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The interaction of linear boundary value
and nonlinear functional conditions

by Michal Fečkan (Bratislava)

Abstract. The existence of solutions is studied for certain nonlinear differential equa-
tions with both linear and nonlinear conditions.

1. Introduction. The purpose of this paper is to study the existence
of solutions of problems similar to

(1.1)
x′′′ = f(x, t) ,
‖x′′‖C0 = g(x) ,
x(0) = x(1) = 0,

where f : R × [0, 1] → R and g : C0([0, 1],R) → R are continuous. We see
that (1.1) contains two types of conditions. The first is nonlinear and func-
tional, while the second is linear and involves boundary values. Moreover,
the second condition usually leads to problems at resonances.

Problems with the first type of conditions were studied in [2]. S. A.
Brykalov solved the problem

x′′ = f(x, t) ,
‖x′‖C0 = g1(x) ,
‖x‖C0 = g2(x) ,

where f : R× [0, 1]→R and g1, g2 : C0([0, 1],R)→R are continuous. Under
additional assumptions on f, g1, g2, he showed the existence of at least four
solutions of the problem. Hence the paper [2] suggests a method for finding
multiple solutions for nonlinear ordinary differential equations with certain
nonlinear, functional conditions.

On the other hand, the theory of existence of solutions for nonlinear
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boundary value problems at resonances is well-known [1]. The so-called
Landesman–Lazer conditions play an important role in that theory.

In this paper, we try to combine these two approaches to (1.1). We shall
study certain types of nonlinear ordinary differential equations with both
linear boundary conditions and nonlinear functional conditions. We were
motivated mainly by [2]; as far as the author knows, the literature on such
problems is rather limited, and their study remains a promising subject.
On the other hand, S. A. Brykalov did not consider linear boundary value
conditions which may lead to problems at resonances. Moreover, in some
sense his nonlinear functional conditions are more specific than ours. Our
setting of the problem is more general, and it embodies a broader variety
of nonlinear differential equations, due to the combination of two types of
conditions.

The plan of this paper is as follows. In the next section, we study an
abstract equation in Banach spaces, generalizing (1.1). Then we apply our
results on that equation to ordinary differential equations similar to (1.1).
Section 4 includes some remarks.

2. Abstract results. In this section, we formulate an abstract version
of (1.1) in the framework of nonlinear operators in Banach spaces. We refer
the reader to the next section for concrete forms of those operators and
spaces. We study an abstract equation of the form

(2.1) Lu = H(u), B(u) = D(u) ,

where L : X → Y, H : Y → Y , B : X → Rn and D : Y → Rn are contin-
uous, L is a linear operator, X, Y are Banach spaces and X is compactly
embedded into Y . Moreover, we assume L = L1 ◦ L2, where L1 : X1 → Y
and L2 : X2 → Y are continuous and linear, and L2 is Fredholm of nonneg-
ative index. Furthermore, X1, X2 are Banach spaces such that X ⊂ X2 and
X1, X2 are both compactly embedded into Y . Finally, X L2→ X1

L1→ Y and
B = B ◦ L2, where B : Y → Rn is continuous.

The decompositions L = L1 ◦L2 and B = B ◦L2 express the interaction
of two conditions, and allow (2.1) to be rewritten in the following form:

(2.2a)
{
L1v = H(u), v ∈ X1 ,
B(v) = D(u), u ∈ Y ,

(2.2b) L2u = v, u ∈ X2, v ∈ Y .
Finally, we suppose H, D to be bounded, i.e., |H(·)|Y ≤ K1 and K2 ≤
D(·) ≤ K3 for some constants K1, K2, K3. (The norm of Y will be denoted
by | · |Y , and similarly for other spaces.)

First, we study (2.2a). For this purpose, we assume the existence of a
closed subset A ⊂ X1 with the properties
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(a) ∀b ∈ Y , |b|Y ≤ K1, ∀d ∈ [K2,K3] there exists a unique v ∈ A such
that L1v = b and B(v) = d.

(b) The above-defined map (b, d)→ v(b, d) is continuous as a map

BK1 × [K2,K3]→ Y, where BK1 = {z ∈ Y | |z|Y ≤ K1} .

Remark 2.1. Assume that the map v from (a) is bounded, i.e., |v(·, ·)|X1

≤ M for a constant M , and dim kerL1 < ∞, ImL1 = Y . Then (a) implies
(b). Indeed, let L̃1 be a right inverse of L1. We take |bi|Y ≤ K1, bi → b in
Y , di → d, di ∈ [K2,K3]. Then {L̃1bi − v(bi, di)}∞i=1 ⊂ kerL1 is a bounded
subset. Hence we can assume v(bi, di) → w in X1. This implies L1w = b
and B(w) = d. Thus w = v(b, d) and the assertion is proved.

Now we insert the map V (u) = v(H(u), D(u)) into (2.2b):

(2.3) L2u = V (u), u ∈ X2 .

Since L2 is Fredholm, (2.3) can be handled in the standard way [1]. So, (2.3)
is equivalent to

(2.4)

u1 = L̃2QV (u1 + u2) ,
u2 = u2 + PV (u1 + u2) ,

u2 ∈ kerL2, u1 ∈ X̃2, kerL2 ⊕ X̃2 = X2 ,

Q : Y → ImL2, Q+ P = I ,

Q is a continuous projection ,

L̃2 = (L2/X̃2)−1 .

Summing up, we obtain

Proposition 2.2. Under the above conditions (a), (b), the equation (2.1)
can be rewritten in the form (2.4).

Remark 2.3. The set A has been introduced for the same purpose as
in [2]. By choosing another set A, we can show the existence of multiple
solutions of (2.1).

Now we assume

(P1) lim
r→∞

H(ru2 + u1) = H∞(u2) ,

(P2) lim
r→∞

D(ru2 + u1) = D∞(u2) ,

uniformly in u1 from bounded subsets and u2 ∈ kerL2, |u2|X2 = 1.
Moreover, suppose the maps

(P3) H∞ : S1 = {u ∈ kerL2 | |u|X2 = 1} → Y and D∞ : S1 → Rn are
continuous.
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Of course, (P1–3) imply the boundedness of H, D, respectively, and
|H∞(·)|Y ≤ K1, D∞(·) ∈ [K2,K3]. Hence we can define V∞ = v(H∞, D∞).
It is clear that

lim
r→∞

V (ru2 + u1) = V∞(u2)

uniformly in u1 from bounded subsets and u2∈S1. Now applying [1, (5.4.32)
Theorem] we obtain

Theorem 2.4. Let the conditions (a), (b), and (P1–3) be satisfied.
Assume that PV∞(a) 6= 0, ∀a ∈ S1, and that the stable homotopy class
of η(a) = PV∞(a)/|PV∞(a)|Y , η : S1 ' Sm−1 → Sm∗−1, is nontrivial ,
where m = dim kerL2 and m∗ = codim ImL2. Then the equation (2.1) has
a solution.

Now we shall study a special case of (2.1). We make the following as-
sumption:

(H1) ImL1 = Y , kerL1 = Rv0, B : Y → [d̃,∞) ⊂ R, d̃ > −∞, is
continuous and strictly convex, and B−1([a, b]) is bounded for any
−∞ < a ≤ b <∞.

We put

A+ = {v ∈ X1 | B(v + cv0) ≥ B(v), ∀c > 0} ,
A− = {v ∈ X1 | B(v + cv0) ≥ B(v), ∀c < 0} .

We note that τ : c → B(v + cv0) is a strictly convex real function such
that τ(R) ⊂ [d̃,∞) and τ−1([a, b]) is bounded for any −∞ < a ≤ b < ∞.
Hence there is a unique c0 ∈ R such that c0 minimizes τ , and τ is increasing
for c > c0 and decreasing for c < c0. Thus v + c0v0 ∈ A+ ∩ A− and
A− ∪ A+ = X1.

Now we suppose

(H2) D : Y → R and H : Y → Y are continuous and |H(·)|Y ≤ K1, K2 ≤
D(·) ≤ K3 for some constants K1, K2, K3.

(H3) For any v ∈ A− ∩ A+, if L1v = b, |b|Y ≤ K1, then B(v) ≤ K2 − δ
for some fixed δ > 0.

Let us solve L1v = b, |b|Y ≤ K1, B(v) = d, d ∈ [K2,K3]. Since ImL1 =
Y , dim kerL1 <∞, there is a right inverse L̃1 of L1. We solve

(2.5) B(L̃1b+ cv0) = d .

According to (H2–3) there are no solutions c of (2.5) satisfying

L̃1b+ cv0 ∈ A− ∩ A+ .

Hence (2.5) has precisely two solutions c± = c±(b, d) such that

L̃1b+ c±v0 ∈ A±, L̃1b+ c±v0 6∈ A+ ∩ A− .
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Moreover, B−1([K2,K3]) is a bounded subset. Hence c±(·, ·) is bounded as
well. Summing up, we have

Proposition 2.5. If the hypotheses (H1–3) are satisfied , then the as-
sumptions (a), (b) hold with A = A±.

P r o o f. (a) follows immediately, and (b) from Remark 2.1.

Applying Theorem 2.4 in the framework of Proposition 2.5, we can find
at least two solutions for (2.1).

Theorem 2.6. If the hypotheses (H1–3) are satisfied and L2 is an iso-
morphism, then (2.1) has at least two solutions.

P r o o f. In this case, (2.4) has the form u1 = L̃2V (u1) and V is bounded.
Further, V depends on A = A±. Applying the Schauder fixed point theory
finishes the proof.

Now, assume in Theorem 2.4 that indexL2 = 0 and dim kerL2 = 1. Then
S1 ' {−1, 1}, H∞(±1) ≡ H±∞, D∞(±1) ≡ D±∞ and V∞(±1) ≡ V±∞.
Moreover, V±∞ are uniquely determined by

(2.6) L1V±∞ = H±∞, B(V±∞) = D±∞, V±∞ ∈ A .
The nontriviality of the stable homotopy class of η means that PV−∞ and
PV+∞ have opposite signs.

Note that the above arguments can be used for more general equations
than (2.1). For instance, consider the following system of equations instead
of (2.2a,b):

(2.7)
L1v = H(u) ,
B(v) = D(u) ,
L2u = E(v) ,

where L1, L2, B, H, D have the properties (a), (b) and (P1–3), and E :
Y → Y is continuous. Then we deal with the map η = PE ◦V∞/|PE ◦V∞|Y
instead of η in Theorem 2.4.

Finally, there is a special class of (2.1) which naturally satisfies (H2–3).
Assume ImL1 = Y , kerL1 = Rv0, and B(u) = 〈u, u〉 for a symmetric,
positive definite, continuous bilinear form 〈·, ·〉 on Y . We see that in this case

A+ = {v ∈ X1 | 〈v, v0〉 ≥ 0}, A− = {v ∈ X1 | 〈v, v0〉 ≤ 0} ,
A− ∩ A+ = {v ∈ X1 | 〈v, v0〉 = 0} .

Hence A− ∩ A+ ⊕ Rv0 is an orthogonal decomposition of X1 with respect
to 〈·, ·〉.

Let us solve L1v = b, |b|Y ≤ K1, v ∈ A− ∩ A+. This equation has the
unique solution v = L−1

1 b, where L−1
1 : Y → A− ∩ A+ is the inverse of L1.

Then
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B(v) = 〈L−1
1 b, L−1

1 b〉 ≡ B̃(b) .
Since X1 is compactly embedded into Y and 〈·, ·〉 is continuous on Y × Y ,
there is a smallest number cL1 such that

(2.8) B̃(b) ≤ cL1 |b|2Y , ∀b ∈ Y .

Theorem 2.7. Assume ImL1 = Y , kerL1 = Rv0, and B(u) = 〈u, u〉
for a symmetric, positive definite, continuous bilinear form 〈·, ·〉 on Y . Let
(H2) be satisfied. If

(2.9) cL1K
2
1 ≤ K2 − δ

for some fixed δ > 0, then (H3) holds as well.

P r o o f. The proof follows immediately by (2.8) and (2.9).

3. Applications. We return to (1.1) with g(u) = G(‖u‖C0), G : R→ R
continuous. We apply the results of Section 2 by putting

X = {z ∈ C3([0, 1],R) | z(0) = z(1) = 0}, Y = C0([0, 1],R) ,

X1 = C1([0, 1],R), X2 = {z ∈ C2([0, 1],R) | z(0) = z(1) = 0} ,
Lu = u′′′, H(u) = f(u, ·) ,
B(u) = ‖u′′‖C0 , B(u) = ‖u‖C0 ,

L1v = v′, L2v = v′′ ,

D(u) = G(‖u‖C0) .

First of all, we establish hypotheses (H1–3): (H1) is clear. (H2) is satisfied
provided

(3.1) |f(·, ·)| ≤ K1, 0 < K2 ≤ G(·) ≤ K3 .

In this case (see (H1)) v0(·) ≡ 1 and (see [2])

A+ = {v ∈ X1 | max
[0,1]

v ≥ −min
[0,1]

v}, A− = {v ∈ X1 | max
[0,1]

v ≤ −min
[0,1]

v} ,

A− ∩ A+ = {v ∈ X1 | max
[0,1]

v = −min
[0,1]

v} .

Hence (see [2]) v ∈ A− ∩ A+ implies

‖v‖C0 = (max
[0,1]

v −min
[0,1]

v)/2 ≤
1∫

0

|v′(t)| dt/2 ≤ ‖v′‖C0/2 .

Thus, if v ∈ A− ∩ A+, v′ = b, ‖b‖C0 ≤ K1 then

B(v) = ‖v‖C0 ≤ ‖v′‖C0/2 = ‖b‖C0/2 ≤ K1/2 .

Hence (H3) is satisfied if

(3.2) K1/2 ≤ K2 − δ, for a δ > 0 .
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It is clear that L2 is an isomorphism. Applying Theorem 2.6 we have

Theorem 3.1. Assume (3.1–2). Then (1.1) has at least two solutions.

Next we study

(3.4)

v′ = f(u, t) ,
‖v‖C0 = G(‖u‖C0) ,
u′ = e(v) ,
u(0) = u(1) ,

where f , G are continuous satisfying (3.1–2), and e : R → R is continu-
ous. We already know that (3.1–2) imply (a), (b) for (2.7). Here E(v)(t) =
e(v(t)), ∀t, in the framework of (2.7).

Now we establish the conditions (P1–3) for this case by putting

(3.3)

lim
r→±∞

f(r, t) = f±(t) uniformly in t ∈ [0, 1] ,

f+ > 0, f− < 0 on [0,1] and f± are continuous ,
lim

r→∞
G(r) = G∞ .

Since L2v = {v′ | v(0) = v(1)} in this case for (2.7), it is clear that
dim kerL2 = 1, kerL2 = {v ≡ const}, and Pv =

∫ 1

0
v(t) dt, where we

identify constant functions with numbers.
Hence we can apply the ideas from the end of Section 2. We shall find

the map η for this case. Here

H±∞ = f±(·), D±∞ = G∞ .

We derive V±∞ from (2.6):

V +
+∞(t) = −

1∫
t

f+(s) ds+G∞, V +
−∞(t) =

t∫
0

f−(s) ds+G∞

for A = A+, and

V −+∞(t) =
t∫

0

f+(s) ds−G∞, V −−∞(t) = −
1∫

t

f−(s) ds−G∞

forA=A−. We have used (3.2) and the inequalities |f±(·)| ≤ K1, G∞ ≥ K2.

Finally, we compute

PE ◦ V ±±∞ =
1∫

0

e
(
−

1∫
t

f±(s) ds±G∞
)
dt

and

PE ◦ V ∓±∞ =
1∫

0

e
( t∫

0

f±(s) ds∓G∞
)
dt .
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Summing up, we obtain

Theorem 3.2. Assume (3.1–3). If
1∫

0

e
(
−

1∫
t

f+(s) ds+G∞

)
dt ·

1∫
0

e
( t∫

0

f−(s) ds+G∞

)
dt < 0 ,

1∫
0

e
( t∫

0

f+(s) ds−G∞
)
dt ·

1∫
0

e
(
−

1∫
t

f−(s) ds−G∞
)
dt < 0 ,

then (3.4) has at least two solutions. Moreover , if at least one of these in-
equalities holds, then (3.4) has a solution.

P r o o f. The proof follows immediately from the note at the end of Sec-
tion 2 pertinent to (2.7) provided that we take either A = A+ or A = A−.
Indeed, according to the above derivation we have

η(+1)
/ 1∫

0

e
(
−

1∫
t

f+(s) ds+G∞

)
dt > 0,

η(−1)
/ 1∫

0

e
( t∫

0

f−(s) ds+G∞

)
dt > 0

for A = A+, and

η(+1)
/ 1∫

0

e
( t∫

0

f+(s) ds−G∞
)
dt > 0,

η(−1)
/ 1∫

0

e
(
−

1∫
t

f−(s) ds−G∞
)
dt > 0

for A = A−. The assumptions of Theorem 3.2 express the nontriviality of
the stable homotopy class of η for A = A+ and A = A−, respectively.

To apply Theorem 2.7, let us consider

(3.5)

u′′′ = f(u, t) ,
1∫

0

(u′′(t))2dt = G(‖u‖C0) ,

u(0) = u(1) = 0 ,

where f , G are continuous and satisfy (3.1).

Theorem 3.3. If

(3.6) K2
1/π

2 ≤ K2 − δ for some fixed δ > 0 ,

then (3.5) has at least two solutions.
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P r o o f. We apply Theorems 2.6 and 2.7. For this purpose, we have to
verify (2.9). We have

L1v = v′, 〈u, v〉 =
1∫

0

u(t)v(t) dt

in the framework of Theorem 3.1 for this case. So we obtain

L1v = b, v ∈ A− ∩ A+ ⇔ v′ = b,
1∫

0

v(t)dt = 0 .

Note that the sets A−, A+, A− ∩A+ are defined by the formulas preceding
Theorem 2.7.

Hence (see (2.8))

B̃(b) =
1∫

0

v(t)2 dt =
1∫

0

w′(t)2 dt =
1∫

0

b(t)w(t) dt ,

where

w(t) ≡ −
t∫

0

v(s) ds, w′′ = −b, w(0) = w(1) = 0 .

On the other hand, by Wirtinger’s inequality we have for any u ∈ C2 with
u(0) = u(1) = 0,

π2‖u‖2L2 = π2
1∫

0

u(t)2 dt ≤ −
1∫

0

u′′(t)u(t) dt ≤ ‖u′′‖L2‖u‖L2 ,

and so π2‖u‖L2 ≤ ‖u′′‖L2 . Thus

B̃(b) =
1∫

0

b(t)w(t) dt ≤ ‖w‖L2‖b‖L2 ≤ 1
π2
‖b‖2C0 .

This implies cL1 ≤ 1/π2. The proof is finished, since (3.6) implies (2.9).

4. Concluding remarks

Remark 4.1. First of all, we show that the validity of the assumptions
of Theorem 3.2 strongly depends on the choice of the function e. If e(z) ≡ z
then (3.4) is a second-order differential equation

(4.1)
u′′ = f(u, t) ,
‖u′‖C0 = G(‖u‖C0) ,
u(0) = u(1) ,

and (2.7) is precisely (2.2a,b). The assumptions of Theorem 3.2 are never
satisfied for this case. This follows easily from |f±(·)| ≤ K1, G∞ ≥ K2 and
2K2 > K1, since the integral inequalities are not satisfied.
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On the other hand, it is also not hard to verify that the conditions (3.1–2)
for the case e(z) ≡ z in (3.4) imply the nonexistence of solutions for (3.4).
Indeed, if v is a solution of (3.4) for this case, then

‖v′‖C0 ≤ K1, ‖v‖C0 ≥ K2 ,

1∫
0

v(t) dt = 0, v ∈ A+ ∪ A− .

Assume v ∈ A+ (the case v ∈ A− is similar). Hence

max
[0,1]

v = v(tmax) = ‖v‖C0 ≥ K2

and v(t) = v(tmax) +
∫ t

tmax
v′(s) ds. Thus

0 =
1∫

0

v(t) dt ≥ K2−
1∫

0

t∫
0

K1 ds dt = K2 −
K1

2
> 0 (by (3.2)) .

This is a contradiction, proving the nonexistence of solutions for (4.1) under
the conditions (3.1–2).

Remark 4.2. Of course, the results of Section 2 suggest a broader vari-
ety of equations than (1.1), (3.4) and (3.5). The derivation of assumptions
(H1–3), (P1–3) is similar, but it is generally more complicated. We have cho-
sen the above simple examples as an illustration for possible applications of
our method. Moreover, the hypotheses (H1–3) can be generalized to the case
∞ > dim kerL1 > 1, ImL1 = Y . For instance, consider the following system
of equations:

(4.2)

u′′′1 = f1(u1, . . . , uk, t) ,
...
u′′′k = fk(u1, . . . , uk, t) ,
‖u′′1‖C0 = G1(‖u1‖C0 , . . . , ‖uk‖C0) ,
...
‖u′′k‖C0 = Gk(‖u1‖C0 , . . . , ‖uk‖C0) ,
u1(0) = u1(1) = . . . = uk(0) = uk(1) = 0 ,

where f1, . . . , fk : Rk × [0, 1]→ R and G1, . . . , Gk : Rk → R are continuous
and satisfy

|fi| ≤ K1i, 0 < K2i ≤ Gi ≤ K3i, i = 1, . . . , k ,

for some constants Kji, i = 1, . . . , k, j = 1, 2, 3, such that
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K1i/2 ≤ K2i − δ, i = 1, . . . , k ,

for some fixed δ > 0.
Then applying the procedure of Section 3 (see the arguments before

Theorem 3.1), we conclude that (4.2) has at least 2k solutions. Note that in
this case L1(u1, . . . , uk) = (u′1, . . . , u

′
k) and dim kerL1 = k.

Remark 4.3. If the equation (3.4) depends in some way on a parameter
in Theorem 3.2, then we may find three domains of the parameter for which,
respectively, this equation has no, at least one and at least two solutions.
This remark holds generally. To be more concrete, we return to the problem
(4.1) from Remark 4.1. We embed this problem in the following family of
equations:

(4.3)
u′′ = f(u, t) ,
‖u′ + λ‖C0 = G(‖u‖C0) ,
u(0) = u(1) ,

where λ ∈ R is a parameter. We assume the validity of (3.1–3). By putting
e(v) = v−λ, we can apply the method of Section 3 used for (3.4). Conditions
similar to those of Theorem 3.2 read as follows:

(4.4)

(
−

1∫
0

1∫
t

f+(s) ds dt+G∞−λ
)
·
( 1∫

0

t∫
0

f−(s) ds dt+G∞−λ
)
< 0 ,

( 1∫
0

t∫
0

f+(s) ds dt−G∞−λ
)
·
(
−

1∫
0

1∫
t

f−(s) ds dt−G∞−λ
)
< 0 .

Assume f±(s) ≡ f± for some constants 0 > f− > −f+. Then (4.4) has the
form

(4.5) G∞ − f+/2 < λ < G∞ + f−/2 ,
(4.6) −G∞ − f−/2 < λ < −G∞ + f+/2 .

Note that G∞ > |f±|/2, since (3.1–3) hold. Hence

f+/2−G∞ < 0 < G∞ − f+/2 .
On the other hand, using the same arguments as in Remark 4.1 we see that
if (4.3) has a solution then

(4.7) K2 −K1/2 ≤ |λ| ≤ K3 +K1/2 .

Indeed, the difference between this case and the one in Remark 4.1 is only
the relation

1∫
0

v(t) dt = λ ,

since v = u′ + λ for this case.
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Summarizing, we obtain:

1. If (4.7) does not hold then (4.3) has no solution.
2. If either (4.5) or (4.6) holds then (4.3) has at least one solution.

Of course, the result of Remark 4.1 is contained in the above statement.
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