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On functions satisfying more than one equation
of Schiffer type

by J. Macura and J. Śladkowska (Gliwice)

Abstract. The paper concerns properties of holomorphic functions satisfying more
than one equation of Schiffer type (Dn-equation). Such equations are satisfied, in particu-
lar, by functions that are extremal (in various classes of univalent functions) with respect
to functionals depending on a finite number of coefficients.

Introduction. Let S be the class of functions f holomorphic and uni-
valent in the unit disk U with f(0) = f ′(0) − 1 = 0, and let Vn be the
subset of Cn−1consisting of all points An = (a2, . . . , an) corresponding to
the initial coefficients of some f ∈ S. It is known that for each n ≥ 2 the
coefficient region Vn is simply connected and compact, and it coincides with
the closure of its interior. Furthermore, to each An ∈ ∂Vn there corresponds
a function f ∈ S which satisfies a differential equation of the form

(∗)
(
zw′

w

)2

P (w) = Q(z), z ∈ U ,

where

P (w) =
k−1∑
ν=1

Aν
wν

, Q(z) =
k−1∑

ν=−k+1

Bν
zν
,

Ak−1 6= 0, k ≤ n, B0 > 0, B−ν = Bν , ν = 1, . . . , k − 1, Q(z) ≥ 0 every-
where on ∂U , and Q(z) = 0 somewhere on ∂U . It is clear from (∗) that
Ak−1 = Bk−1. An equation of the form (∗) where P and Q have all the indi-
cated properties is called a Dn-equation of degree k. If f is holomorphic near
the origin and satisfies a Dn-equation of degree k, it must have the proper-
ties f(0) = 0, [f ′(0)]k−1 = 1. Any such function is called a Dn-function if
it is holomorphic in U and f ′(0) = 1. It is known that every Dn-function
is univalent ([6], p. 103) and there is a one-one correspondence between
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∂Vn and the Dn-functions. Every Dn-function corresponds to some bound-
ary point of Vn and to any given boundary point of Vn there corresponds
a unique Dn-function. However, a Dn-function can satisfy more than one
independent Dn-equation.

It seems natural to expect that points An for which the corresponding
function f satisfies more than one Dn-equation lie on an edge or vertex of
the boundary surface while those points for which f satisfies only one Dn-
equation lie on a part of the surface which is in some sense more smooth.
It is therefore of interest to investigate the class of functions correspond-
ing to more than one Dn-equation. There are many surprisingly precise
results about this class due to Schaeffer and Spencer [6], Kubota [2] and
Bahtin [1].

Similar investigations can be carried out for other classes of univalent
functions, e.g. for the class S1 defined bellow.

Let S1 consist of all functions of the form

f(z) = b1z + b2z
2 + . . . , z ∈ U,

with b1 > 0, univalent in U and such that f(U) ⊂ U . The set of all points
Bn = (b1, . . . , bn) corresponding to functions of class S1 forms a region Vn in
the (2n−1)-dimensional space. Since S1 becomes compact upon addition of
the function f(z) = 0, in the topology of uniform convergence on compact
sets, the region Vn is compact. It is known that to every Bn = (b1, . . . , bn) ∈
∂Vn there corresponds an f ∈ S1 which satisfies an equation of the form (∗)
with

(∗∗) P (w) =
k−1∑

ν=−k+1

Aν
wν

, Q(z) =
k−1∑

ν=−k+1

Bν
zν
,

where Ak−1 6= 0, k ≤ n, A−ν = Aν , ν = 0, . . . , k − 1, and Q(z) has the
same properties as in the case of S. It is also clear that Ak−1/Bk−1 =
bk−1
1 > 0. Also in this case, an equation of the form (∗), where P (w) and
Q(z) have the properties indicated, is called a Dn-equation of degree k. If
f is holomorphic near the origin and satisfies a Dn-equation of degree k, it
must have the properties f(0) = 0, [f ′(0)]k−1 = Ak−1/Bk−1. A function f
which is holomorphic in U and which has a positive derivative at the origin
will be called a Dn-function if it satisfies a Dn-equation. It is known that
every Dn-function belongs to S1, and that there is a one-one correspondence
between ∂Vn without 0 and the Dn-functions [5].

Also in the case of the classes of Bieberbach–Eilenberg and Grunsky–
Schah functions (the classes B and K) it can be proved without difficulty
that to each point of ∂Vn, where Vn is the coefficient region constructed for
B or K, there corresponds a Dn-function, where the Dn-equation is of the
form (∗) with P (w) and Q(z) of the form (∗∗) with A−ν = Aν for B and
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A−ν = (−1)νAν for K, and Q(z) ≥ 0 on ∂U . Just as for S, it is also here of
interest to investigate the class of Dn-functions belonging to more than one
Dn-equation.

The same problems for the classes S1 and B were investigated by one of
the present authors in [7] and [4], by Jakubowski and Majchrzak in [3] and
by Starkov in [8]. It turned out that not all the properties of the functions
in (∗) were in fact used in the derivation of the majority of the results of
[7] and [4]. The aim of this paper is to investigate functions satisfying two
independent equations of the form (∗) under weaker assumptions on P (w)
and Q(z). These assumptions are always satisfied for equations of the form
(∗) constructed for S1, B and K, and maybe for other classes of univalent
functions.

I. Properties of functions satisfying more than one Dn-equation.
Consider a differential equation of the form

(1)
(
zw′

w

)2

P (w) = Q(z) ,

where

P (w) =
k−1∑

ν=−k+1

Aν
wν

, Q(z) =
k−1∑

ν=−k+1

Bν
zν

,

k ≥ 2, z ∈ U = {z : |z| < 1} ,

|A−k+1| = |Ak−1| 6= 0, B−ν = Bν , ν = 1, . . . , k − 1, Q(z) is real and
nonnegative on the circle ∂U = {z : |z| = 1} and Q(z) = 0 somewhere
on ∂U .

Let

(2) f(z) = b1z + b2z
2 + . . . , 1 6= b1 > 0, z ∈ U ,

satisfy (1) in U . It follows from Theorem 4.1 of [9] that f is bounded and
univalent in U . Furthermore, it has an analytic continuation to ∂U except
for a finite number of points, where this continuation is only continuous. At
these points

f(z) =
∞∑
k=m

ck(z − z0)k/n, n,m ∈ N .

The obvious necessary condition for the function (2) to satisfy (1) is that
Ak−1 = bk−1

1 Bk−1. The equation (1), by analogy to equations satisfied by
extremal functions in various classes of univalent functions, will be called
an equation of Schiffer type. In the case when A−ν = Aν , A−ν = Aν or
A−ν = (−1)νAν , ν = 1, . . . , k − 1, it can be proved ([5], [9], Th. 4.4) that
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f is respectively a bounded function (f(U) ⊂ U), a Bieberbach–Eilenberg
function or a Grunsky–Schah function.

Suppose now that f , apart from (1), satisfies another equation of the
same type,

(3)
(
zw′

w

)2

P1(w) = Q1(z) ,

where

P1(w) =
l−1∑

ν=−l+1

Cν
wν

, Q1(z) =
l−1∑

ν=−l+1

Dν

zν
, l ≥ 2 ,

|C−l+1| = |Cl−1| 6= 0, D−ν = Dν , ν = 1, . . . , l − 1, Q1(z) is real and
nonnegative on ∂U . Suppose that l > k. The properties of f are then given
in Theorems 1–6.

Theorem 1. The function f can be continued to the entire plane as an
algebraic function.

P r o o f. This follows by division of (1) by (3).

Let F denote the algebraic function obtained in this way.

Theorem 2. Both at 0 and at ∞, all analytic elements of F only assume
values 0 and ∞.

P r o o f. Suppose that an element of F assumes a value w0 6= 0,∞ at 0.
Then this element has the form

(4) w = w(z) = w0 +
∞∑
j=q

cjz
j/m ,

where cq 6= 0, and q ≥ 1, m ≥ 1 are integers. Putting (4) into (1) or (3) and
letting z → 0, since zw′(z)/w(z) → 0, we obtain 0 = ∞ in both cases. In
a similar way we obtain a contradiction when the element has centre ∞.

Theorem 3. All elements of F with centre 0 and ∞ are smooth and
invertible. Furthermore, the number of elements with centre 0 which assume
value 0 at 0 and value ∞ at 0, and the number of elements with centre ∞
which are 0 at ∞ and ∞ at ∞ do not exceed

(5) min(k − 1, l − k) .

P r o o f. Let w = w(z), w(0) = 0, be an element of F . Then

(6) wl−k
Ak−1 + . . .+A−k+1w

2k−2

Cl−1 + . . .+ C−l+1w2l−2
= zl−k

Bk−1 + . . .+Bk−1z
2k−2

Dl−1 + . . .+Dl−1z2l−2
,
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where Ak−1 = bk−1
1 Bk−1 and Cl−1 = bl−1

1 Dl−1. Taking the (l − k)th roots
we obtain

w(1 + λ1w + . . .) = b1εjz(1 + µ1z + . . .) ,

where εj = exp{i2πj/(l− k)}, j = 0, . . . , l− k− 1. By the implicit function
theorem, w = w(z) is a smooth invertible element of the form

(7) w = b1εj(z + c
(j)
2 z2 + . . .)

and the number of different elements does not exceed l−k (each determined
by an (l − k)th root of 1). Likewise, an element with centre 0 such that
w(0) =∞ and

1
wl−k

A−k+1 + . . .+Ak−1w
−2k+2

C−l+1 + . . .+ Cl−1w−2l+2
= zl−k

Bk−1 + . . .+Bk−1z
2k−2

Dl−1 + . . .+Dl−1z2l−2
,

where |A−k+1| = |Ak−1| = bk−1
1 |Bk−1| and |C−l+1| = |Cl−1| = bl−1

1 |Dl−1|,
has the form

(8) w = b−1
1 εjη1(z−1 + d

(j)
0 + d

(j)
1 z + . . .) ,

where εj is as above and |η1| = 1. Considering elements with centre ∞, we
conclude in a similar way that they have either the form

(9) w = b−1
1 εjη2(z + e

(j)
0 + e

(j)
1 z−1 + . . .) , |η2| = 1 ,

or

(10) w = b1εjη3(z−1 + f
(j)
2 z−2 + . . .), |η3| = 1 ,

where each of the elements (8), (9) and (10) is determined by an (l − k)th
root of 1. So the number of elements of each of these three forms does not
exceed l − k. The same bound has been obtained in the case of elements
of the form (7). On the other hand, each of the elements (7)–(10) satisfies
both (1) and (3). In particular, it follows that εj in (7)–(10) must be both
a (k − 1)th and an (l − 1)th root of 1. Hence we obtain (5).

Corollary 1. The number of elements of F with centre 0 is equal to
the rang of multivalency of this function.

R e m a r k 1. If q denotes the greatest common divisor of k−1 and l−1,
then the number of elements of each of the forms (7)–(10) does not exceed q.

Corollary 2. The algebraic function F can be at most 2q-valued , where
q is the greatest common divisor of k − 1 and l − 1.

Theorem 4. If p denotes the number of elements of F with centre 0
then F satisfies an algebraic equation of the form

(11) P (z, w) = bp(z)wp + bp−1(z)wp−1 + . . .+ b0(z) = 0 ,
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bp(z) 6≡ 0, where bp(z), . . . , b0(z) are polynomials in z of degree at most p,
at least one of them having degree p. These polynomials have no common
factor of positive degree and P (z, w) is irreducible as a polynomial in w,
i.e. it cannot be represented as a product of two polynomials in w of positive
degrees whose coefficients are polynomials in z.

P r o o f. F is an algebraic p-valued function, because all its elements
with centre 0 are smooth, and hence it satisfies an equation of the form
(11), where P (z, w) is irreducible as a polynomial in w and bj(z) have no
common factor of positive degree. It remains to prove that the bj(z) are
polynomials of degree at most p and at least one of them has degree p. Let
F−1 denote the inverse function to F . All elements with centre 0 and∞ are
smooth and invertible, so their inverses are smooth elements of F−1 with
centres 0 and ∞. We shall prove that these are the only elements of F−1

with centres 0 and ∞. Indeed, F−1 is also an algebraic function and the
element z = f−1(w) satisfying two equations of the form(

wz′

z

)2 k−1∑
j=−k+1

Bj
zj

=
k−1∑

j=−k+1

Aj
wj

and (
wz′

z

)2 l−1∑
j=−l+1

Dj

zj
=

l−1∑
j=−l+1

Cj
wj

belongs to this function. As in the case of F , it can be proved that elements
with centre 0 can only assume values 0 and∞ at 0 and, analogously, elements
with centre ∞ can only assume values 0 and ∞ at ∞, and apart from this,
they are invertible, so their inverses are elements with centres 0 and ∞
of the function F (and these are all such elements). The number of the
latter elements is 2p, so the number of elements with centres 0 and ∞
of F−1 is 2p. Hence we conclude that there are p elements with centre 0
and p elements with centre ∞. Thus F−1 is a p-valued function. Therefore
P (z, w) must be a polynomial of degree p with respect to z, and this gives
the assertion.

Corollary 3. The number of elements of F with centre 0 assuming
value 0 at 0 is equal to the number of elements with centre ∞ assuming
value ∞ at ∞. Hence the number of elements with centre 0 assuming value
∞ at 0 equals the number of elements with centre∞ assuming value 0 at∞.

P r o o f. Let (a → b) denote an element with centre a assuming value
b at a. Let µ be the number of elements (0 → 0) and µ′ the number of
elements (∞→∞), and suppose µ′ > µ. The number of elements (0→∞)
is p− µ, the number of elements (∞→ 0) is p− µ′. Therefore the number
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of elements of F−1 with centre 0 is µ+ p− µ′ < µ+ p− µ = p, which is not
the case. The proof in the case µ′ < µ is analogous.

Theorem 5. The function F is not odd-valued unless it is single-valued.

P r o o f. It is sufficient to prove that the number of elements with centre
0 is even. So it is sufficient to prove that the number of elements assuming
value 0 at 0 is the same as the number of elements assuming value ∞ at 0.
Let the two numbers be µ and ν respectively. Suppose first that ν > 0 (we
always have µ ≥ 1). The elements of the first group have the form

(α) w = b1εz +O(z2) ,

and those of the second are

(β) w = b−1
1 εz−1 +O(1) ,

where |ε| = 1. Each of them satisfies an equation of the form

P (z, w) = bp(z)wp + . . .+ b0(z) = 0 , µ+ ν = p ,

where bj(z) = a
(j)
0 + . . .+ a

(j)
p zp. From the Viète formulas we see that

bν(z)
bp(z)

= b−ν1 ηz−ν +O(z−ν+1) , |η| = 1 ,

in the neighbourhood of 0, that is,

a
(ν)
0 zν + . . .+ a(ν)

p zp+ν = (b−ν1 η +O(z))(a(p)
0 + . . .+ a(p)

p zp) .

Hence

(12) a
(p)
0 = . . . = a

(p)
ν−1 = 0 .

Consider now the elements with centre∞. The number of elements with
value ∞ at ∞ must be µ, and the number of those with value 0 at ∞ must
be ν. These elements have the form

(γ) w = b−1
1 εz +O(1), |ε| = 1 ,

and

(δ) w = b1εz
−1 +O(z−2) , |ε| = 1 .

Using again the Viète formulas we obtain
bµ(z)
bp(z)

= b−µ1 ηzµ +O(zµ−1) , |η| = 1 ,

in the neighbourhood of ∞, that is,

a
(µ)
0 z−µ + . . .+ a(µ)

p zp−µ = (a(p)
ν zν + . . .+ a(p)

p zp)(b−ν1 η +O(z−1)) .

Hence

(13) a(p)
p = a

(p)
p−1 = . . . = a

(p)
ν+1 = 0 .
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From (12) and (13) we conclude that

(14) bp(z) = a(p)
ν zν .

Using once more the Viète formulas we have

(15)
b0(z)
bp(z)

= bµ−ν1 εzµ−ν +O(zµ−ν+1), |ε| = 1 ,

in the neighbourhood of 0, that is,

(16) a
(0)
0 + . . .+ a(0)

p zp = a(p)
ν bµ−ν1 εzµ +O(zµ+1) .

Similarly,

(17)
b0(z)
bp(z)

= bν−µ1 ηzµ−ν +O(zµ−ν−1)

in the neighbourhood of ∞, giving

(18) a
(0)
0 + . . .+ a(0)

p zp = a(p)
ν bν−µ1 ηzµ +O(zµ−1) .

From (16) and (18) it follows that a(0)
0 = . . . = a

(0)
µ−1 = 0 and a

(0)
p = . . . =

a
(0)
µ+1 = 0, and hence

(19) b0(z) = a(0)
µ zµ .

By (14), (19), (15) and (17),

a
(0)
µ

a
(p)
ν

= bµ−ν1 ε = bν−µ1 η .

Since b1 6= 1, it follows that µ = ν.
Suppose now that ν = 0, i.e. the only elements with centre 0 are of

the type (0 → 0), so they have the form (α). In this case µ = p ≥ 1. It
follows from Corollary 3 that the only elements with centre ∞ are of the
type (∞ → ∞), i.e. have the form (γ). The number of these is, of course,
also p. It follows from the Viète formulas that

b0(z)
bp(z)

= bp1ηz
p +O(zp+1) , |η| = 1 ,

in the neighbourhood of 0, that is,

a
(0)
0 + . . .+ a(0)

p zp = zp(bp1η +O(z))(a(p)
0 + . . .+ a(p)

p zp) .

Hence
a
(0)
0 = . . . = a

(0)
p−1 = 0 or b0(z) = a(0)

p zp, a(0)
p 6= 0 .

Using once more the Viète formulas, we have in the neighbourhood of ∞,

b0(z)
bp(z)

= b−p1 ηzp +O(zp−1) , |η| = 1 ,
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that is,

a
(p)
0 zp = zp(b−p1 η +O(z−1))(a(p)

0 + . . .+ a(p)
p zp) .

Hence
a
(p)
1 = . . . = a(p)

p = 0 or bp(z) = a
(p)
0 6= 0 .

Let now 0 < l ≤ p. Using again the Viète formulas, we have in the neigh-
bourhood of 0,

bp−l(z)

a
(p)
0 (z)

= czl +O(zl+1) ,

and hence a(p−l)
0 = . . . = a

(p−l)
l−1 = 0, and in the neighbourhood of ∞,

bp−l(z)

a
(p)
0 (z)

= dzl +O(zl−1) ,

and hence a(p−l)
l+1 = . . . = a

(p−l)
p = 0. We have thus proved that

bp−l(z) = a
(p−l)
l zl for l = 0, 1, . . . , p ,

and the polynomial P (z, w) has the form

P (z, w) = a
(p)
0 wp + a

(p−1)
1 zwp−1 + . . .+ a

(p−l)
l zlwp−l + . . .+ a(0)

p zp ,

and, in the case p > 1, it is reducible, which is a contradiction. If p = 1 then
f can be continued as a single-valued function. So the theorem has been
proved.

Corollary 4. If F is a single-valued function it has the form

F (z) = b1z .

P r o o f. In this case the equation (11) takes the form

b1(z)w + b0(z) = 0 ,

where b1(z) = a
(1)
0 , b0(z) = a

(0)
1 z. From the fact that w = f(z) satisfies this

equation, we have −a(0)
1 /a

(1)
0 = b1 and w = F (z) = b1z.

R e m a r k 2. It has been proved by the way that

(20) bp(z) = a(p)
µ zµ and b0(z) = a(0)

µ zµ ,

where µ = p/2, p is even, and furthermore, |a(p)
µ | = |a(0)

µ |.
Theorem 6. If F is double-valued then each of its elements w = w(z)

satisfies the equation

(21) eiαw + e−iαw−1 = b−1
1

(
eiϕz − b2

b1
e−iα + e−iαz−1

)
.

P r o o f. This follows from Remark 2 and from the fact that w = f(z) is
an element of F .
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R e m a r k 3. The conditions Q(z) ≥ 0, Q1(z) ≥ 0 on ∂U were not used
in the proofs of Theorems 1–6.

II. The case when one of the equations is of degree 3. We are
now concerned with the case when the equation (1) is of degree 3. So it has
the form

(22)
(
zw′

w

)2(
A2

w2
+
A1

w
+A0 +A−1w +A−2w

2

)
=
B2

z2
+
B1

z
+B0 +B1z +B2z

2 ,

where the right-hand side is nonnegative on ∂U .
We assume additionally that the right-hand side of (22) has at least one

zero on ∂U .
The number l in (3) must of course be greater than 3.

Theorem 7. If a function f of the form (2) satisfies (22) and (3) then it
can be continued as an algebraic single-valued or double-valued function F .

P r o o f. It follows from Corollary 1 and Theorem 5 that F can only
be single-valued, double-valued or four-valued. We now exclude this last
possibility.

Suppose that F is four-valued. Then, by Theorem 4 and Remark 2, each
element w = w(z) of F satisfies an equation of the form

(23) b4(z)w4 + . . .+ b0(z) = 0 ,

where

bν(z) = a
(ν)
4 z4 + . . .+ a

(ν)
0 , ν = 0, . . . , 4 ,

b4(z) = a
(4)
2 z2 , b0(z) = a

(0)
2 z2 ,

a
(4)
2 6= 0 , a

(0)
2 6= 0 , |a(4)

2 | = |a
(0)
2 | ,

and b1(z), b2(z), b3(z) are polynomials of degree at most 4, at least one of
them having degree 4. By (7)–(10) and since ε0 = 1 and ε1 = −1, elements
of F with centre 0 have the form

w = ±b1(z +O(z2)) ,

and
w = ±b−1

1 η1(z−1 +O(1)) , |η1| = 1 ,
and elements with centre ∞ have the form

w = ±b−1
1 η2(z +O(1)), |η2| = 1 ,

and
w = ±b1η3(z−1 +O(z−2)) , |η3| = 1 .
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From the Viète formulas we now obtain b3(z) = a
(3)
2 z2 and b1(z) = a

(1)
2 z2,

and so (23) takes the form

(24) Aw2 +Bw + Cw−1 +Dw−2 = Pz2 +Qz +R+ Sz−1 + Tz−2 ,

where A 6= 0, D 6= 0, P 6= 0, T 6= 0, |A| = |D|. This equation is satisfied
by each element of F . Denoting the left-hand side of (24) by M(w) and the
right-hand side by N(z) we obtain

(25) M(w) = N(z) .

If w = w(z) is an arbitrary element of F then

(26) M(w(z)) = N(z)

in the circle of this element. Differentiating (26) with respect to z we have

(27) M ′(w(z))w′(z) = N ′(z) .

Relations (22) and (26) give

(28)
(
zN ′(z)
wM ′(w)

)2(
A2

w2
+ . . .+A−2w

2

)
=
B2

z2
+ . . .+B2z

2 .

Furthermore,

wM ′(w) = 2Aw2 +Bw − Cw−1 − 2Dw−2 ,

and by (25),

(wM ′(w))2 =
(

4N2(z) +
B2

A
N(z)− 2BC − 16AD

)
(29)

−
(

4BN(z) +
B3

A
+ 8AC

)
w

−
(

4CN(z) + 8BD +
B2C

A

)
1
w

+
(
C2 − B2D

A

)
1
w2

.

Analogously, from (25) we have

(30) A−2w
2 =

A−2

A

(
N(z)−Bw − C 1

w
−D 1

w2

)
.

Putting (29) and (30) into (28) we conclude that each element of F satisfies

(zN ′(z))2
[(
A2 −

A−2D

A

)
+
(
A1 −

A−2C

A

)
w

+
(
A0 +

A−2

A
N(z)

)
w2 +

(
A−1 −

A−2B

A

)
w3

]
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=
S(z)
z2

[(
C2 − B2D

A

)
−
(

4CN(z) + 8BD +
B2C

A

)
w

+
(

4N2(z) +
B2

A
N(z)− 2BC − 16AD

)
w2

−
(

4BN(z) +
B3

A
+ 8AC

)
w3

]
,

with S(z) = B2 +B1z+B0z
2 +B1z

3 +B2z
4, which is an equation of degree

at most 3 with respect to w. In order that it could be an equation of the
four-valued function F , the coefficients of all powers must vanish identically.
This leads to the identities

(a) (zN ′(z))2
(
A2 −

A−2D

A

)
=
S(z)
z2

(
C2 − B2D

A

)
,

(b) (zN ′(z))2
(
A1 −

A−2C

A

)
= −S(z)

z2

(
4CN(z) + 8BD +

B2C

A

)
,

(c) (zN ′(z))2
(
A0 +

A−2

A
N(z)

)
=
S(z)
z2

(
4N2(z) +

B2

A
N(z)− 2BC − 16AD

)
,

(d) (zN ′(z))2
(
A−1 −

A−2B

A

)
= −S(z)

z2

(
4BN(z) +

B3

A
+ 8AC

)
.

Dividing now (b) and (d) by (c) we obtain

A1 −A−2CA
−1

A0 +A−2A−1N(z)
= − 4CN(z) + 8BD +B2CA−1

4N2(z) +B2A−1N(z)− 2BC − 16AD

and

A−1 −A−2BA
−1

A0 +A−2A−1N(z)
= − 4BN(z) + 8AC +B3A−1

4N2(z) +B2A−1N(z)− 2BC − 16AD
,

and hence A1 = A−1 = 0 and

(31) CA0 + 2A−2BDA
−1 = 0 , BA0 + 2A−2C = 0 .

Then we have

(32) B2D = AC2 .

Suppose first that B 6= 0. From (32) and (31) we obtain C 6= 0 and
A0 = −2A−2CB

−1, and from (32) and (a),

A2 = A−2DA
−1 = A−2C

2B−2 ,
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where |C| = |B|. In this case (22) takes the form

(33) A−2

(
w − eiϕ

w

)2(
zw′

w

)2

=
S(z)
z2

,

where the right-hand side is nonnegative on ∂U .
Let now B = 0. It follows from (32) that also C = 0, and

M(w) = Aw2 +
D

w2
.

Putting A/D = e−2iϕ and L(z) = A−1N(z) in (c) we obtain

A2(zL′(z))2(A0 +A−2L(z)) =
S(z)
z2

(4A2L2(z)− 16A2e2iϕ) ,

or

(34)
(zL′(z))2(A0 +A−2L(z))

4(L(z)− 2eiϕ)(L(z) + 2eiϕ)
=
S(z)
z2

,

where the only poles of the right-hand side are 0 and ∞.
Let L(zj) = 2eiϕ, j = 1, 2, 3, 4, and L(ζj) = −2eiϕ, j = 1, 2, 3, 4,

zj , ζj 6= 0. At these points either

A0 +A−2L(z) = 0 or L′(z) = 0 .

If A0 + A−2L(z) = 0 for at least one of these points then A0 = ±2A−2e
iϕ

and by (a), A2 = A−2DA
−1 = A−2e

2iϕ, so also in this case (22) takes the
form (33):

A−2

(
w ± eiϕ

w

)2(
zw′

w

)2

=
S(z)
z2

.

In the opposite case each of these points satisfies L′(z) = 0, so all roots of
L(z)−2eiϕ and of L(z)+2eiϕ are at least double (because the first derivative
at these roots is 0):

(35)
L(z)− 2eiϕ =

λ(z − z1)2(z − z2)2

z2
,

L(z) + 2eiϕ =
µ(z − ζ1)2(z − ζ2)2

z2
.

Differentiating (35) we obtain

(36)
zL′(z) =

2λ
z2

(z − z1)(z − z2)(z2 − z1z2)

=
2µ
z2

(z − ζ1)(z − ζ2)(z2 − ζ1ζ2) .
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From (35) and (36) we obtain

(37)
zL′(z) =

2λ
z2

(z4 − z4
1) ,

L(z)± 2eiϕ =
λ

z2
(z2 ± z2

1)2 .

After substituting (37) into (34) we have

(38) A0 +A−2L(z) =
S(z)
z2

.

But, by the assumption, S(z) has at least one root on the circle ∂U , and it
is at least double. Denote this root by z0: S(z0) = 0, S′(z0) = 0. From (38)
we have

A0 +A−2L(z0) = 0 and A−2L
′(z0) = 0 .

Therefore z0 must be one of the points z1, z2, ζ1, ζ2, hence L(z0) = ±2eiϕ

and thus A0 = ±2A−2e
iϕ, and we again obtain (33).

Consider now the consequences of (33) for w = f(z). Put w = f(z)
in (33), where z = eit, t ∈ [0, 2π). Since the right-hand side of (33) is
nonnegative on ∂U we have

e2iα
(
f(eit)− eiϕ

f(eit)

)2(
eitf ′(eit)
f(eit)

)2

≥ 0 ,

where 2α = argA−2. Hence taking square roots gives

Re
{
eiα

ieitf ′(eit)
f(eit)

(
f(eit)− eiϕ

f(eit)

)}
= 0 ,

and integration shows that

(39) Re
{
eiα
(
w +

eiϕ

w

)}
= c , c = const. , w = f(eit) .

We now investigate the set of points for which (39) is satisfied. Putting
w = eiϕ/2ω in (39) gives

(40) Re
{
eiβ
(
ω +

1
ω

)}
= c ,

where α+ ϕ/2 = β. Putting ω = u+ iv in (40) we obtain

(41) u cosβ((u2 + v2)−2 + 1)− v sinβ(1− (u2 + v2)−2) = c .

Let f1(z) = e−iϕ/2f(z). Then f1 is also univalent and bounded and ∂f1(U)
is the rotation of ∂f(U) through the angle −ϕ/2. So ∂f1(U), and likewise
∂f(U), must intersect both coordinate axes in at least two points, and there
must exist at least two points of intersection of opposite signs on each axis.
If (u, 0) ∈ ∂f1(U) then

u cosβ(u−2 + 1) = c .
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If cosβ 6= 0 then

u−1 + u =
c

cosβ
,

so
u2 − c

cosβ
u+ 1 = 0 .

This is impossible because this equation has no solutions of opposite signs.
Therefore cosβ = 0, and hence sinβ = ±1 and (41) takes the form

v(1− (u2 + v2)−2) = 0 .

Then ∂f1(U) consists of the circle ∂U and of one or two slits extending from
±1 and lying on the u axis, and ∂f(U) consists of ∂U and of slits extending
from ±eiϕ/2 and lying on the line through 0.

We now prove that f can be continued as a double-valued function. In
fact, if f(U) = U then f(z) = z, which is not true because b1 6= 1. Suppose
now that f(U) = U−L where L is a segment extending from one of the points
±eiϕ/2 and lying on the line through 0: L = {w : w = ±eiϕ/2(1− t) + td},
0 ≤ t ≤ 1. Let f(eit0) = d; hence f ′(eit0) = 0 and by (33), eit0 is an at least
double root of S(z). Thus S(z) has the form

S(z) = B2(z − eit0)2(z − z0)(z − z−1
0 ) ,

where |z0| ≤ 1. If |z0| < 1 then f(z0) = ±eiϕ/2, which is impossible because
no point of U is mapped to ∂f(U). So |z0| = 1. Let z0 = eit1 and

(42) S(z) = B2(z − eit0)2(z − eit1)2 .

In the case when ∂f(U) consists of ∂U and two slits, an analogous reasoning
leads to the same result. Putting now (42) into (33) and taking square roots
we obtain√

A−2

(
eiϕ

w2
− 1
)
w′ =

√
B−2

(
1− (eit0 + eit1)

1
z

+ ei(t0+t1)
1
z2

)
.

Integration yields

(43) −
√
A−2

(
eiϕ

w
+w

)
=
√
B−2(z − (eit0 + eit1) log z − ei(t0+t1) 1

z

)
+ c .

Of course, eit0 +eit1 = 0, and (43) is an equation of a double-valued function,
which was to be proved.

References

[1] A. K. Baht in, Some properties of functions of class S , Ukrain. Mat. Zh. 33 (1981),
154–159 (in Russian); English transl.: Ukrainian Math. J. 33 (1981), 122–126.

[2] Y. Kubota, On extremal problems which correspond to algebraic univalent functions,
Kodai Math. Sem. Rep. 25 (1973), 412–428.



252 J. Macura and J. Ś ladkowska
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