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IVO DÜNTSCH

Rechenzentrum, Universität Osnabrück

W-4500 Osnabrück, Germany

E-mail: DUENTSCH@DOSUNI1.BITNET

0. Introduction. Besides being of intrinsic interest, cylindric (semi-) lattices
arise naturally from the study of dependencies in relational databases; the poly-
nomials on a cylindric semilattice are closely related to the queries obtainable
from project-join mappings on a relational database (cf. [D] for references).

This note is intended to initiate the study of these structures, and only a
few, rather basic results will be given. Some problems at the end will hopefully
stimulate further research. Related issues are discussed in [H], and for further
background material the reader is invited to consult [N].

I should like to thank H. Andréka and I. Németi for stimulating discussions
on the subject.

1. Definitions and notation. The main references are [HMT], [G] and [N],
and any notion not explained in this note can be found there.

Let α be an ordinal. A cylindric lattice of dimension α (clα) is an algebraic
structure (S, ·,+, ci, 0, 1)i<α, where for all x, y ∈ S, i, j < α,

C0 (S, ·,+, 0, 1) is a bounded distributive lattice.

C1 ci0 = 0.

C2 x · cix = x.

C3 ci(x · ciy) = cix · ciy.

C4 cicjx = cjcix.

C5 If xn ∈ S for n ∈ I and
∑

n xn exists, then
∑

n cixn does as well and

ci(
∑

n xn) =
∑

n cixn.
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The “·” free reduct of a clα is called a cylindric semilattice of dimension α

(cslα).
The operations ci are called cylindrifications. It is not hard to see that cicix=

x, and so with the aid of C2 we note that the cylindrifications are closure opera-
tors.

Note that in the absence of complementation we have to add the distributivity
of the ci over the join as an axiom.

Furthermore, we cannot replace C1–C3 by

1. ci1 = 1 [HMT, 1.2.2],

2. cicix = x [HMT, 1.2.3],

3. x · ciy = 0 iff y · cix = 0 [HMT, 1.2.5],

as is possible in cylindric algebras [HMT, I, p. 177]. The latter three conditions
are strictly weaker in our setting: Consider S:

with

a b z p x y e

c0 a 1 a x x 1 1

Then, S satisfies 1.2.2, 1.2.3, and 1.2.5 of [HMT], but

c0(y · c0a) = c0(y · a) = c0p = x 6= a = c0y · c0a .

If n < ω, then we define

c(n)x = ci0ci1 . . . cin−1
x .

Observe that by C4 the order in which we perform the cylindrifications is irrele-
vant, so c(n) is well defined.

Throughout this note, S is a distributive lattice and S+ = {x ∈ S : x > 0}.

1.1. Examples. 1. A primary source for cylindric lattices are those cln which
arise from n-ary relations, where n < ω. Denote by Ren U the set of all n-ary
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relations on some set U , i.e. Ren U is the power set of the set nU of all functions
f : n→ U . For X ⊆ nU and i < n let

ciX = {f ∈ nU : ∃ g ∈ X ∀ i 6= j [f(j) = g(j)]} .

Thus, we obtain ciX fromX by erasing the ith column in the sense that it contains
no useful information as it contains all information. In a way, the cylindrifications
correspond to projections of a database scheme onto (the complements of) single
attributes.

2. If d is the identity function on S, then d is a cylindrification.

3. If s is the function on S with s0 = 0 and s[S+] = 1, then s is a cylindrifi-
cation.

In the rest of this note, d and s will always denote the functions of 2. and 3.

4. If (S,∗) is a pseudocomplemented bounded distributive lattice, then the
operation ∗∗ is a cylindrification if and only if (S,∗) is a Stone algebra.

Let clsα (cslsα) be the class of elements of clα (cslα) which are isomorphic to
subalgebras of Re(nU) with the appropriate operations; set clrα = ISP(clsα) and
cslrα = ISP(cslα). An element of clrα (cslrα) will be called a representable clα
(clsα).

2. Structural properties. In this section let n < ω and S ∈ cln. For a <
b ∈ S we denote by ϑL[a, b] the smallest lattice congruence which identifies a and
b, and by ϑ[a, b] the smallest cln congruence with this property. It is well known
that

ϑL[a, b] = {〈x, y〉 ∈ 2S : x · a = y · a, x+ b = y + b} .

Note for later use that for b = 1

ϑL[a, 1] = {〈x, y〉 ∈ 2S : x · a = y · a} .

An element x of S is called dense if y · x > 0 for all y > 0. The set D of
all dense elements of S is a filter, appropriately named the dense filter (or set).
If cix = x, then x is called ci-closed. If x is ci-closed for all i < α, we call x
simply closed. It is well known (see [HMT]) that the principal ideal generated by
a ci-closed element generates a lattice congruence which preserves ci.

For things to come it is worthy to record the following slightly more general
result:

2.1. Proposition. Let S ∈ cln, a, b ∈ S, and a < b. If

1. a and b are ci-closed , or

2. ci = s, and a · x = 0 iff b · x = 0 for all x ∈ S,

then ϑL[a, b] preserves ci.

P r o o f. Let ϑ = ϑL[a, b], x, y ∈ S and x ≡ y (ϑ), i.e. x · a = y · a and
x+ b = y + b.
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1. cix · a = cix · cia = ci(x · cia) = ci(x · a) = ci(y · a) = . . . = ciy · a.
cix+ b = cix+ cib = ci(x+ b) = ci(y + b) = . . . = ciy + b.

2. If x, y > 0 or x = y = 0, then the conclusion is obvious by ci = s. As-
sume that x > 0 and y = 0; then x · a = y · a = 0, and thus x · b = 0 by our
hypothesis. On the other hand, x + b = y + b = b, which implies 0 < x < b,
a contradiction.

If A is a nontrivial cylindric algebra of dimension n then the following state-
ments are equivalent (cf. [HMT]):

1. A is simple.

2. A is subdirectly irreducible.

3. For all x ∈ A with x > 0, c(n)x = 1.

The next result shows that this is not true in cln:

2.2. Proposition. In cln, 1⇒2⇒3, and none of these implications can be

reversed.

P r o o f. 1⇒2 is clear. Let S be subdirectly irreducible, and assume there is
some 0 < x < 1 such that c(n)x = x. Let ϑ = ϑ[u, v] be the smallest nontrivial
congruence on S; we suppose w.l.o.g. that u < v. Since c(n)x = x, the lattice
congruence ψ on S which is induced by the principal ideal (x] also preserves the
cylindrifications. Now ϑ ⊆ ψ implies the existence of some y ∈ S with 0 < y ≤ x

and u+ y = v. We now have

u · y ≡ v · y = y (ϑ) ,

and, since y ≤ x, we may suppose that u < v ≤ x. Set z = c(n)v and note that
z < 1 since x < 1; hence, ϕ = ϑL[z, 1] is not the identity. This congruence also
preserves cylindrifications by 2.1.1 above. Since ϕ is not trivial, we have ϑ ⊆ ϕ,
and hence u ≡ v (ϕ); but then u = v, a contradiction.

The three-element chain with 0 < a < 1 and cylindrification s is subdirectly
irreducible as a cl1 and a csl1, but it is not simple. The four-element chain 0<
a < b < 1 with cylindrification s is a cl1 which satisfies 3, but it is not subdirectly
irreducible: Let ϑ have the classes {0}, {a}, {b, 1} and ψ the classes {0}, {a, b},
{1}. Then both ϑ and ψ are congruences and their infimum is the identity.

The classes clα do not behave well as congruences go, as the next result shows:

2.3. Proposition. cl1 is not congruence extensible.

P r o o f. Let (S, c) be the distributive lattice on the top of the opposite page,
with c = s, and let L be the subalgebra {0, d, b, a, 1}. Let ϑ be the equivalence
relation on L with classes {a, b, d, 1} and {0}. It is easily checked that ϑ is a
proper cl1 congruence on L. On the other hand, any congruence ψ on S which
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identifies 1 and a is universal, since 0 = a · e ≡ e > 0 (ψ), and thus

0 = s0 ≡ se = 1 (ψ) .

It follows that ϑ cannot be extended to S.

Thus, cln is not a discriminator variety, in contrast to CAn.

3. The classes cl1 and cl2. Proposition 2.2 shows that for a subdirectly
irreducible S ∈ cl1, c0 = s. This need not be true for a two-dimensional cl:

3.1. Example. There is some S ∈ cl2 such that c0 6= s and c1 6= s.

Indeed, let S be the following cl2 with the cylindrifications as indicated by the
arrows:

It is straightforward to verify that (S, c0, c1) is a cl2 and that no nontrivial con-
gruence can separate e and 1.

The simple algebras in CA1 or Df1 are the Boolean algebras with the cylin-
drification c0 = s [HMT, 2.3.15]. The example of the three-element chain in 2.2
shows that in cl1 this is not enough. However, an additional purely lattice theo-
retic condition suffices:

3.2. Proposition. Let S ∈ cl1; then S is simple if and only if c0 = s and for

all b ∈ S+ the only dense element of the sublattice (b] of S is b.
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P r o o f. ⇒ Suppose that S is simple; by 2.2 we have c0 = s. Assume that
0 < d < b and d is dense in (b]. If x ∈ S, then x ·d = 0 if and only if x ·b = 0, since
d is dense. Hence, ϑL[d, b] is a proper congruence on S by 2.1, a contradiction.

⇐ Suppose that S fulfills the hypotheses, and assume that ϑ is a proper
nontrivial congruence on S with a < b and a ≡ b (ϑ). Since c = s and ϑ is proper,
we have 0 < a. Since a is not dense in (b], there is some 0 < x < b such that
a · x = 0. Then, 0 = a · x ≡ b · x (ϑ), but b · x = x > 0, a contradiction.

Proposition 2.2 also implies that every cl1 is representable:

3.3. Proposition. cl1 = clr1.

P r o o f. If (S, c0) ∈ cl1 and c0x = 1 iff x > 0, then clearly S ∈ cls1. Thus,
by 2.2, every subdirectly irreducible S ∈ cl1 is in cls1, and hence cl1 = clr1.

It is well known that every cylindric algebra can be embedded into an algebra
whose Boolean part is complete and atomic. At least for cylindric lattices of
dimension one we can do the same:

3.4. Proposition. Every cl1 can be embedded into a Df1.

P r o o f. This is similar to [HMT, 2.7.4]. Let 〈L, c0〉 ∈ cl1, S(L) be the set of
all prime ideals of L, and BL the power set algebra of S(L). Let h : L → BL be
defined by

h(a) = {P ∈ S(L) : a 6∈ P} .

By the Birkhoff–Stone Theorem, h embeds L into BL as a 0, 1-distributive lattice.
For each M ∈ BL define

cM = {P ∈ S(L) : there is some Q ∈M with c−1
0 Q = c−1

0 P} .

Note that this differs from 2.7.4 of [HMT]. It is easily checked that c is a completely
additive closure operator and that c∅ = ∅.

To show C3, let X,Y ∈ BL and P ∈ cX ∩ cY . Then there are R ∈ X, Q ∈ Y

such that c−1
0 P = c−1

0 R and c−1
0 P = c−1

0 Q, hence, c−1
0 R = c−1

0 Q. It follows that
R ∈ X ∩ cY , and thus P ∈ c(X ∩ cY ).

It remains to show that h preserves c0: Let a∈L and P ∈c(h(a)). Then there
is some Q ∈ S(L) such that a 6∈ Q and c−1

0 P = c−1
0 Q. From a 6∈ Q it follows

that c0a 6∈ Q and thus c0a 6∈ P , i.e. P ∈ h(c0a). Conversely, let c0a 6∈ P ∈ S(L),
and set I := c−1

0 P . By the additivity of c0, I is an ideal of L. Now, let F be the
filter of L generated by {a} ∪ {c0x : x ∈ L, c0x 6∈ P}. Noting that the meet of
c0-closed elements is c0-closed, we see that F = {y ∈ L : there is some x ∈ L such
that c0x 6∈ P and a · c0x ≤ y}. Assume that b ∈ I ∩ F ; then there are x, y ∈ L

such that c0x 6∈ P and a · c0x ≤ b ≤ c0y ∈ P . By C3, c0a · c0x ≤ c0b ≤ c0y,
thus, c0a · c0x ∈ P . Since P is prime, c0a ∈ P or c0x ∈ P , a contradiction in both
cases. Let Q ∈ S(L) such that I ⊆ Q and Q ∩ F = ∅, in particular, a 6∈ Q and
c−1
0 P = c−1

0 Q. It follows that P ∈ c(h(a)).
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Note that 3.4 also implies that every cl1 is representable. For cl2 we can give
the following condition:

3.5. Proposition. Let L ∈ cl2 be subdirectly irreducible and define conditions

(∗) and (∗∗) by

(∗) If c0x, c1y < 1 then c0x+ c1y < 1.
(∗∗) If x, y, u, v ∈ L such that c0y·c1x ≤ c0u+c1v, then c0y ≤ c0u or c1x ≤ c1v.

Then L is representable if and only if L satisfies (∗) and (∗∗).

P r o o f. ⇒ Suppose that L is representable; since it is subdirectly irreducible,
it is in fact in cls2. Thus, we may suppose that L is a subalgebra of the cl2
of all binary relations on some set U with the cylindrifications as defined in
Example 1.1.1. Let x, y ∈ L such that y = c0y <

2U , x = c1x <
2U . Then there

are M,N ⊆ U such that M,N 6= U and y = U×M , x = N ×U . If a ∈ U \N and
b ∈ U \M , then 〈a, b〉 6∈ (N × U) ∪ (U ×M) = x+ y, and thus x+ y < 2U . Now
let x and y be as above and u = c0u = U ×A, v = c1v = B×U , and x ·y ≤ u+ v,
i.e. N ×M ⊆ (B × U) ∪ (U × A). Assume that t ∈ M \ A and s ∈ N \ B; then
〈s, t〉 ∈ N×M , but 〈s, t〉 6∈ (B×U)∪(U×A). Thus, M ⊆ A or N ⊆ B, i.e. y ≤ u

or x ≤ v.
⇐ We show that under these conditions L can be embedded as a cl2 into a

simple complete atomic Df2. By [HMT, 5.1.47] this Df2 is representable, whence
the result follows.

Since L is subdirectly irreducible, c0c1x = c1c0x = 1 for all x ∈ L+. Let BL,
c0, c1 be as in 3.4; all we have to show is that c 0c 1M = S(L) for all atoms M of
BL (since C4 will then be satisfied), and that 〈BL, c 0, c 1〉 is simple. The latter
condition is easily seen to be fulfilled; thus, let P,Q ∈ S(L). We need to find
some R ∈ S(L) such that c−1

0 R = c−1
0 P (then R ∈ c 0{P}) and c−1

1 R = c−1
1 Q

(then Q ∈ c−1
1 {R}). Let I the ideal of L generated by c−1

0 P ∪ c−1
1 Q; by (∗), I is

proper. Let F be the filter of L generated by the c1-closed elements of L which
are not in Q and the c0-closed elements of L which are not in P . If c0y, c1x ∈ F

and c0y · c1x = 0, then

0 = c0(c0y · c1x) = c0y · c0c1x = c0y 6∈ P ,

a contradiction; thus, F is proper. Assume that b ∈ I ∩ F ; then, there are
x, y, u, v ∈ L such that c0y 6∈ P , c1x 6∈ Q, c0u ∈ P , c1v ∈ Q and

0 < c0y · c1x ≤ b ≤ c0u+ c1v .

By (∗∗), c0y ≤ c0u or c1x ≤ c1v, a contradiction in both cases.
Let R ∈ S(L) such that I ⊆ R and R ∩ F = ∅. Then R is the desired prime

ideal of L.

The results and discussions above suggest, among others, the following prob-
lems:

1. Is cl2 = clr2?
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2. For which α > 1 is clrα a variety?
3. For which α is the equational theory of clsα decidable?
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