > 0 such that

|x|+ |y| ≥ c(|x|+ |y|+ |z|)p for (x, y, z) ∈ Z
in some neighbourhood of 0 ∈ Cm.

We prove that

(∗∗) P = {1/q : q ∈ Q, q ≤ 1} .
First, suppose that q∈Q, q ≤ 1. Then p = 1/q ≥ 1 and |x| ≥ c1(|z|+|y|)p for
(x, y, z) ∈ Z in some neighbourhood of 0 and for some constant c1 ∈ (0, 1).
This implies |x| ≥ (c1/2p)(|x|+|y|+|z|)p and finally, there exists c2 > 0 such
that |x| + |y| ≥ c2(|x| + |y| + |z|)p for (x, y, z) ∈ Z in some neighbourhood
of 0. Hence p = 1/q ∈ P .

Now, let p ∈ P . Then p ≥ 1 and there exists c > 0 such that

|x|+ |y| ≥ c(|x|+ |y|+ |z|)p for (x, y, z) ∈ Z
in some neighbourhood of 0. By property (∗) we get

|x| ≥ c3(|y|+ |z|)p ,
and finally there exists c4 > 0 such that

|y|+ |z| ≤ c4|x|q, where q = 1/p ,

for (x, y, z) ∈ Z in some neighbourhood of 0. Therefore p = 1/q where q ∈ Q
and q ≤ 1, which proves (∗∗). Since d ≥ 1, condition 2′) implies d ∈ P .

It is easily seen that p0 = max{1, 1/q0} ≤ d. From 1′) we conclude that
p0 ∈ P ∩Q, and the proof is complete.

In the remainder of this paper we assume that X and Y are analytic
subsets of an m-dimensional (m ≥ 1) complex manifold M , and that a is an
isolated point of X ∩ Y .

Define
P = {p > 0 : X and Y are p-separated at a} .

We can now state our main result.

Theorem 3.2. If X and Y are pure dimensional , then

1) p0 = inf P ∈ P ∩Q,
2) 1 ≤ p0 ≤ i (X · Y ; a)− degaX · dega Y + 1.

P r o o f. Define

Z = X × Y ⊂M2, N = ∆M ⊂M2 ,

P̃ = {p > 0 : Z and N are p-separated at (a, a)} .
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By Lemma 1.3, P = P̃ . It is obvious that i (X ·Y ; a) = i (Z ·∆M ; (a, a))
and deg(a,a) Z = degaX · dega Y . Now, Theorem 3.1 completes the proof.

In the last two theorems we have been working under the assumption
that X,Y are pure dimensional. To study the general case suppose that
X1, . . . , Xr and Y1, . . . , Ys are all components of X and Y , respectively,
passing through a. We can extend our definitions from the pure dimensional
case (cf. [1]) by the following natural formulas:

i (X · Y ; a) =
r∑

k=1

s∑
l=1

i (Xk · Yl; a) ,

degaX =
r∑

k=1

degaXk, dega Y =
s∑
l=1

dega Yl .

We can now state the analogue of the last theorem.

Corollary 3.3. Under the above definitions:

1) p0 = inf P ∈ P ∩Q,
2) 1 ≤ p0 ≤ i (X · Y ; a)− degaX · dega Y + 1.

P r o o f. It is clear that p0 = max{p0(Xk, Yl; a) : k = 1, . . . , r, l =
1, . . . , s} (see Section 1), which implies 1), by Theorem 3.2. Let p0 =
p0(Xk, Yl; a) for some fixed k, l. Observe that Theorem 3.2 gives

1 ≤ p0 = p0(Xk, Yl; a) ≤ i (Xk · Yl; a)− degaXk · dega Yl + 1 .

An easy computation shows that

i (Xk · Yl; a)− degaXk · deg Yl ≤ i (X · Y ; a)− degaX · dega Y ,

and the proof is complete.

The following corollary yields information about “1-separation” in terms
of tangent cones of sets.

Corollary 3.4. The following conditions are equivalent :

1) X and Y are 1-separated at a,
2) Ca(X) ∩ Ca(Y ) = {0}.

P r o o f. Without loss of generality we can assume that M is an open
subset of Cm and that a = 0.

First, suppose that X and Y are 1-separated at 0 and, by contradiction,
that v ∈ C0(X)∩C0(Y ), v 6= 0. This implies (v, v)∈C0(X ×Y )∩∆Cm and
so, by definition, there exist sequences (xν , yν) ∈ X × Y and λν ∈ C such
that

xν → 0, yν → 0, λν(xν , yν)→ (v, v) as ν →∞ .
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Since X and Y are 1-separated, |xν − yν | ≥ C|xν | for some c > 0 and
sufficiently large ν. Then |λνxν − λνyν | ≥ C|λxν |, which is impossible.

Next, if C0(X) ∩ C0(Y ) = {0} then ([1], Th. 5.6) implies i (X · Y ; 0) =
deg0X · deg0 Y . By Corollary 3.3 we get p0(X,Y ; 0) = 1, which completes
the proof.

We shall now construct an example showing that the estimate of p0

presented in our basic Theorem 3.1 is optimal.

Example 3.5. Let s ≥ d ≥ 1 be integers. Define M = C2, a = 0 and

Z = {(x, y) ∈ C2 : ys + xyd−1 + xd = 0}, N = {(x, y) ∈ C2 : x = 0} .
Straightforward calculation yields that deg0 Z = d, i (Z ·N ; 0) = s and

p0 = p0(Z,N ; 0) = s− d+ 1 .
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