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These notes are a corrected and revised version of notes which accompanied
lectures given at the Banach Center in the fall of 1991. The intent is to give a
self-contained introduction to cylindric algebras from the concrete point of view.
I hope that after these lectures the reader will be able to digest the basic works on
this subject (Henkin, Monk, Tarski [4], [5] and Henkin, Monk, Tarski, Andréka,
Németi [6]) more easily, and that even research articles in this area will be readable
by one who studies these notes carefully. As the title of the lectures indicates,
we are mainly concerned with the topics in [6], which appear in a condensed
form in [5]. One of the frightening things about both of these books is that they
begin with a mass of definitions and proceed with very detailed discussion of the
interrelationships of the defined notions. We are going to introduce just a few of
these definitions, little by little, giving important (but not highly technical) results
about them as we go along. And we will try to motivate the notions from logic.

Cylindric algebras form the most developed form of algebraic logic. In gen-
eral, algebraic logic is concerned with algebraic structures which correspond to
logics of various sorts. Cylindric algebras correspond to ordinary first-order lo-
gics and to certain straightforward modifications of these logics. Other algebraic
structures have a similar relationship to first-order logic; the most developed of
these are relation algebras (in Tarski’s sense) and polyadic algebras. We will not
be concerned with these, but the reader should be able to study them more easily
after reading these notes.

We will describe only the concrete aspect of cylindric algebras. The axiomatic
version, fully developed in [4], will play only a minor role. Also, we will not
deal with applications. Such applications exist in several other fields, such as
combinatorics and theoretical computer science.
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We assume familiarity with the elementary theory of Boolean algebras, ele-
mentary first-order logic, and with the basics of universal algebra.

1. Fields of sets. We assume that the reader is familiar with the notion
of a field of sets; here we just recall the notion, and establish notation. Any
more extended apparatus which we need will be mentioned later on. A field of
sets over a set X is a collection A of subsets of X containing X itself and closed
under union and complementation with respect to X. Then A is also closed under
intersection, and has the empty set 0 as a member. Unless confusion might result,
we identify such a collection with the algebra (in the sense of universal algebra)
〈A,∪,∩, \, 0, X〉. Here \ is the operation of complementation with respect to X;
many people denote it by −.

2. Cylindric-relativized set algebras. We begin with some purely set-
theoretical notation. For any sets A and B, the set of all functions from A into B
is denoted by AB (many people denote this by BA). For any set V , P(V ) is the
collection of all subsets of V ; for any function y and any i in its domain, yiu is the
function which is like y except that its value at i is equal to u. For any function f
and any a in its domain, the value of f at a will be indicated by fa, fa, or other
similar things.

Now we define the basic notions of cylindric-relativized set algebras. Let U
and I be sets and V ⊆ IU . For all i, j ∈ I we set

D
[V ]
ij = {v ∈ V : vi = vj};

this is a diagonal set. Furthermore, for each i ∈ I we let C [V ]
i be the mapping

from P(V ) into P(V ) defined as follows: for any X ⊆ V ,

C
[V ]
i X = {y ∈ V : yiu ∈ X for some u ∈ U}.

This is called the V -relativized cylindrification in the direction i. Usually here and
in the literature one uses an ordinal α in place of I; the more general definition
here is sometimes useful. Here is a general convention: When no confusion is
likely, we omit superscripts and subscripts from defined objects. Thus,
for example, we frequently write merely Dij or Ci.

A cylindric-relativized field of sets is a field A of sets such that there exist
sets I, U , V such that V ⊆ IU , A is a field of subsets of V , D[V ]

ij ∈ A for all

i, j ∈ I, and A is closed under each operation C
[V ]
i , i ∈ I. A cylindric-relativized

set algebra is the associated algebra

A
def= 〈A,∪,∩, \, 0, V, C [V ]

i , D
[V ]
ij 〉i,j∈I .

Cylindric-relativized set algebras are the main things that we shall be dis-
cussing in these notes. There are three natural areas of investigation concerning
them. First, there are intrinsic questions deriving from the very definitions: what
happens to these algebras when the sets I, U , or V are changed; and what can



CYLINDRIC SET ALGEBRAS 255

one say about algebraic operations (homomorphisms, subalgebras, products, etc.)
applied to them? Second, can one abstractly characterize such algebras up to iso-
morphism, like one does for permutation groups via the abstract notion of group,
for example? Third, how do such algebras relate to other objects in mathematics,
in particular to logic, which, as indicated at the beginning, is the main justifica-
tion for their consideration? In these notes we will be concerned mainly with the
first type of question, with some consideration of the second and third questions.
We will right now say a few words about the third aspect of this subject.

3. The logical origin of cylindric algebras. LetL be a first-order language,
and M a model for L. The universe of any model M is denoted by M . We assume
that L has a countably infinite sequence of variables 〈vi : i ∈ ω〉. We take as
well-known what it means for a sequence x ∈ ωM to satisfy a formula φ in M.
Set φM = {x ∈ ωM : x satisfies φ in M}. The set A = {φM : φ a formula of
L} is a cylindric-relativized field of sets; the corresponding sets I, U , and V are,
respectively, ω, M , and ωM . This is the main motivating source for the notion of
cylindric-relativized field of sets and, indeed, for the whole topic of algebraic logic.
The cylindric-relativized set algebra obtained from M will be denoted by Cs M.
By the above convention, Cs M then denotes the indicated cylindric-relativized
field of sets.

The cylindric-relativized field of sets obtained in this way has many special
properties. Some of these will be described and studied later.

For now we want to indicate some important connections between logic and
such algebras. We use ∼= to indicate isomorphism. The central logical notion of
elementary equivalence is characterized algebraically as follows:

Theorem 3.1. If M is elementarily equivalent to N, then Cs M ∼= Cs N.
In fact , let M and N be similar structures, and let f = {(φM, φN) : φ a

formula}. Then the following conditions are equivalent :

(i) M is elementarily equivalent to N;
(ii) f is a function from Cs M into Cs N such that fφM = φN for every

formula φ;
(iii) f is an isomorphism from Cs M onto Cs N such that fφM = φN for every

formula φ.

P r o o f. (i)⇒(iii). That f is a function and is one-one is seen as follows (using
[χ] temporarily to denote the universal closure of any formula χ): for any formulas
φ and ψ, φM = ψM iff M � (φ ↔ ψ) iff M � [φ ↔ ψ] iff N � [φ ↔ ψ] iff . . . iff
φN = ψN. The other conditions in (iii) are clear from the definitions involved.

(iii)⇒(ii). Obvious.
(ii)⇒(i). For any sentence φ, M � φ⇒ φM = ωM ⇒ fφM = ωN ⇒ φN = ωN

⇒ N � φ. Applying this argument to ¬φ gives the other direction.
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On the other hand, it is also natural to try to characterize logically the isomor-
phism of structures Cs M. To do this, we need to discuss a special topic in logic,
definitional equivalence. Given two first-order structures M and N, not necessar-
ily similar, we say that they are definitionally equivalent provided that M = N
and the following two conditions hold (we restrict ourselves to languages with
only relation symbols, for simplicity):

(1) Each fundamental relation of M is elementarily definable in N, i.e., if R is
an m-ary fundamental relation of M, then there is a formula φ of the language of
N with free variables among v0, . . . , vm−1 such that R = {x ∈ mM : N � φ[x]}.

(2) Each fundamental relation of N is elementarily definable in M.

Two standard examples of this sort of thing are: groups as structures with a
single binary operation, or as structures with a binary operation and an inverse
operation; Boolean algebras with lattice operations versus Boolean algebras with
ring operations.

Theorem 3.2. M and N are definitionally equivalent iff Cs M = Cs N.

P r o o f. ⇒ Let φ be a function which assigns to each fundamental relation
R of M a formula φR as in the definition. Then we define a function φ′ from
formulas of the language of M into formulas of the language of N:

φ′(Rvi0 . . . vim−1) = φR(vi0 , . . . , vim−1),
φ′(¬χ) = ¬φ′(χ),

φ′(χ ∧ θ) = φ′(χ) ∧ φ′(θ),

φ′(vi = vj) = (vi = vj) ,
φ′(χ ∨ θ) = φ′(χ) ∨ φ′(θ) ,
φ′(∀viχ) = ∀viφ′(χ) .

Now a straightforward induction shows that χM = (φ′(χ))N for every formula χ
of the language of M. This proves that Cs M ⊆ Cs N. The converse is similar.
⇐ Let R be an m-ary fundamental relation of M. Then R′

def= {x ∈ ωM :
x � m∈R}∈Cs M, and hence it is also in Cs N, say R′=ψN. Now if i≥m then
CiR

′=R′; hence (∃vi ψ)N =Ciψ
N = ψN also. Hence without loss of generality we

may assume that the free variables of ψ are among v0, . . . , vm−1. Thus ψ defines
R in N. By symmetry, this proves that M and N are definitionally equivalent.

For the characterization of isomorphism of structures CsM we also need to
use the following not so well-known fact about ordinary first-order logic:

Fact. Every first-order formula is logically equivalent to a formula in which
all non-equality atomic parts have the standard form

Rv0 . . . vm−1,

thus with the first m variables following each m-ary relation symbol (in a language
with only relation symbols).

Here is a sketch of the proof of this fact. Note the following logical equivalence:

Rvi0 . . . vim−1 ↔ ∃vj (vj = vi0 ∧Rvjvi1 . . . vim−1),
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provided that j is different from each of i0, . . . , im−1. This is an elementary exer-
cise. A similar result holds for a replacement of any variable instead of just the
first one. So any atomic formula is equivalent to a more complicated expression
involving existential quantifiers and equality formulas, and an atomic formula
Rvj0 . . . vjm−1 in which all the indices are distinct and greater than m. Then
the same procedure can be applied to “replace” these variables by v0, . . . , vm−1

respectively.

Theorem 3.3. Cs M is isomorphic to Cs N iff M is elementarily equivalent
to a structure definitionally equivalent to N.

P r o o f. ⇒ Let f be an isomorphism from Cs M onto Cs N. We define a new
structure P similar to M and with universe N . For each fundamental relation R
of M, let

RP = {x ∈ mN : x ⊆ y for some y ∈ f(Rv0 . . . vm−1)M}.
Now we claim that f(Rv0 . . . vm−1)M = (Rv0 . . . vm−1)P. In fact, if y ∈ f(Rv0
. . . vm−1)M, then y � m ∈ RP, and hence y ∈ (Rv0 . . . vm−1)P. On the other
hand, suppose that y ∈ (Rv0 . . . vm−1)P. Then y � m ⊆ z ∈ f(Rv0 . . . vm−1)M

for some z. Write f(Rv0 . . . vm−1)M = φN. If i ≥ m, then Ci(Rv0 . . . vm−1)M =
(Rv0 . . . vm−1)M, and hence CiφN = φN. So without loss of generality we may
assume that the free variables of φ are among v0, . . . , vm−1. Hence from y � m ⊆
z ∈ φN it follows that y ∈ φN = f(Rv0 . . . vm−1)M, as desired: this proves our
claim. From the claim and the Fact it follows that fψM = ψP for every formula
ψ of the language of M. Therefore by Theorem 3.1, f is an isomorphism from
Cs M onto Cs P. Hence Cs N = Cs P, and the desired conclusion follows from
previous theorems.
⇐ Clear from previous theorems.

We now make some remarks about Boolean algebras. The abstract operations
in a Boolean algebra corresponding to the set-theoretic operations ∪, ∩, \, 0, and
X in a field of sets (subsets of X) are denoted by +, ·, −, 0, and 1 respectively.

An important aspect of the theory of Boolean algebras is the description of
the Lindenbaum–Tarski algebras of common first-order theories. Given a theory
T , one defines an equivalence relation ≡ on sentences of the given language by
defining φ ≡ ψ iff T � φ ↔ ψ. Then the collection of equivalence classes forms
a Boolean algebra under the operations [φ] + [ψ] = [φ ∨ ψ], [φ] · [ψ] = [φ ∧ ψ],
−[φ] = [¬φ], 0 = [F], 1 = [T]; this is the Lindenbaum–Tarski algebra of T (F
and T are any fixed logically invalid and logically valid sentences, respectively).
For what these algebras look like for common theories T , see the chapter by
Myers in the Boolean algebra handbook [7]. For Boolean algebras, the description
consists in describing a linear order L such that the Lindenbaum–Tarski algebra
is isomorphic to the interval algebra on L.

The corresponding facit of the theory of cylindric algebras is to describe the
cylindric set algebras Cs M for important models M. This amounts to looking
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at complete theories only, which is customary in model theory. It is somewhat
surprising that this aspect of the theory of cylindric algebras has been almost
entirely neglected. A complete description of Cs M is known only in the case in
which M has only one-place relations. There are many other simple structures
where the description of Cs M should not be difficult; for example, for M the
rationals under their natural ordering.

4. Elementary facts. We summarize some of the elementary arithmetic of
cylindric-relativized set algebras in the following lemma. This lemma will be used
later without specific citation of it.

Lemma 4.1. (i) X ∩ CiY = 0 iff CiX ∩ Y = 0.
(ii) X ⊆ CiX.
(iii) If X ⊆ Y then CiX ⊆ CiY .
(iv) Ci

⋃
X =

⋃
x∈X Cix.

P r o o f. (i) Suppose that x ∈ X ∩ CiY . Then xiu ∈ Y for some u ∈ U .
x = (xiu)ixi, so xiu ∈ CiX ∩ Y ; (i) follows by symmetry.

(ii)–(iv). Easy.

Now we introduce some notation. CrsI is the class of all cylindric-relativized
set algebras with associated set I, called its dimension. When we say “a CrsI”, we
mean “a member of CrsI”, and similarly for other classes of algebras introduced
later. For any collection V of functions with domain I, the collection of all subsets
of V forms a cylindric-relativized field of sets; the associated algebra is denoted
by PV . If A is any CrsI , with notation as in Section 2, then the set V is called
the unit of A. The base of the CrsI and of V is the set

⋃
p∈V range(p); this is the

smallest set U such that V ⊆ IU . For any CrsI A, we denote by BlA the Boolean
reduct of A; it consists of A together with the operations ∪, ∩, \, 0, and V . For
any a in a CrsI , we define the dimension set of a to be

∆a = {i ∈ I : Cia 6= a}.
An element a is zero-dimensional if its dimension set is 0. The 0 and unit of a
CrsI are always zero-dimensional. In an algebra Cs M these are the only zero-
dimensional elements. But if, for example, we take V = ω{0, 1} ∪ ω{2, 3} and
consider the Crsω of all subsets of V , then both ω{0, 1} and ω{2, 3} are zero-
dimensional, as well as the 0 and unit of the algebra.

We use “BA” to abbreviate “Boolean algebra”.

Lemma 4.2. The collection of all zero-dimensional elements of a CrsI A forms
a subalgebra of the BA BlA.

P r o o f. Let Z be the indicated collection. Clearly Z is closed under ∪. To
show that it is closed under \, suppose that z ∈ Z, i ∈ I, and x ∈ Ci(V \z);
we want to show that x ∈ V \z. We have xiu ∈ V \z for some u. If x ∈ z, then
xiu ∈ Ciz = z, contradiction.
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A subunit of A is an atom of the BA of zero-dimensional elements of PV
(where V is the unit of A). A subbase of A is the base of some subunit of A. Note
that it may be that some subunits of A are not members of A. For any set U and
any function p mapping I into U we denote by IUp the set {q ∈ IU : {i ∈ I :
pi 6= qi} is finite}.

Lemma 4.3. Let A be a CrsI with unit V . Then V is the disjoint union of all
subunits of A. Moreover , for each subunit W of A there is a subbase Y of A and
some p ∈ V such that W ⊆ IY p.

P r o o f. For each p ∈ V let

zd(p) =
⋃
{Ci0 . . . Cim{p} : m ∈ ω, i ∈ m+1I}.

Clearly zd(p) is a zero-dimensional element of PV . We claim that it is an atom
of the BA of zero-dimensional elements of PV . To show this, suppose that a is
any zero-dimensional element, and zd(p) ∩ a 6=0. Thus Ci0 . . . Cim{p} ∩ a 6=0 for
some i0, . . . , im, and hence {p}∩Cim . . . Ci0a 6=0, i.e. (since a is zero-dimensional),
p ∈ a. Hence clearly zd(p) ⊆ a, as desired. This shows that zd(p) is a subunit
of A. If a is any subunit of A, choose p ∈ a; then clearly zd(p) ⊆ a, and hence
zd(p)=a. So, every subunit has the form zd(p). For any p ∈ V we have p ∈ zd(p).
This proves that V is the disjoint union of all subunits of A.

Let W be any subunit of A. By the preceding paragraph, W = zd(p) for some
p ∈ V . Clearly, then, W ⊆ IY p, where Y is the base of W .

Note that the sets IY p may not be in the algebra PV , since the cylindrifica-
tions may lead outside of V , so to speak. For example, if V = {〈i : i ∈ ω〉}, then
the base of V is ω, but of course for all p, ωωp 6∈ PV .

5. Relativization. Let A be a CrsI with unit element V , and suppose that
W ⊆ V . We define a mapping rlAW from A into P(W ) by setting, for any X ∈ A,

rlAW X = W ∩X.
Thus rlAW (the relativization operation) maps into the CrsI PW . It clearly pre-
serves all of the Boolean operations (union, intersection, complementation, 0,
unit) and takes D

[V ]
ij to D

[W ]
ij . Also, for any X ∈ A we have C

[W ]
i (rlX) ⊆

rl(C [V ]
i X). In fact, if x ∈ C [W ]

i (rlX), then x ∈ W , and say xiu ∈ W ∩X. Thus
x ∈ W and x ∈ C

[V ]
i X, i.e., x ∈ rl(C [V ]

i X). The other inclusion does not in
general hold, but we have the following important case in which it does:

Proposition 5.1. Let A be a CrsI with unit element V , and suppose that W
is a zero-dimensional element of PV . Then rlAW is a homomorphism from A into
PW .

P r o o f. By the remarks before the proposition, it suffices to show that for
any X ∈ A we have rl(C [V ]

i X) ⊆ C
[W ]
i (rlX). So, suppose that x ∈ rl(C [V ]

i X).
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Thus x ∈ W ∩ C [V ]
i X. Choose u so that xiu ∈ X. Since x = (xiu)ixi we have

xiu ∈ C
[V ]
i W = W . So xiu ∈ rlX, and hence x ∈ C [W ]

i (rlX), as desired.

[Here is an example where the indicated inclusion does not hold: I = ω,
V = ω{0, 1}, x = 〈0 : i ∈ ω〉, W = {x}, f0 = 1, fi = 0 for all i ∈ ω\{0},
X = {f}; then x ∈ rlW (C [V ]

0 X)\C [W ]
0 (rlW X).]

The Crs’s obtained from logic also provide an important example where the
function rl is a homomorphism—even an isomorphism. And we get an algebraic
version of elementary substructure:

Proposition 5.2. Suppose that M and N are similar structures. Let A =
Cs N, B = Cs M, V = ωN , and W = ωM .

(i) If M is an elementary substructure of N, then rlAW is an isomorphism
from A onto B.

(ii) Assume that M ⊆ N . Then the following conditions are equivalent :
(a) M is an elementary substructure of N;
(b) rlAW is an isomorphism from A onto B and rlAW φN = φM for every

formula φ;
(c) rlAW φN = φM for every formula φ.

P r o o f. Since (i) obviously follows from (ii), we restrict the proof to (ii).
For (a)⇒(b), note that the defining property of elementary substructure can be
expressed as saying that rlφN = ωM ∩ φN = φM for every formula φ. So by
Theorem 3.1, (b) follows. (b)⇒(c) is trivial, and (c)⇒(a) has essentially been
proved now too.

The converse of Proposition 5.2(i) does not hold. In fact, let M = (Q, >) (the
rationals under >), and let N = (R, <) (the reals under <). Clearly M is not an
elementary substructure of N (it is not even an ordinary substructure), but rlAW
is an isomorphism from A onto B—this follows from our next theorem, which
logically characterizes when rlAW is an isomorphism:

Proposition 5.3. Suppose that M and N are first-order structures, not ne-
cessarily similar. Let A = Cs N, B = Cs M, V = ωN , and W = ωM . Then the
following conditions are equivalent :

(i) M is definitionally equivalent to an elementary substructure of N.
(ii) rlW is an isomorphism from A onto B.

P r o o f. (i)⇒(ii). This is clear from previous theorems.
(ii)⇒(i). We define a structure P with universe M : if R is an m-ary funda-

mental relation of N, let RP = mM ∩RN. We claim that

(∗) for any formula φ of the language of N, rlW φN = φP.
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The proof is by induction on φ:

rlW (Rvi0 . . . vim−1)N = W ∩ (Rvi0 . . . vim−1)N

= {x ∈ ωM : N � Rvi0 . . . vim−1 [x]}

= {x ∈ ωM : x ◦ i ∈ RN} = {x ∈ ωM : x ◦ i ∈ RP}

= (Rvi0 . . . vim−1)P;

rlW (φ ∨ ψ)N = W ∩ (φ ∨ ψ)N = W ∩ (φN ∪ ψN) = (φ ∨ ψ)P;

similarly for ¬;

rlW (∃vi φ)N = rlW Ciφ
N = Ci rlW φN = Ciφ

P = (∃vi φ)P.

So, (∗) holds. It follows that rlW is an isomorphism from Cs N onto Cs P. Thus
Cs P = Cs M, and so the desired conclusion follows from previous theorems.

One more question in this little circle of ideas is to discuss the logical meaning
of rlAW merely being a homomorphism, not necessarily an isomorphism. Well,
every non-trivial homomorphism defined on an algebra Cs M is an isomorphism,
since as we will see in a future section (or the reader can easily verify for herself
now), every algebra Cs M is simple.

Next, we want to give an algebraic version of the downward Löwenheim–
Skolem–Tarski theorem. To this end we introduce some more terminology. Let
A and B be CrsI ’s with unit elements V and W respectively, where W ⊆ V . If
rlAW is an isomorphism from A onto B, then we say that A is ext-isomorphic to
B, and B is sub-isomorphic to A; rlAW is an ext-isomorphism, and (rlAW )−1 is a
sub-isomorphism.

Theorem 5.4. Let A be a CrsI with unit element V and base U . Let κ be
an infinite cardinal such that |A| ≤ κ ≤ |U |. Assume that S ⊆ U and |S| ≤ κ.
Finally , assume that κ|I| = κ. Then there is a W such that S ⊆W ⊆ U , |W | = κ,
and A is ext-isomorphic to a CrsI with unit element V ∩ IW .

P r o o f. Let a well-ordering of U be given. Now we define by induction sets Tα
for all α < κ. Let T0 be a subset of U such that |T0| = κ, S ⊆ T0, and X∩IT0 6= 0
for all X ∈ A; clearly such a set exists. (Note that |I| < κ since κ|I| = κ.) Suppose
that 0 < β < κ and Tα has been defined for all α < β. Let M =

⋃
α<β Tα, and

let

Tβ = M ∪ {a ∈ U : ∃X ∈ A ∃i ∈ I ∃x ∈ IM ∩ V [a is the
first element of U such that xia ∈ X]}.

Let W = Tκ =
⋃
α<κ Tα. Set Z = V ∩ IW . It is clear by induction that |Tα| = κ

for all α ≤ κ; here again the assumption κ|I| = κ comes in. By the definition of
T0 it is clear that rlAZ is one-one. To prove that rl preserves Ci, by the comment
before Proposition 5.1 it suffices to take any X ∈ A and x ∈ C

[V ]
i X ∩ Z and

show that x ∈ C
[Z]
i (X ∩ Z). Thus x ∈ IW . The assumption κ|I| = κ implies
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that |I| < cf κ, and hence there is some β < κ such that x ∈ ITβ . From the
construction it follows that there is an a ∈ Tβ+1 such that xia ∈ X. Thus xia ∈ Z,
and hence x ∈ C [Z]

i (X ∩ Z), as desired.

This theorem has been considerably generalized in the literature, and we shall
give one or two of these generalizations later; see [6], pp. 47ff, and [9].

6. Change of base. The procedure of relativization in general changes the
base of a CrsI , going from a base to a subset. Now we want to consider another
way of changing the base, to an entirely new set. Let f be a one-one function
from U into W , and let A be a CrsI with base U and unit V . We define a function
f̃ on A as follows: for any a ∈ A,

f̃a = {x ∈ IW : f−1 ◦ x ∈ a}.
The operation ˜ is actually a general set-theoretic operation. It would perhaps
be more natural to define it, for any function f , by

f̃a = {x : f ◦ x ∈ a},
but we take the above definition to be consistent with the basic references men-
tioned in the introduction.

Proposition 6.1. Let A be a CrsI with base U , and let f be a one-one function
mapping U onto W. Then f̃ is an isomorphism from A onto a CrsI with base W .

P r o o f. From the form of the definition it is a straightforward matter to check
that f̃ preserves the Boolean operations and the Dij ’s. To prove that f̃C [V ]

i a ⊆
C

[f̃V ]
i f̃a, suppose that x ∈ f̃C [V ]

i a. Thus x ∈ IW and f−1 ◦ x ∈ C [V ]
i a. So there

is a u such that (f−1 ◦x)iu ∈ a. But (f−1 ◦x)iu = f−1 ◦xifu, so f−1 ◦xifu ∈ a and

hence xifu ∈ f̃a and x ∈ C [f̃V ]
i f̃a, as desired.

To prove that C [f̃V ]
i f̃a ⊆ f̃C

[V ]
i a, suppose that x ∈ C [f̃V ]

i f̃a. So x ∈ f̃V and
xiw ∈ f̃a for some w. Therefore x ∈ IW , w ∈W , f−1 ◦ x ∈ V , and f−1 ◦ xiw ∈ a.
Let fu = w. Then (f−1 ◦ x)iu = f−1 ◦ xiw, so f−1 ◦ x ∈ C [V ]

i a and x ∈ f̃C [V ]
i a, as

desired.

If A is a CrsI with base U , B is a CrsI with base W , and g is an isomorphism
from A onto B, we call g a base isomorphism from A onto B if there is a one-one
function f from U onto W such that g = f̃ .

Base isomorphisms in algebras roughly correspond to isomorphisms of struc-
tures; this is expressed in the following two results:

Proposition 6.2. Let M and N be similar structures, and let f be a one-one
function from M onto N. Then the following conditions are equivalent :

(i) f is an isomorphism from M onto N.
(ii) f̃ is a base isomorphism from Cs M onto Cs N, and f̃φM = φN for every

formula φ.
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P r o o f. (i)⇒(ii). For any formula φ, M � φ[x] iff N � φ[f ◦x]; this elementary
logical fact clearly implies that f̃φM = φN for every formula φ. Then Theorem 3.1
says that also f̃ is a base isomorphism from Cs M onto Cs N.

(ii)⇒(i). Easy.

Proposition 6.3. Suppose that M and N are first-order structures, not ne-
cessarily similar. Let A = Cs M, B = Cs N. Suppose that f is a one-one function
mapping M onto N. Then the following conditions are equivalent :

(i) f is an isomorphism from M onto a structure P definitionally equivalent
to N.

(ii) f̃ is a base isomorphism from A onto B.

P r o o f. (i)⇒(ii). By Proposition 6.1, f̃ is an isomorphism from A onto some
CrsI . Proposition 6.2 says that f̃φM = φP for every formula φ. Thus f̃ maps onto
Cs P, which is the same as B, as desired.

(ii)⇒(i). There is a unique way of defining a structure P such that f is an
isomorphism from M onto P. Then Proposition 6.2 yields that f̃ is a base iso-
morphism from A onto Cs P. The desired result follows.

An algebraic version of elementary embeddings is captured in the following
definition. Let A be a CrsI with unit V and base U , and let B be a CrsI with
unit X and base W . An isomorphism f of A onto B is a sub-base-isomorphism
provided there exist a base isomorphism h and a sub-isomorphism g such that
f = g ◦ h. The following equivalent version of this notion is sometimes useful.

Proposition 6.4. Let A be a CrsI with unit V and base U , and let B be a
CrsI with unit X and base W . Let f be an isomorphism from A onto B. Then
the following conditions are equivalent :

(i) f is a sub-base-isomorphism from A onto B.
(ii) There exist a base isomorphism h′ and an ext-isomorphism g′ such that

f−1 = g′ ◦ h′.

P r o o f. (i)⇒(ii). Let l be a one-one function from U onto some set S such
that f = (rlBZ )−1 ◦ l̃, where Z = l̃V ; this is possible by the assumption (i). Say
that l̃ is a base isomorphism from A onto D. Then purely set-theoretically it is
possible to find a one-one function k with domain W and range some set T ⊇ U
such that l−1 ⊆ k. So k̃ is a base isomorphism from B onto some CrsI C with
unit Y def= k̃V and base T . In pictures:

C, Y, T
k̃←− B, X,WyrlCV

yrlBZ

A, V, U
l̃−→ D, Z, S
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We claim that l̃ ◦ rlCV ◦k̃ = rlBZ ; this will establish (ii). To prove this claim, take
any b ∈ B. Then

(l̃ ◦ rlCV ◦k̃)b = l̃ rlCV {x ∈ IT : k−1 ◦ x ∈ b}

= l̃{x : x ∈ V, x ∈ IT, k−1 ◦ x ∈ b}
= {z ∈ IS : l−1 ◦ z ∈ V, l−1 ◦ z ∈ IT, k−1 ◦ l−1 ◦ z ∈ b}
= b ∩ Z,

as desired.
(ii)⇒(i). Let k be a one-one function from W onto some set T such that h′= k̃;

say that h′ is a base isomorphism from B onto a CrsI C with base T and unit
Y . Thus g′ = rlCV . Let l = k−1 � U , and let S be the range of l. Then l̃ is an
isomorphism from A onto some CrsI D with some unit Z and with base S. So we
have the same picture as before. By steps similar to the above one can verify that
rlBZ = l̃ ◦ rlCV ◦k̃, and this yields (i).

The actual algebraic equivalence of elementary embeddings is given in the
following result.

Proposition 6.5. Let M and N be (not necessarily similar) structures, and
let f be a one-one function from M into N . Then the following conditions are
equivalent :

(i) f is an elementary embedding of M into a structure P which is defini-
tionally equivalent to N.

(ii) There is a sub-isomorphism g such that g ◦ f̃ is a sub-base-isomorphism
of Cs M onto Cs N.

P r o o f. (i)⇒(ii). Let Q be a structure similar to M (and P) such that f is
an isomorphism from M onto Q and Q is an elementary substructure of P. By
Proposition 6.3, f̃ is a base isomorphism from Cs M onto Cs Q. By Proposition
5.3, rlW is an isomorphism of Cs P onto Cs Q, where W = IQ. By Theorem 3.2,
Cs P = Cs N. So rl−1 ◦f is a sub-base-isomorphism of Cs M onto Cs N.

(ii)⇒(i). Similar.

7. Subalgebras. For the general notion of a Crs we have nothing to say about
subalgebras except the following connection with logic. There are interesting re-
sults and questions concerning subalgebras in special classes of Crs’s.

Theorem 7.1. For any L-structure M and any Crsω A the following conditions
are equivalent :

(i) A ⊆ Cs M.
(ii) There exist a structure N definitionally equivalent to M, say N an L′-

structure, and a sublanguage L′′ of L′ such that A = Cs(N � L′′). (N � L′′ is the
reduct of N to the language L′′.)
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P r o o f. (i)⇒(ii). For each x ∈ Cs M and each positive integer m such that
∆x ⊆ m we introduce an m-ary relation symbol Rxm in a language L′; and we
also choose φx with φM

x = x with free variables among {vi : i ∈ ∆x}. Define
N = M and

RN
xm = {u ∈ mN : M � φx[u]}.

Let L′′ be the sublanguage of L′ consisting of all of the relation symbols Rxm for
x ∈ A. To check (ii) we first show that M and N are definitionally equivalent.
Obviously every fundamental relation of N is definable in M. Now take a funda-
mental relation RM of M; say R is an m-ary relation symbol of the language of
M. Let x = (Rv0 . . . vm−1)M. Note that M � φx ↔ Rv0 . . . vm−1. Hence

{u ∈ mM : N � Rxmv0 . . . vm−1[u]} = RN
xm = {u ∈ mN : M � φx[u]} = RM,

as desired. This proves that N is definitionally equivalent to M.
Now we show that A = Cs(N � L′′). To do this, it suffices to show that if x ∈ A

and ∆x ⊆ m, then x = (Rxmv0 . . . vm−1)N, since this shows that Cs(N � L′′) has
A as a set of generators and hence must coincide with A. We have

(Rxmv0 . . . vm−1)N = {u ∈ ωN : u � m ∈ RN
xm}

= {u ∈ ωM : M � φx[u]} = φM
x = x.

As to (ii)⇒(i), take any a ∈ A and by (ii) write a = φN �L′′ for some formula
φ of L′′. Then

a = φN�L′′ = φN ∈ Cs N = Cs M.

8. Homomorphisms. The basic result about homomorphisms is that a ho-
momorphic image of a Crs is isomorphic to a Crs. The proof that we give for this
(due to Andréka and Németi) depends on ultraproducts, and so it will be post-
poned to Section 10. Closure under homomorphic images is the difficult thing in
proving that the class of isomorphs of Crs’s is equational. There is another, in-
volved, proof due to Resek and Thompson, based on an axiom system for CrsI ’s,
and a simple proof that this axiom system works is due to Andréka and Thomp-
son independently; this simple proof has not been published, but is sketched in
Resek, Thompson [8]. See also Section 9.

Concerning connections with logic, the basic result is that Cs M is always
simple, in the general algebraic sense. We prove this now, assuming only a basic
knowledge of universal algebra.

Theorem 8.1. For any L-structure M, the Crsω Cs M is simple.

P r o o f. Suppose that E is a congruence relation on Cs M and φM and ψM are
distinct elements such that φMEψM; we want to show that E = Cs M ×Cs M.
Say φM 6⊆ ψM. Let χ = ∃v0 . . . vm−1(φ∧¬ψ), where m is such that all of the free
variables of φ ∧ ¬ψ are among v0, . . . , vm−1. Thus M � χ, and hence χM = ωM .
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Therefore
φMEψM;

φM · −ψME0;

(φ ∧ ¬ψ)ME0;

C0 . . . Cm−1[(φ ∧ ¬ψ)M]EC0 . . . Cm−10 = 0;

[∃v0 . . . vm−1(φ ∧ ¬ψ)]ME0;
ωME0;

hence for any x, y ∈Cs M we have x = (x · ωM)E(x · 0) = 0, and similarly yE0,
so xEy, as desired.

9. Products. The basic fact here is that a product of Crs’s is isomorphic to
a Crs:

Theorem 9.1. For |K| > 1, any product of CrsK ’s is isomorphic to a CrsK .

P r o o f. Let 〈Ai : i ∈ I〉 be a system of CrsK ’s. Say Vi is the unit element of Ai
for each i∈ I. Without loss of generality, the bases of Ai and Aj are disjoint for
distinct i, j ∈ I. Let W =

⋃
i∈I Vi. Now we define f :

∏
i∈I Ai → P(W ) by setting

fx =
⋃
i∈I xi for any x ∈

∏
i∈I Ai. Thus f maps into the CrsK of all subsets of

W . Clearly f preserves +, −, and dkl for k, l ∈ K. Moreover, x 6= 0⇒ fx 6= 0, so
f is one-one. Finally, f preserves ck for each k ∈ K:

a ∈ fckx iff ∃i ∈ I (a ∈ C [Vi]
k xi)

iff ∃i ∈ I (a ∈ Vi and ∃u (aku ∈ xi))
iff ∃u∃i ∈ I (a ∈ Vi and aku ∈ xi)
iff a ∈W and ∃u (aku ∈ fx)

iff a ∈ CWk fx,

as desired. Note that the next to the last equivalence uses the fact that |K| > 1
and that the bases are disjoint.

Theorem 9.1 does not extend to the case |K| ≤ 1; but we shall not go into this.
For the rest of the present remarks assume that |K| > 1. According to Theorem
9.1 and preceding sections, the class K of isomorphs of CrsK ’s is closed under
subalgebras, homomorphisms, and products. Hence by the well-known theorem
of Birkhoff, K is a variety, i.e., it is characterized by a set of equations. One
of the major results in the theory of cylindric algebras is that K is not finitely
axiomatizable if K has at least 3 elements; this is a result of Andréka and Németi.
For K infinite the result is somewhat trivial, but there is a stronger, non-trivial
result: K is not definable by a finite schema. We shall prove the first result here,
but in order not to digress too much we omit the definition of “finite schema”
and the proof of the second result.
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Lemma 9.2. The following inequality holds in every CrsK , for any m ∈ ω and
any distinct j, k, l ∈ K:

(cjck)m+1(dkl · x) · dkl ≤ cjx.
P r o o f. Let A be a CrsK . Suppose that a is in the left side of the indicated

inequality. Then there exist u0, u1, . . . , u2m+1 such that

b
def= ((. . . ((aju0

)ku1
) . . .)ju2m

)ku2m+1
∈ Dkl ∩ x.

Hence it suffices to show that aju2m
= b. Since these two functions clearly agree

except possibly at k, we just check k: (aju2m
)k = ak = al = bl = bk, as desired.

Theorem 9.3. If K has at least 3 elements, then the class L of isomorphs of
CrsK ’s is not finitely axiomatizable. Specifically , there is a system 〈Am : m ∈ ω〉
of algebras similar to CrsK ’s such that no Am is isomorphic to a CrsK , while∏
m∈ω Am/F is isomorphic to a CrsK for every non-principal ultrafilter F on ω.

P r o o f. For notational convenience we assume that K is an ordinal α. Let
a = 〈1, 0, 0, . . .〉 (a sequence of length α), c = {a}, and for each m ∈ ω let
bm = 〈2m + 1, 2m + 2, 0, 0, . . .〉 (a sequence of length α), dm = {bm}. Now for
each m ∈ ω we set

Vm = {f ∈ αω : for some n ≤ m we have f0 = 2n+ 1,
f1 ∈ {2n, 2n+ 2}, and fκ = 0 for all κ ∈ α\{0, 1}},

dmκκ = Vm,

d0κ = dκ0 = 0 if 0 < κ < α,

d1κ = dκ1 = {a, bm} if 1 < κ < α,

dκλ = Vm if κ, λ ∈ α\{0, 1},

Am = 〈P(Vm),∪,∩, \, 0, Vm, C [Vm]
κ , dmκλ〉κ,λ∈α

(\ is complementation relative to Vm). First we apply Lemma 9.2 to see that no
algebra Am is isomorphic to a CrsK . We claim that bm is in the left side of the
inequality of Lemma 9.2 but not in the right, for j = 0, k = 1, l = 2, x = {a}. In
fact,

((. . . (((bm)02m+1)12m)02m−1 . . .)
0
1)10 = a,

and by construction all of the elements

(bm)02m+1, ((bm)02m+1)12m, (((bm)02m+1)12m)02m−1, . . .

are in Vm. Hence bm is clearly in the left side, and it also clearly fails to be in the
right side.

Now let F be any non-principal ultrafilter on ω. Set B =
∏
m∈ω Am/F . The

rest of the proof is devoted to showing that B is isomorphic to a CrsK .
To prove this, we first develop some notation for the algebras Am. Each such

algebra is an atomic Boolean algebra with additional operations. If u is an atom
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of Am, then there is a unique n ≤ m such that u has the form {〈2n+ 1, . . .〉}; we
denote this n by intu. In case u ∈ Am is not an atom we let intu = 0.

Another ultraproduct will play an important role in the rest of the proof. Let
C =

∏
m∈ω(m+ 1, <)/F . Let 0 = 〈0 : m ∈ ω〉/F and ∞ = 〈m : m ∈ ω〉/F . Thus

C is a linearly ordered structure with least element 0 and greatest element ∞.
Moreover, every element except∞ has an immediate successor, and every element
except 0 has an immediate predecessor. Therefore the order type of C consists of
ω followed by 2ω copies of Z in some order not of interest in this proof, followed
by ω∗. (It is well known that C has power 2ω.) For any element x of C and any
n ∈ Z we denote by x + n the nth successor of x (meaning (−n)th predecessor
if n < 0), if it exists (which is only problematical for the initial ω and terminal
ω∗). Two elements u, v of C are said to be equivalent if u is the nth successor of
v or v is the nth successor of u for some n ∈ ω.

If x/F is an atom of B, then we say that x/F is of

• type 1 if {m ∈ ω : ∃n (xm = {〈2n+ 1, 2n, 0, 0, . . .〉})} ∈ F ;
• type 2 if {m ∈ ω : ∃n (xm = {〈2n+ 1, 2n+ 2, 0, 0, . . .〉})} ∈ F .

Note that every atom is either of type 1 or of type 2. For any atom x/F of B we
set int(x/F ) = 〈intxm : m ∈ ω〉/F ; clearly this is a well-defined function from
the set of atoms of B into C. Then we call atoms u, v of B equivalent if intu and
int v are equivalent.

(1) For any i ∈ {1, 2} and any n ∈
∏
m∈ω(m+ 1) there is at most one atom u

of B of type i such that intu = n/F .

In fact, suppose that x/F and y/F are atoms of B of the same type, and
int(x/F ) = int(y/F ) = n/F . By symmetry we assume that the type is 1. Then
each of the following sets is in F , and hence so is their intersection, which we
call X:

{m ∈ ω : ∃n (xm = {〈2n+ 1, 2n, 0, 0, . . .〉})},
{m ∈ ω : ∃n (ym = {〈2n+ 1, 2n, 0, 0, . . .〉})},
{m ∈ ω : intxm = nm},
{m ∈ ω : int ym = nm}.

Then it is clear that for any m ∈ X we have xm = ym, as desired.
Next, let c′ = 〈c : m ∈ ω〉 and d′ = 〈dm : m ∈ ω〉. The following rules for

calculation of cylindrifications will be useful; the rules are clear on the basis of (1):

(2) c0(c′/F ) = c′/F and c0(d′/F ) = d′/F .
(3) If x/F is an atom of B, then c1(x/F ) = x/F + y/F , where y/F is the

other atom such that int(y/F ) = int(x/F ).
(4) If x/F is an atom of type 1 and x/F 6= c′/F , then c0(x/F ) = x/F + y/F ,

where y/F is the unique atom of type 2 such that int(y/F ) is the immediate
predecessor of int(x/F ).
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(5) If x/F is an atom of type 2 and x/F 6= d′/F , then c0(x/F ) = x/F + y/F ,
where y/F is the unique atom of type 1 such that int(y/F ) is the immediate
successor of int(x/F ).

(6) If κ > 1, then cκu = u for any u ∈ B.

Next we define a function G mapping the set of atoms of B into αC by defining
its restriction to each equivalence class k under the above equivalence relation.

C a s e 1: c′/F ∈ k. Let x/F be any member of k. Then int(x/F ) is, for some
n ∈ ω, the nth successor of 0 in C. Then we set

G(x/F ) =
{
〈0 + 2n+ 1, 0 + 2n, 0, 0, . . .〉 if x/F is of type 1,
〈0 + 2n+ 1, 0 + 2n+ 2, 0, 0, . . .〉 otherwise.

C a s e 2: d′/F ∈ k. Let y/F be any member of k. Then int(y/F ) is, for some
n ∈ ω, the nth predecessor of ∞ in C. Then we set

G(y/F ) =
{
〈∞ − (2n+ 1),∞− 2n,∞,∞, . . .〉 if y/F is of type 2,
〈∞ − (2n+ 1),∞− (2n+ 2),∞,∞, . . .〉 otherwise.

C a s e 3: c′/F, d′/F 6∈ k. Fix an element s of the equivalence class of int(u/F ),
where u/F is any element of k. Now for any z/F ∈ k write int(z/F ) = s+n with
n ∈ Z and define

G(z/F ) =
{
〈s+ 2n+ 1, s+ 2n, 0, 0, . . .〉 if z/F is of type 1,
〈s+ 2n+ 1, s+ 2n+ 2, 0, 0, . . .〉 otherwise.

This finishes the definition of G. Note that G is one-one.

Finally, we define H : B → P(αC), which will turn out to be the desired
isomorphism. For any x ∈ B, let

Hx = {Gy : y ≤ x and y is an atom of B}.

We claim that H is an isomorphism from B onto a Crsα with unit element Z def=
H1. Clearly H is a Boolean isomorphism. Now we check the diagonals. In B we
have dκκ = 1 for any κ < α, and Dκκ = 1 in any Crsα, so there is no problem
with that. For 0 < κ < α we have d0κ = 0 in B. Now Z is simply the range of G,
and clearly (Gy)0 6= (Gy)κ for all atoms y of B, so D0κ = 0 also. For 1 < κ < α
we clearly have, in B, d1κ = {c′/F, d′/F}. So, using the notation introduced in
the definition of G,

Hd1κ = {〈0 + 1, 0, 0, . . .〉, 〈∞ − 1,∞,∞, . . .〉}.
This is clearly equal to D1κ. Finally, for κ, λ > 1 we have dκλ = 1 in B, and
clearly also Dκλ = 1, as desired.

Finally, we have to check the cylindrifications. First note

(7) For any x, y ∈ B with x an atom, and any κ < α, x ≤ cκy iff there is an
atom u ≤ y such that x ≤ cκu.

We omit the proof, which is straightforward.
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To check preservation of cylindrifications, note that cκx = x for all x if κ > 1,
in both algebras considered, so it is only necessary to check c0 and c1. Here there
are many little cases to be considered. To illustrate the ideas, we take one typical
case and leave the rest to the reader. Suppose that Gz ∈ Hc0y; we want to show
that Gz∈C0Hy. By (7) there is an atom u such that u≤y and z≤c0u. Without
loss of generality, u 6= z. We now consider one of two possibilities for the type of
u: assume that u has type 1. Then by (4), z is of type 2 and int z is the immediate
predecessor of intu. Now we consider one of three possibilities for the equivalence
class of u: assume that u is equivalent to c′/F . Let n = intu. Then the definition
of G gives

Gu = 〈0 + 2n+ 1, 0 + 2n, 0, 0, . . .〉, Gz = 〈0 + 2n− 1, 0 + 2n, 0, 0, . . .〉,
so Gz ∈ C0Hy, as desired.

Although Theorem 9.3 discourages the idea of abstractly characterizing the
class of isomorphs of CrsI ’s, it turns out that it is possible to give a rather simple
description of an infinite set of equations which characterizes this class. This
description is due to Resek and Thompson. We need some simple notation in
order to conveniently formulate their description. Let sijx = ci(dij · x) if i 6= j

and siix = x. We use [i/j] for the function with domain I which sends i to j and
fixes all other elements of I (here I is to be understood from the context). For
any function f , f [K] = {fx : x ∈ K}. Now for any set I let ΣI be the following
set of equations, where we use u ≤ v to mean that u · v = u:

(1) Equations characterizing Boolean algebras (for +, ·,−, 0, 1).
(2) ci0 = 0.
(3) ci(x+ y) = cix+ ciy.
(4) x ≤ cix.
(5) cicix = cix.
(6) ci(−cix) = −cix.
(7) dii = 1.
(8) dij = dji.
(9) dij · djk ≤ dik.
(10) ci(x · dij) · dij ≤ x if i 6= j.
(11) sinjnckn . . . s

i1
j1
ck1x ·

∏
l∈K dlτ(l) ≤ cix, where K = {i1, . . . , in, k1, . . . , kn}

\{i}, τ = [in/jn]◦ . . .◦ [i1/j1] and km+1 6∈ ([im/jm]◦ . . .◦ [i1/j1])[K] for all m < n.

The result of Resek and Thompson is then that ΣI characterizes the isomorphs
of members of CrsI for every I with at least two elements. A simple proof of this
result is due to Hajnal Andréka, and we will now give the essential part of her
proof, which establishes the following theorem. For this theorem, for convenience
we work with an ordinal rather than our general set I.

Theorem 9.4. Let α be an ordinal greater than 1. Then every Crsα is a model
of Σα. Moreover , every atomic model of Σα is isomorphic to a Crsα.
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R e m a r k. From results in Section 2.7 of [4] it then follows easily that every
model of Σα is isomorphic to a Crsα, giving the indicated result.

P r o o f. First we prove that any Crsα is a model of Σα. So, let A be a Crsα with
unit V and base U . All of the parts of Σα except (11) are completely routine, and
will be left to the reader. Now let f be in the left-hand side of (11). For 1 ≤ γ ≤ n
let Ffγ be the member of αU defined by setting (Ffγ )l = f [in/jn] . . . [iγ/jγ ]l for
all l ∈ α. Let φ(g, γ) be the statement that there exist q ∈ ω, x1, . . . , xq ∈
{i, i1, . . . , iγ−1}, and u1, . . . , uq ∈ U such that

(a)γ for all u = 1, . . . , q and all ε = 1, . . . , γ − 1, if xu = jε 6= iε, then there
is some δ with ε < δ < γ such that xu = iδ 6= jδ;

(b)γ g = (Ffγ )x1
u1

...

...
xq
uq .

Now we will define by downward induction functions gn, . . . , g1 and hn, . . . , h1

so that for each γ = 1, . . . , n the following conditions hold:

(1) φ(gγ , γ + 1) and gγ ∈ s
iγ
jγ
ckγ . . . s

i1
j1
ck1x;

(2) φ(hγ , γ) and hγ ∈ ckγs
iγ−1
jγ−1

. . . si1j1ck1x.

To start with, we let gn = f ; condition (1) for γ = n is clear. Now assume
that gγ has been defined; we define hγ . Assume the notation of (1), (a)γ+1, and
(b)γ+1. If iγ = jγ , let hγ = gγ ; clearly (2) holds for γ. Now assume that iγ 6= jγ .
Then we have

(gγ)iγ(gγ)jγ
∈ ckγs

iγ−1
jγ−1

. . . ck1x,

and we let hγ = (gγ)iγ(gγ)jγ
. To see that (2) holds for γ, first note that jγ 6= xu for

all u = 1, . . . , q. Hence (gγ)jγ = Ffγ+1jγ . If any of the xu’s are equal to iγ , delete
them, forming thereby subsequences 〈y1, . . . , yp〉 of 〈x1, . . . , xq〉 and 〈v1, . . . , vp〉
of 〈u1, . . . , uq〉. Then it is clear that

hγ = (Ffγ )y1v1
...
...
yp
vp ,

as desired.
Finally, suppose that hγ has been defined, where γ > 1; we want to define

gγ−1. Assume the notation of (2), (a)γ , and (b)γ . There is a v ∈ U such that

(hγ)kγv ∈ s
iγ−1
jγ−1

. . . ck1x,

and so we can let gγ−1 = (hγ)kγv ; thus

gγ−1 = (Ffγ )x1
u1

...

...
xq
uq
kγ
v ,

as desired.
So the construction is complete. Applying it to h1, we see that h1 ∈ cκ1x and

h1 has the form

h1 = (Ff1 )x1
u1

...

...
xq
uq ,



272 J. D. MONK

where xu = i for all u (but possibly q = 0). Note that Ff1 = f ◦ τ . Hence from
h1 ∈ cix and f ∈

∏
l∈K dlτ(l) we get f ∈ cix, as desired.

We now turn to the second part of the proof. Suppose that A is an atomic
model of Σα, and denote by At the set of all atoms of A. We shall define a function
rep from At into P(V ) (for some set V of functions with domain α) so that the
following conditions will hold for all a, b ∈ At and i, j ∈ α:

(I) rep(a) ∩ rep(b) = 0 if a 6= b.
(II) rep(a) 6= 0.

(III) rep(a) ⊆ D[V ]
ij if a ≤ dA

ij , and rep(a) ∩D[V ]
ij = 0 if a 6≤ dA

ij .

(IV) rep(a) ⊆ C [V ]
i rep(b) if a ≤ cAi b.

(V) rep(a) ∩ C [V ]
i rep(b) = 0 if a 6≤ cAi b.

(VI)
⋃
a∈At rep(a) = V .

If we manage to do this, then rep can be extended to all of A by defining, for any
x ∈ A,

rep(x) =
⋃

a∈At, a≤x

rep(a).

Then it is routine to check that rep is the desired isomorphism from A onto a
Crsα with unit V .

For every α-sequence f let ker(f) = {(i, j) ∈ α×α : fi = fj}, and for every a ∈
At let ker(a) = {(i, j) ∈ α× α : a ≤ dA

ij}. Both of these are equivalence relations
on α, using for ker(a) the axioms (7)–(9) from Σα. Now (III) is equivalent to

(III′) If s ∈ rep(a) then ker(s) = ker(a).

We also notice that (IV) is equivalent to

(IV′) If s ∈ rep(a) and a ≤ cAi b, then siu ∈ rep(b) for some u.

Now we shall construct the set V and the function rep step-by-step. Let W =
{(a, b, i) : a, b ∈ At, a ≤ cib, i ∈ α}. We claim:

(?) There is an infinite cardinal κ and a function σ : κ→W ×κ such that for
all w ∈W and λ < κ there is a ν such that λ < ν < κ and σ(ν) = (w, λ).

To prove (?), take κ to be any infinite cardinal at least as big as |W |, let g
be any function from κ onto W × κ and let τ be a one-one function from κ onto
κ × κ. If x ∈ κ × κ, we write x = (x0, x1). Define σ(ν) = g(τ(ν))0. Clearly this
works for (?).

Now we really begin the construction. Let rep0(a) = 0 for all a ∈ At, and also
let V0 = 0.

Assume that ν < κ, and Vν , repν : At → P(Vν), and pξ for all ξ < ν have
been defined. Write σ(ν) = (a, b, i, λ). First we define pν .

C a s e 1: λ < ν and pλ ∈ repν(a). If b ≤ dA
ij for some j 6= i, choose the smallest

such j and let u = pλ(j); if b 6≤ dA
ij for all j 6= i, then let u be a new object, not
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in the range of any of the functions pξ for ξ < ν. Under either possibility define
pν to be (pλ)iu.

C a s e 2: λ ≥ ν or pλ 6∈ repν(a). In this case let pν be a sequence with the
same kernel as b and with range consisting of entirely new objects, not in the
range of any of the functions pξ for ξ < ν.

This defines pν . Then we define

repν+1(b) = repν(b) ∪ {pν};
repν+1(a′) = repν(a′) for any atom a′ 6= b;
Vν+1 = Vν ∪ {pν}.

That describes the step from ν to ν + 1. Now if ν ≤ κ is a limit ordinal and repξ
has been defined for all ξ < ν, we set

repν(a) =
⋃
ξ<ν repξ(a) for every atom a;

Vν =
⋃
ξ<ν Vξ.

Finally, let rep = repκ and V = Vκ.
Now we start checking the conditions (I)–(VI).

(VI) This is obvious from the definitions.
(III′) Suppose that s ∈ rep(a). Then for some ν < κ, s was constructed as pν

in the passage from ν to ν + 1, with “a” in the role of “b”. It is straightforward
to check that ker(pν) = ker(a).

(II) Given an atom a, let ν be such that σ(ν) = (a, a, 0, 0). Then Case 2 in
the definition applies, and we get pν ∈ rep(a).

(IV′) Suppose that s ∈ rep(a) and a ≤ cib, where a and b are atoms. By
the construction, s = pλ for some λ < κ. Choose ν < κ with λ < ν such that
s(ν) = (a, b, i, λ). Then by construction, pν ∈ rep(b) and pν has the form (pλ)iu
for some u, as desired.

That takes care of the easy ones—the ones that really were forced to be true
by the construction. It remains to show that (I) and (V) hold; this amounts to
showing that in the construction no unwanted connections arose between repre-
sentatives of atoms. Before proceeding with the proofs of (I) and (V) we need an
auxiliary statement (∗), whose formulation depends on the following definition.

Let s, z ∈ V and a, b ∈ At. We say that 〈s0, s1, . . . , sn〉, 〈a0, a1, . . . , an〉,
〈i1, . . . , in〉 is a chain (of length n) leading from s, a to z, b provided that the
following conditions hold:

(a) s = s0, z = sn, a = a0, and b = an.
(b) For all m < n, sm+1 differs from sm exactly at im+1, i.e., sm+1 = (sm)im+1

u

for some u 6= sm(im+1).
(c) am+1 ≤ cim+1am, sm ∈ rep(am), and Rng(s) ∩ Rng(z) ⊆ Rng(sm). (For

any function g, Rng(g) is the range of g.)

Here is the statement (∗):
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(∗) Suppose that s∈rep(a), a∈rep(b), and Rng(s)∩Rng(z) 6= 0. Then there
is a chain leading from s, a to z, b.

Proof of (∗). For each ν < κ, let (∗)ν denote the statement we obtain from
(∗) by replacing rep by repν in it and in the corresponding definition of a chain
leading from s, a to z, b (where rep is mentioned once). Then (∗) is (∗)κ, and we
shall prove (∗)ν for all ν ≤ κ by induction on κ. Clearly (∗)0 holds and (∗)ν is
preserved in limit steps.

Let ν < κ and assume that (∗)ν holds; also, assume the hypothesis of (∗)ν+1. If
s, z ∈ Vν , then we are through by our induction hypothesis (∗)ν , since repν(a′) =
repν+1(a′)∩Vν for any a′ ∈ At. If both s, z 6∈ Vν , then s = z = pν and a = b, since
only one element is added at the (ν + 1)-st stage, and it is determined by σ(ν).
But then we are done, since there is a chain of length 0 from s, a to s, a. Thus
we may assume that one of s, z is in Vν and the other not. Now the statement to
be proved is symmetric in s, z, since there is a chain leading from s, a to z, b iff
there is one leading from z, b to s, a. Here one needs to use the fact that [a ≤ cib
iff b ≤ cia] for all a, b ∈ At and all i ∈ α, which follows from (2)–(6).

So, assume without loss of generality that s ∈ Vν and z ∈ Vν+1\Vν . Now
Rng(s) ∩ Rng(z) 6= 0, so our construction lands in Case 1. Thus there exist
a′, i and λ < ν such that σ(ν) = (a′, b, i, λ), pλ ∈ repν(a′), and z = pν =
(pλ)iu 6= pλ for some u such that either u ∈ Rng(pλ) or u 6∈ Rng(s). There-
fore Rng(s) ∩ Rng(z) ⊆ Rng(pλ). Hence by the induction hypothesis there is
a chain 〈s, s1, . . . , pλ〉, 〈z, a1, . . . , a

′〉, 〈i1, . . . , in〉 leading from s, a to pλ, a
′. So

〈s, . . . , pλ, z〉, 〈a, . . . , a′, b〉, 〈i1, . . . , im, i〉 is a chain leading from s, a to z, b, as
desired. This finishes the proof of (∗).

Now we are ready for the proofs of (V) and (I).

Proof of (V). Suppose that s ∈ rep(a), z ∈ rep(b), and z = siu for some u. We
have to show that a ≤ cAi b. From α ≥ 2 it follows that Rng(s)∩Rng(z) 6= 0. By
(∗) then, let 〈s0, . . . , sn〉, 〈a0, . . . , an〉, 〈i1, . . . , in〉 be a chain leading from s, a to
z, b. We will define j1, . . . , jn, k1, . . . , kn such that

b ≤ sinjnckn . . . s
i1
j1
ck1a ·

∏
l∈K

dlτ(l),

where i1, . . . , i, τ,K satisfy the conditions in our equation (11) in Σα. Then b≤
cAi a by (11) and hence a ≤ cAi b, and we will be done.

Let K = {i1, . . . , in}\{i} and K+ = K ∪ {i}. Note that |K+| > |K|. We will
define jm and km for 1 ≤ m ≤ n by induction on m so that by letting

τm = [im/jm] ◦ . . . ◦ [i1/j1]

we will have for all m < n the following:

s0(l) ≤ sm(τm(l)) for all l ∈ K,
am+1 ≤ sim+1

jm+1
ckm+1am and km+1 ∈ K+\τm[K].
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Let m < n and assume that jt and kt have been defined for all t with 1 ≤ t ≤ m
so that the above properties hold (m = 0 is allowed).

C a s e 1: sm(im+1) ∈ Rng(sm+1), say sm(im+1) = sm+1(j). Since sm+1(im+1)
6= sm(im+1), we have j 6= im+1. Therefore sm(j) = sm+1(j) = sm(im+1). Hence
by (III′) we get am ≤ dA

im+1j
, and hence am+1 ≤ s

im+1
j am. We let jm+1 = j,

and we let km+1 be any member of K+\τm[K] (recall that |K+| > |K|, so that
K+\τm[K] 6= 0).

C a s e 2: sm(im+1) 6∈ Rng(sm+1). This time we let jm+1 = km+1 = im+1.
Note that for any l ∈ K we have l 6= i and hence

sm(τm(l)) = s0(l) = z(l) ∈ Rng(s) ∩Rng(z) ⊆ Rng(sm+1),

and hence im+1 6= τm(l).

In either of these two cases it is easy to see that the above requirements
are satisfied for m + 1. It follows that b ≤ sinjnckn . . . s

i1
j1
ck1a. Also, z(l) = s(l) =

s0(l) = sn(τn(l)) = z(τ(l)) for all l ∈ K. Then it follows from (III′) that b ≤ dlτ(l)
for all l ∈ K. This is as desired, finishing the proof of (V).

Proof of (I). Let a, b ∈ At and assume that s ∈ rep(a) ∩ rep(b); we want to
show that a = b. By (∗), there is a chain 〈s0, . . . , sn〉, 〈a0, . . . , an〉, 〈i1, . . . , in〉
leading from s, a to s, b. If n = 0, then a = b and we are done. Assume that
n > 0. Let a′ = an−1, i = in, and z = sn−1. Then the facts that z and s differ
exactly on i, s ∈ rep(a), and z ∈ rep(a′) imply by (V) that a ≤ cia

′. Then by
use of (2)–(6) we derive from a′ ≤ cib that a ≤ cib. Next, since z(i) 6= s(i) and
Rng(s) ⊆ Rng(z) (by virtue of one of the conditions on the chain from s, a to
s, b), it follows that s(i) = z(j) = s(j) for some j 6= i. Hence a ≤ dA

ij and b ≤ dA
ij

by (III′). Thus by (10), a ≤ dA
ij ·cAi (dA

ij ·b) ≤ b. Since a and b are atoms, it follows
that a = b. This finishes the proof of (I) and hence of the Theorem.

10. Ultraproducts. As is to be expected, discussion of ultraproducts of CrsI ’s
requires some involved notation. Let F be an ultrafilter on a set J , U = 〈Uj :
j ∈ J〉 a system of sets, and I any set. By an (F,U, I)-choice function we mean a
function ch mapping I ×

∏
j∈J Uj/F into

∏
j∈J Uj such that for all i ∈ I and all

y ∈
∏
j∈J Uj/F we have ch(i, y) ∈ y.

If ch is an (F,U, I)-choice function, then we define ch+ mapping I(
∏
j∈J Uj/F )

into
∏
j∈J

IUj by setting, for all q ∈ I(
∏
j∈J Uj/F ) and all j ∈ J ,

(ch+ q)j = 〈ch(i, qi)j : i ∈ I〉.

Lemma 10.1. Let A = 〈Aj : j ∈ J〉 be a system of sets such that Aj ⊆ P(IUj)
for all j ∈ J , and let ch be an (F,U, I)-choice function. Then there is a function
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r mapping
∏
j∈J Aj/F into P(I(

∏
j∈J Uj/F )) such that for any a ∈

∏
j∈J Aj ,

r(a/F ) =
{
q ∈ I

(∏
j∈J

Uj/F
)

: {j ∈ J : (ch+ q)j ∈ aj} ∈ F
}
.

P r o o f. To show that there is such a function, suppose that a/F = b/F and
q ∈ I(

∏
j∈J Uj/F ). Then {j ∈ J : aj = bj} ∈ F , and so

{j ∈ J : (ch+ q)j ∈ aj} ∈ F iff {j ∈ J : (ch+ q)j ∈ bj} ∈ F,
as desired.

The function given in Lemma 10.1 will be denoted by RepFUIAch, where we
will usually leave off all of the subscripts, or most of them. The basic result on
ultraproducts of cylindric set algebras, corresponding to  Loś’s theorem in logic,
is the following somewhat technical result:

Lemma 10.2. Let F be an ultrafilter on a set J , U = 〈Uj : j ∈ J〉 a system
of non-empty sets, and I a set. Let ch be an (F,U, I)-choice function. Further ,
let A ∈ JCrsI , where each Aj has base Uj and unit element Vj , and set V = 〈Vj :
j ∈ J〉.

Then Repch is a homomorphism from
∏
j∈J Aj/F into a CrsI . Furthermore,

for every non-zero x ∈
∏
j∈J Aj/F there is an (F,U, I)-choice function ch such

that Repchx 6= 0. Namely , if x = a/F , Z ∈ F , s ∈
∏
j∈J Vj , sj ∈ aj for all

j ∈ Z,
w = 〈〈sji : j ∈ J〉 : i ∈ I〉, q = 〈wi/F : i ∈ I〉,

and ch(i, wi/F ) = wi for all i ∈ I, then q ∈ Repchx.

P r o o f. Let f = Repch, X =
∏
j∈J Uj/F , and T = f(V/F ). Clearly f pre-

serves +. Next we show that f preserves −. Clearly f(−x) ⊆ T\fx. Now let
x = a/F and suppose that q ∈ T\fx. Thus

{j ∈ J : (ch+ q)j ∈ Vj} ∈ F and {j ∈ J : (ch+ q)j ∈ aj} 6∈ F,
i.e., {j ∈ J : (ch+ q)j ∈ Vj\aj} ∈ F . Therefore q ∈ f(−x), as desired.

So, f is a Boolean homomorphism. Next we show that f preserves dkl. Since
dkl ≤ V/F we have fdkl ⊆ T . Now let q ∈ T . Then {j ∈ J : (ch+ q)j ∈ Vj} ∈ F ,
and

q ∈ fdkl iff {j ∈ J : (ch+ q)j ∈ D
[Vj ]
kl } ∈ F

iff {j ∈ J : ((ch+ q)j)k = ((ch+ q)j)l} ∈ F
iff {j ∈ J : ch(k, qk)j = ch(l, ql)j} ∈ F

iff qk = ql iff q ∈ D[T ]
kl ,

as desired.
Next we check preservation of cylindrifications. Suppose i ∈ I. First suppose

that q ∈ f(cia/F ). Hence M def= {j ∈ J : (ch+ q)j ∈ C
[Vj ]
i aj} is in F . So, there

is an s ∈
∏
j∈J Uj such that [(ch+ q)j ]isj ∈ aj for all j ∈ M . Let u = s/F ; we
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show that qiu ∈ f(a/F ), thus finishing this inclusion. Since ch(i, u) ∈ u, the set
Z

def= {j ∈ J : sj = ch(i, u)j} is in F . Now for any j ∈ J , if k ∈ I\{i}, then

ch(k, (qiu)k)j = ch(k, qk)j = ((ch+ q)j)k,

and
ch(i, (qiu)i)j = ch(i, u)j ;

hence for any j ∈ Z ∩M we have

(ch+ qiu)j = 〈ch(k, (qiu)k)j : k ∈ I〉 = [(ch+ q)j ]ich(i,u)j
= [(ch+ q)j ]isj ∈ aj ,

as desired.
Second, suppose that q ∈ C

[T ]
i f(a/F ). Thus q ∈ T and there is a u ∈ X

such that qiu ∈ f(a/F ). Let M = {j ∈ J : (ch+ qiu)j ∈ aj}; thus M ∈ F .

Also, since q ∈ T , the set Z def= {j ∈ J : (ch+ q)j ∈ Vj} is in F . Now let
j ∈ M ∩ Z. Then (ch+ q)j ∈ Vj and (ch+ q)j � (I\{i}) ⊆ (ch+ qiu)j ∈ aj , proving
that (ch+ q)j ∈ C

[Vj ]
i ai. Thus q ∈ f(cia/F ), since M ∩ Z ∈ F . This finishes the

first part of the proof.
For the “Furthermore” part, assume everything mentioned in the hypothesis

of “Namely”. Let f = Repch. For any j ∈ Z we have

(ch+ q)j = 〈ch(i, qi)j : i ∈ I〉 = 〈ch(i, wi/F )j : i ∈ I〉
= 〈(wi)j : i ∈ I〉 = sj ∈ aj ,

so q ∈ f(a/F ), as desired.

With the aid of this lemma we can prove the following basic theorem alluded
to earlier:

Theorem 10.3. For |I| > 1, any homomorphic image of a CrsI is isomorphic
to a CrsI .

P r o o f. Let A be a CrsI , and let f be a homomorphism from A onto some
algebra B (of course, B is not necessarily a CrsI , but is merely similar to a CrsI ,
in the sense of universal algebra). By Theorem 9.1 it suffices to take any element
x of A such that fx 6= 0 and find a homomorphism g from A into a CrsI such
that gx 6= 0 and gy = 0 for all y such that fy = 0.

We are going to set up things to apply Lemma 10.2, in particular its last part.
Let J = {y ∈ A : fy = 0}. Let F be an ultrafilter on J such that {y ∈ J : z ⊆
y} ∈ F for all z ∈ J ; clearly such an ultrafilter exists. Let U be the base of A.
Now x 6∈ J , so for all z ∈ J we have x 6⊆ z, and so we can choose sz ∈ x\z. Let
w = 〈〈szi : z ∈ J〉 : i ∈ I〉. Let ch be an (F, 〈U : z ∈ J〉, I)-choice function such
that ch(i, wi/F ) = wi for all i ∈ I. For each y ∈ A let y = 〈y : z ∈ J〉, and set
hy = Rep(y/F ), where

Rep = RepF 〈U :z∈J〉I〈A:z∈J〉ch.

Let q = 〈wi/F : i ∈ I〉. We take it as a matter of universal algebra that the
mapping y 7→ y/F is an isomorphism from A into IA/F . Hence by Lemma 10.2,
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h is a homomorphism of A into some CrsI D, and q ∈ hx. Let V = h1 and

W =
⋃
{C [V ]

u0
. . . C [V ]

um−1
{q} : m ∈ ω, u0, . . . , um−1 ∈ I}.

Then C
[V ]
i W = W for all i ∈ I, so W is a zero-dimensional element of P(V ).

Hence by Proposition 5.1, rlW is a homomorphism from D onto some CrsI C.
Let g = rlW ◦h. So g is a homomorphism from A onto C, and gx 6= 0. It remains
only to take any z such that fz = 0 and show that gz = 0. Let m ∈ ω and
u0, . . . , um−1 ∈ I; we want to show that hz ∩ C [V ]

u0 . . . C
[V ]
um−1{q} = 0. It suffices

to show that {q} ∩ C [V ]
um−1 . . . C

[V ]
u0 hz = 0, i.e., that q 6∈ C [V ]

um−1 . . . C
[V ]
u0 hz. Now

t
def= cum−1 . . . cu0z ∈ J , so {v ∈ J : t ⊆ v} ∈ F . If t ⊆ v ∈ J , then sv 6∈ v, hence

sv 6∈ t. Thus {v ∈ J : sv 6∈ t} ∈ F . Now for any v ∈ J such that sv 6∈ t we have

(ch+ q)v = 〈ch(i, qi)v : i ∈ I〉 = 〈(wi)v : i ∈ I〉 = 〈svi : i ∈ I〉 = sv 6∈ t.
Thus q 6∈ Rep(t/F ) = ht, as desired.

There are many other useful and interesting facts about ultraproducts of cylin-
dric set algebras; see the basic references mentioned in the introduction.

11. Cylindric set algebras. We finally come to the actual topic of these lec-
tures: cylindric set algebras, a specialization of cylindric-relativized set algebras.
A cylindric set algebra is a cylindric-relativized set algebra whose unit element
has the form IU . So, these have already been discussed, without having a special
name for them. For any structure M, the algebra Cs M is a cylindric set algebra.
Let CsI be the collection of all cylindric set algebras with dimension set I. This
class forms a closer algebraic approximation to the class of all algebras Cs M. For
example, the simple law c0c1x = c1c0x holds in all CsI ’s, but not in the larger class
CrsI . For example, let I = ω, V = {〈0, 0, 0, 0, . . .〉, 〈0, 1, 0, 0, . . .〉, 〈1, 1, 0, 0, . . .〉},
x = {〈0, 0, 0, 0, . . .〉}. Then 〈1, 1, 0, 0, . . .〉 ∈ C [V ]

0 C
[V ]
1 x\C [V ]

1 C
[V ]
0 x.

All of the theory developed in the preceding sections can be specialized to the
class CsI , and some natural new questions and results arise. Some of these will
be developed in the next few sections. We mention the main facts about cylindric
set algebras:

I. The cylindric set algebras derivable from logic can be characterized from
among all cylindric set algebras of dimension ω by two additional set-theoretical
conditions: regularity and local finiteness.

II. The class of isomorphs of cylindric set algebras of a given infinite dimension
is not even an elementary class, contrasting strongly with the case of cylindric-
relativized set algebras.

III. The variety generated by CsI is not finitely axiomatizable when |I| > 2,
much like the case of cylindric-relativized set algebras.

IV. This variety can be characterized set-theoretically by means of certain
generalized cylindric set algebras.
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V. If we restrict ourselves to cylindric set algebras of a fixed infinite dimension
with infinite bases, then the unfortunate situation of II no longer holds: we get a
variety, just like the case of cylindric-relativized set algebras.

VI. An equation holds in all cylindric set algebras of dimension ω iff it holds
in all algebras Cs M, M a first-order structure.

Results I, IV, and VI are due to Henkin and Tarski; result V is due to Henkin
and Monk; results II and III are due to Monk. Important versions of all of these
results will be proved in these notes.

We first mention the following obvious consequence of Theorem 5.4 and its
proof.

Theorem 11.1. Let A be a CsI with base U (and hence unit element IU).
Let κ be an infinite cardinal such that |A| ≤ κ ≤ |U |. Assume that S ⊆ U and
|S| ≤ κ. Finally , assume that κ|I| = κ. Then there is a W such that S ⊆W ⊆ U ,
|W | = κ, and A is ext-isomorphic to a CsI with base W .

While the class of CrsI ’s is a variety according to Section 9, the class CsI is not
even elementary for I infinite (this is the result II mentioned above). To see this,
let A be the CsI of all subsets of I2. Let J be a set with more than 22|I| elements,
and let F be an ultrafilter on J such that |JA/F | ≥ |J |. We claim that JA/F is not
isomorphic to a CsI . For, suppose that f is an isomorphism from JA/F onto a CsI
B. Say that B has base U . Now in A the equation c0c1c2(−d01 ·−d02 ·−d12) = 0
holds, so it holds in B, too. But this means that |U | ≤ 2, and hence |B| ≤ 22|I| ,
a contradiction.

The same example shows that Theorem 9.1 does not extend to CsI ’s for I
having at least three elements. Now we consider the variety RCAI generated
by CsI ; members of RCAI are called representable. Theorem 9.3 does extend to
this variety. This is an old result of the author, and is more important than
Theorem 9.3 itself since the notion of cylindric set algebra is more natural than
that of a cylindric-relativized set algebra. We now give a proof of this result,
due to Andréka [1] (the first version of her proof was developed in 1986). Her
theorem is actually stronger. This time the proof in the infinite-dimensional case
is easier; in my opinion this case is more important anyway, and we give only this
case. The original proof of the author remains of interest in showing a connection
with combinatorial structures which has been further worked on by Comer and
Maddux. This theorem is the major part of the result III mentioned above.

Theorem 11.2. Let I be infinite. Then RCAI cannot be axiomatized by a set
Σ of quantifier-free formulas such that only finitely many variables appear in Σ.

P r o o f. For simplicity of notation we assume that I is an infinite ordinal α.
For each positive integer k we shall construct an algebra Ak with the following
two properties:

(1) Ak 6∈ RCAα;
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(2) Every k-generated subalgebra of Ak is in RCAα.

(An algebra B is k-generated if it has a set of generators with at most k elements.)
An easy argument shows that the theorem follows from (1) and (2). Fix k in
order to do a construction yielding (1) and (2); and fix an integer m ≥ 2k. Let
〈Ui : i ∈ α〉 be a system of pairwise disjoint sets each with m elements. Let
U =

⋃
i∈α Ui and fix q ∈

∏
i∈α Ui. (Here and further on,

∏
denotes the Cartesian

product of sets.) Further, let

R =
{
z ∈

∏
i∈α

Ui : {i ∈ α : zi 6= qi} is finite
}
.

Another way of putting this definition, using the notation IUq from the end of
Section 4, is: R = (

∏
i∈α Ui) ∩ IUq. Finally, let A′ be the subalgebra of P(αU)

generated by the element R. Observe now that R is an atom of A′. To see this,
note:

(3) If s, z ∈ R, then there is a permutation σ of U such that σ ◦ s = z and
R = {σ ◦ p : p ∈ R}.

In fact, there is a permutation σ such that σsi = zi and σzi = si for all i ∈ α
and σk = k for all k 6∈ {si, zi : i ∈ α}. Clearly σ is as desired in (3).

Note the following fact about permutations of U :

(4) If σ is a permutation of U and R = {σ◦p : p ∈ R}, then a = {σ◦p : p ∈ a}
for all a ∈ A′.

In fact, the collection of a such that the conclusion of (4) holds has R as an
element and is closed under all of the operations of A′, so (4) holds.

Now we prove that R is an atom of A′. Suppose a ∈ A′ and 0 6= a ∩ R.
Fix s ∈ a ∩ R. To show that R ⊆ a, let z ∈ R be arbitrary. By (3) let σ be a
permutation of U such that σ ◦ s = z. Since s ∈ a, it follows from (4) that z ∈ a,
as desired.

Of course A′ is not the algebra we want, since it is a Csα. We now extend
A′ to yield the desired algebra. There clearly is a BA A obtained from Bl A′ by
replacing R by m + 1 new atoms Rj , j ≤ m; thus R =

∑
j≤mRj . We expand

A to an algebra similar to Crsα’s as follows. Let the cylindrifications of A be
denoted with small letters to distinguish them from the “real” cylindrifications
of A′, which are denoted by big letters as in the first part of these notes. For any
x ∈ A we define cix as follows:

cix =
{
Cix if R · x = 0 (then x ∈ A′);
Ci(R+ x) if R · x 6= 0 (always R+ x ∈ A′).

The diagonal elements of A are defined to be the same as those of A′. (Note that
R∩Dij = 0 for all distinct i, j < α.) So, this defines A fully, as a structure similar
to Csα’s. We mention for later reference some elementary properties of A:

(5) x ≤ cix.
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(6) ci(x+ y) = cix+ ciy.
(7) If x ∈ A′, then cix = Cix.
(8) cix ∈ A′.
(9) cicix = cix.
(10) If x ≤ y then cix ≤ ciy.

(5) and (8) are obvious. (6) is easily shown by considering cases. (7) is pretty
immediate from the definition since R is an atom of A′, and (9) follows from (7)
and (8). Finally, (10) is shown like this:

ciy = ci(x+ y) = cix+ ciy.

Note from (7) that A′ is a subalgebra of A.
Now we prove (1). We need some special notation: sijx = ci(dij · x) for i 6= j,

siix = x. Consider the following term τ(x):∏
i≤m

s0i c1 . . . cmx ·
∏

i<j≤m

−dij .

We want to see the meaning of τ(R) in A. To this end, note, in A′,

C1 . . . CmR = (U0 × mU × Um+1 × . . .) ∩ ωUq;
s0iC1 . . . CmR = (i−1U × U0 × m−iU × Um+1 × . . .) ∩ ωUq (i ≤ m);∏

i≤m

s0iC1 . . . CmR = (m+1U0 × Um+1 × . . .) ∩ ωUq.

Now since |U0| = m, it follows that τ(R) = 0 in A′. Since A′ is a subalgebra of
A, also τ(R) = 0 in A.

Suppose that A ∈ RCAα. Then there is a homomorphism h of A into a Csα B
such that hR 6= 0. Choose t ∈ hR. Now for each i ≤ m we have R ≤ c0Ri, and so
hR ⊆ C0hRi, and so there is a ui such that t0ui ∈ hRi. Since the Ri’s are pairwise
disjoint, the ui’s are pairwise distinct. Also note that c1 . . . cmRi = C1 . . . CmR
for any i ≤ m. Hence

〈u0, u1, . . . , um, tm+1, tm+2, . . .〉 ∈ τ(hR) = hτ(R) = 0

in B, a contradiction. Thus (1) holds.
We turn to the proof of (2). Let G ⊆ A with |G| ≤ k. Now we define

i ≡ j iff i, j ≤ m and ∀g ∈ G (Ri ≤ g iff Rj ≤ g).

Clearly ≡ is an equivalence relation on m + 1. We claim that it has at most 2k

equivalence classes. To see this, let f(i/≡) = {g ∈ G : Ri ≤ g} for all i ≤ m.
Clearly f is well defined, mapping the set of equivalence classes into P(G). And
f is clearly one-one by the definition of ≡; this proves the claim. Let p be the
number of equivalence classes. Recall also that 2k ≤ m. Now define

B = {a ∈ A : ∀i, j ≤ m (if i ≡ j then (Ri ≤ a iff Rj ≤ a)}.
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We now show that B is closed under the operations of A. Clearly it is closed under
the Boolean operations. Since Rj 6≤ dil for all distinct i, l < α and all j ≤ m,
it follows that dil ∈ B. Since R is an atom of A′, it follows that A′ ⊆ B; since
cia ∈ A′ for all a ∈ A, it follows that cib ∈ B for all b ∈ B. Thus, indeed, B is
closed under the operations of A. Note also that we have shown that A′ ⊆ B.

We let B be the subalgebra of A with universe B. Clearly G ⊆ B, so it suffices
to show that B ∈ RCAα. We shall, in fact, show that B is isomorphic to a Csα
with base U (see the beginning of the construction).

Let e0, . . . , ep−1 be all of the equivalence classes under ≡. For each j < p let
yj =

∑
{Rk : k ∈ ej}. Then 〈yj : j < p〉 is a partition of R in B, ciyj = CiR for all

i < α and all j < p, every element of B is a join of certain yj ’s and elements of A′,
and the yj ’s are atoms of B. We now consider m (which is {0, 1, . . . ,m−1}) along
with addition + modulo m; actually any group operation on m with identity 0
will do. For each i < α let fi be a one-one function mapping Ui onto m such that
fiqi = 0. For each j < m let

R′j =
{
z ∈ R :

∑
i<α

fizi = j
}
.

(Note that for z ∈ R, fizi = 0 except for finitely many i < α.) Clearly the R′j ’s
are pairwise disjoint and CiR′j = CiR for all i < α and all j < m. Next we define

Sj = R′j if j < p− 1, Sp−1 =
⋃

p−1≤j<m

R′j .

Now we define the desired isomorphism h: for all b ∈ B,

hb = (b · −R) ∪
⋃
{Sj : j < p, yj ≤ b}.

Clearly h preserves the Boolean operations and the Dij ’s, and h is one-one. To
show that h preserves ci, first note the following two facts:

(11) Cihb = Ci(b · −R) ∪
⋃
yj≤b CiSj ;

(12) hcib = (cib · −R) ∪
⋃
yj≤cib Sj .

(11) and (12) follow from the definition of h. Now we consider two cases.

C a s e 1: yj ≤ b for some j. Then by (10) and the definition of ci, CiR =
ciyj ≤ cib; and CiSj = CiR. So by (11) and (12),

Cihb = Ci(b · −R) ∪ CiR = Ci(b ∪R) = cib;
hcib = (cib · −R) ∪R = cib,

as desired.

C a s e 2: yj 6≤ b for all j < p. Then b ·R=0, so by (11), Cihb=Ci(b ·−R)=cib.
Now we take two subcases. Subcase 2.1: yj ≤ cib for some j. Then R ⊆ CiR =
ciyj ≤ cib, so by (12), hcib = (cib·−R)∪R = cib, as desired. Subcase 2.2: yj 6≤ cib
for all j < p. Then cib · R = 0, so by (12) again, hcib = cib · −R = cib, finishing
the proof.
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12. Local finite-dimensionality and regularity. A CrsI A is locally finite-
dimensional if ∆x is finite for all x ∈ A. Thus each algebra Cs M is locally
finite-dimensional; this is a consequence of each formula in a first-order language
being of finite length. Also note that if I is finite, then A is automatically locally
finite-dimensional. An element a ∈ A is finite-dimensional if ∆a is finite. Now let
A be a CsI with base U . We call A regular provided that for all a ∈ A, all f ∈ a
and all g ∈ IU , if f � ∆x = g � ∆x then g ∈ a. It is easy to see that each algebra
Cs M is regular. At first glance, one might think that every CsI is regular. If I is
finite, then it is easy to check that this is the case. But for I infinite we now give
a counterexample. Let A be the CsI of all subsets of I2, and let

a = {x ∈ I2 : {i ∈ I : xi 6= 0} is finite}.

Then ∆a = 0, from which it is clear that A is not regular. We understand in an
obvious sense an element a ∈ A being regular.

We now give another algebraic form of the downward Löwenheim–Skolem
theorem.

Theorem 12.1. Let A be a regular CsI with base U and unit element Z = IU .
Define λ to be the least infinite cardinal greater than each |∆a|, a ∈ A. Let κ
be an infinite cardinal such that |A| ≤ κ ≤ |U | and κ =

∑
µ<λ κ

µ. Assume that
S ⊆ U and |S| ≤ κ. Then there is a set W such that S ⊆W ⊆ U , |W | = κ, and ,
with V = IW , rlAV is an isomorphism from A onto a regular CsI B with base W .

P r o o f. The proof, while basically similar to that of Theorem 5.4, has to be
modified from that one. Let well-orderings of U and IU be given. Fix u∈U . For
each a ∈ A\{0}, let ka be the first element of a such that kai = u for all i ∈ I\∆a;
that there is such a ka follows from the regularity of A. Note that the range of
ka has fewer than λ elements. Hence there is a set T0 such that |T0| = κ, S ⊆ T0,
u ∈ T0, and ka ∈ T0 for all a ∈ A\{0}. Now suppose that 0 < β < κ and Tα has
been defined for all α < β. Let M =

⋃
α<β Tα, and let

Tβ = M ∪ {v ∈ U : there exist a ∈ A, i ∈ ∆a, x ∈ ∆aM,
such that v is the first element of U with the property that
y ∈ a for some y ∈ IU such that xiv ⊆ y}.

Finally, let W = Tκ =
⋃
α<κ Tα. Note that in forming Tβ , at most one element

is added to M for each choice of the following: an element a ∈ A; an element
i ∈ ∆a; and a function x ∈ ∆aM . Thus if we assume that |M | = κ, we get that
also |Tβ | = κ. Hence it follows by induction that |Tα| = κ for all α ≤ κ. By the
definition of T0 it is clear that rlAV is one-one. To prove that rl preserves Ci, by the
comment before Proposition 5.1 it suffices to take any a ∈ A and z ∈ C [Z]

i a ∩ V
and show that z ∈ C [V ]

i (a∩V ). We may assume that i ∈ ∆a. Now ziv ∈ a for some
v ∈ U . Let x = z � ∆a. Now |∆a| < λ, hence κ|∆a| = κ, hence |∆a| < cf κ, hence
there is a β < κ such that x ∈ ∆aTβ . It follows that there is a w ∈ Tβ+1 ⊆ W
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such that y ∈ a for some y ∈ IU with xiw ⊆ y. So ziw � ∆a = y � ∆a, hence by the
regularity of A, ziw ∈ a ∩ V , so z ∈ C [V ]

i (a ∩ V ), as desired.

So rlAV is an isomorphism from A onto some CsI B with base W . As to the
regularity of B, suppose that a ∈ A, x ∈ a ∩ V , y ∈ IW , and x � ∆a = y � ∆a.
Then y ∈ a by the regularity of A, and hence y ∈ a ∩ V , as desired.

We can now give the result I about cylindric set algebras mentioned above.

Theorem 12.2. Let A be a Csω. Then A has the form Cs M for some first-order
structure M iff A is locally finite-dimensional and regular.

P r o o f. We have already observed that Cs M is always locally finite and reg-
ular. Now assume that A is a locally finite and regular Csω, say with base M .
For each a ∈ A let ra be the smallest natural number such that ∆a ⊆ ra. Let L
be the first-order language having, for each a ∈ A, an ra-ary relation symbol Ra.
We make M into an L-structure M by setting, for each a ∈ A,

RM
a = {x ∈ raM : x ⊆ y for some y ∈ a}.

We claim that Cs M = A. Obviously both are Csω’s with base M , so it suffices
to show that their universes are the same. Given a ∈ A, we show that a =
(Rav0 . . . vra−1)M; this will show ⊇. In fact, for any x ∈ ωM we have

x ∈ (Rav0 . . . vra−1)M iff M � Rav0 . . . vra−1[x]

iff 〈x0, . . . , xra−1〉 ∈ RM
a

iff 〈x0, . . . , xra−1〉 ⊆ y for some y ∈ a
iff x ∈ a;

in the last equivalence we use the regularity of A.
For the other inclusion it suffices to show that φM ∈ A for every formula φ,

by induction on φ. We may assume that the atomic parts of φ have the standard
form mentioned in the Fact formulated prior to Theorem 3.3. Then the atomic
case is easy. All of the inductive steps are easy exercises, too.

The following simple result will be needed later. The proof is straightforward.

Lemma 12.3. If A is a CsI generated by a collection of regular finite-dimen-
sional elements, then A is regular and locally finite-dimensional.

13. Generalized cylindric set algebras. Let A be a CrsI with unit element
V . We call A a generalized cylindric set algebra provided that V has the form⋃
j∈J

IYj , where Yj 6= 0 for each j ∈ J and Yj∩Yk = 0 for all distinct j, k ∈ J . And
we denote by GsI the class of all generalized cylindric set algebras of dimension I.
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Here is some general algebraic notation: for any class K of similar algebras,

IK = {A : A is isomorphic to some B ∈ K};
HK = {A : A is the homomorphic image of some B ∈ K};
SK = {A : A is a subalgebra of some B ∈ K};
PK = {A : A is the product of some system of elements of K}.

Lemma 13.1. IGsI = SPCsI for all I with at least two elements.

P r o o f. The proof is essentially contained in the proof of Theorem 9.1. Thus
suppose that 〈Aj : j ∈ J〉 is a system of CsI ’s; say the base of Aj is Uj for
each j ∈ J . We may assume that Uj ∩ Uk = 0 for all distinct j, k ∈ J . Let
W =

⋃
j∈J

IUj . Then define f :
∏
j∈J Aj → P(W ) by setting fx =

⋃
j∈J xj for

any x ∈
∏
j∈J Aj . Now, apart from notation, the proof proceeds as in the proof

of Theorem 9.1. This proves that SPCsI ⊆ IGsI .
For the other inclusion, suppose that A is a GsI , say with unit element V =⋃

j∈J
IUj , where each Uj is non-empty and Uj ∩ Uk = 0 for all distinct j, k ∈ J .

Define g mapping A into
∏
j∈J P(IUj) by setting, for any a ∈ A and j ∈ J ,

(ga)j = a ∩ IUj . The details that g is an isomorphism from A into a product of
CsI ’s are very similar to the details in the proof of Theorem 9.1, and are left to
the reader.

The following lemma holds for I finite with at least two elements as well as
for I infinite, but we restrict ourselves to the case of I infinite. In its proof we
need the following notation. For any finite subset K of I,

CKx = Ck0 . . . Ckm−1x,

where K={k0, . . . , km−1}. We depend on the context to determine whether CK
refers to this generalized cylindrification for a subset K of I or just to the ordinary
cylindrification, usually using big letters for the former, and small ones for the
latter. For a GsI with I infinite, the order of enumeration of K is easily seen to
be unimportant in this definition.

Lemma 13.2. HGsI ⊆ IGsI for I infinite.

P r o o f. Let A be a GsI and let f : A→ B be a homomorphism. To prove the
theorem it suffices to take any a ∈ A such that fa 6= 0 and find a homomorphism
h from A onto some CsI such that ha 6= 0 but hx = 0 whenever fx = 0.

Since A is a GsI , its unit element V has the form
⋃
j∈J

IUj where Uj 6= 0 for
all j ∈ J , and Uj ∩ Uk = 0 for all distinct j, k ∈ J . Let

M = {x ∈ A : fx = 0} × {K ⊆ I : K is finite}.

Let F be an ultrafilter on M such that if (x,K) ∈M then

TxK
def= {(y, L) ∈M : x ≤ y, K ⊆ L} ∈ F.
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Clearly there is such an ultrafilter. Let W =
⋃
j∈J Uj , and set X = MW/F . Let

a well-ordering of MW be given. Since fa 6= 0, there is an r ∈ MV such that for
all (x,K) ∈ M we have r(x,K) ∈ a ∩ −CKx. Then there is a function j ∈ MJ
such that for all (x,K) ∈ M we have r(x,K) ∈ IUj(x,K). Let Q = {k/F : k ∈∏
m∈M Ujm} and w = 〈〈(rm)i : m ∈ M〉 : i ∈ I〉. So wi/F ∈ Q for all i ∈ I.

Now we define ch : I × MW/F → MW as follows. (a) ch(i, wi/F ) = wi for all
i ∈ I. (b) If y ∈ MW/F , i ∈ I, and y 6= wi/F , let y′ be the first member of y
which is in

∏
m∈M Ujm if y ∈ Q, otherwise just the first member of y, and for

each (x,K) ∈M let

ch(i, y)xK =
{
y′xK if i ∈ K,
r(x,K)i if i 6∈ K.

Note that always ch(i, y)/F = y. This is obvious if y = wi/F , while otherwise

T0{i} ⊆ {(x,K) : ch(i, y)xK = y′xK},

and hence ch(i, y)/F = y. Thus ch is an 〈F, 〈W : m ∈ M〉, I〉-choice function.
And note the following three properties of ch, for any i ∈ I:

(1) ch(i, wi/F ) = wi;
(2) if y ∈ Q, then ch(i, y) ∈

∏
m∈M Ujm;

(3) if (x,K) ∈M and i 6∈ K, then ch(i, y)xK = r(x,K)i.

Let g = RepF 〈W :m∈M〉I〈A:m∈M〉ch. For any x ∈ A let x = 〈x : m ∈ M〉.
Finally, let hx = g(x/F ) for all x ∈ A.

By Lemma 10.2, h is a homomorphism from A onto some CrsI B, and ha 6= 0.
Now suppose that fy = 0; we show hy = 0. It suffices to show:

(?) For all q ∈ IX and all m ∈ Ty0, (ch+ q)m 6∈ y.

To prove (?), say m = (z,K), where y ≤ z and fz = 0. By (3), ch(i, qi)m =
(rm)i for all i ∈ I\K. Thus (ch+ q)m � (I\K) = rm � (I\K). Since rm 6∈ CKz, it
follows that (ch+ q)m 6∈ CKz, and hence (ch+ q)m 6∈ y. This proves (?).

It remains only to show that hV = IQ. To do this, we first note:

(4) For any q ∈ IX and any m ∈M , (ch+ q)m ∈ V iff (ch+ q)m ∈ IUjm.

For, write m = (z,K); then by (3), (ch+ q)m � (I\K) = rm � (I\K), and (4)
follows.

Now suppose q ∈ IQ. By (2), (ch+ q)m ∈ IUjm for all m ∈M , and so by (4),
(ch+ q)m ∈ V for all m ∈ M , and hence q ∈ hV . On the other hand, suppose
that q ∈ hV . Then the set Z def= {m ∈ M : (ch+ q)m ∈ V } is in F . By (4),
(ch+ q)m ∈ IUjm for each m ∈ Z, i.e., ch(i, qi)m ∈ Ujm for all i ∈ I and all
m ∈ Z. Thus q ∈ IQ, as desired.

Combining Lemmas 13.1 and 13.2 we obtain the following theorem, which
gives an important part of the result IV mentioned in Section 11:
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Theorem 13.3. For I infinite, the variety generated by CsI is equal to
IGsI .

The following lemma leads immediately to the result VI mentioned in Sec-
tion 11.

Lemma 13.4. If A is any Csω, then A is in the variety generated by the class
of regular locally finite-dimensional Csω’s.

P r o o f. It suffices to take any Csω A and any non-zero element a ∈ A and
find a homomorphism f of A into an ultraproduct B of regular locally finite-
dimensional Csω’s such that fa 6= 0. Let U be the base of A. Fix x ∈ a.

For a while we will work with a fixed but arbitrary finite subset K of ω. For
each y ∈ IU let y∗ = (y � K) ∪ (x � (I\K)). For all b ∈ A let fKb = {y ∈ IU :
y∗ ∈ b}. Clearly fK is a homomorphism from Bl A into the BA of all subsets of
IU . Since x∗=x, it is clear that fKa 6=0. It is also clear that fKDij=Dij for all
i, j∈K. We claim that also fKCib = CifKb for all i ∈ K. In fact, suppose that
y ∈ fKCib. Thus y∗ ∈ Cib, so there is a u ∈ U such that (y∗)iu ∈ a. Since i∈K, we
have (y∗)iu = (yiu)∗. Hence yiu ∈ fKb, and so y ∈ CifKb. The converse is similar.
For any b ∈ A, fKb is a finite-dimensional element of P(IU); in fact, ∆fKb ⊆ K.
And it is easy to check that fKb is regular. It follows from Lemma 12.3 that the
Csω BK generated by fK [A] is regular and locally finite-dimensional.

Now let J = {K : K is a finite subset of ω}, and let F be an ultrafilter
on J such that {L ∈ J : K ⊆ L} ∈ F for all K ∈ J . For each b ∈ A let
gb = 〈fKb : K ∈ J〉/F . It is easy to check that g is an isomorphism from A into∏
K∈J BK/F , as desired.

Corollary 13.5. An equation holds in all cylindric set algebras of dimension
ω iff it holds in all algebras Cs M, M a first-order structure.

14. Cylindric set algebras with infinite bases. In this section we prove
the result V mentioned at the beginning of Section 11. The proof depends on
the notion of a weak cylindric set algebra, which is one of the important notions
concerning set algebras. But we are not going to develop the theory of these set
algebras much, merely proving what is needed for the result V.

Recall the definition of IUp from Section 4. A weak cylindric set algebra is
a cylindric-relativized set algebra A whose unit element has the form IUp. Note
that U is the base of A (see Section 4).

Proposition 14.1. Let A be a GsI with unit element V =
⋃
j∈J

IUj , such
that Uj ∩ Uk = 0 for distinct j, k ∈ J . Then we can write V =

⋃
k∈K

IW pk
k , where

IW pk
k ∩ IW

pl
l = 0 for distinct k, l ∈ K. Moreover , for all k ∈ K there is a j ∈ J

such that Wk = Uj.

P r o o f. Fix j∈J . We define p ≡ q iff p, q∈ IUj and {i∈I : pi = qi} is finite.
Clearly ≡ is an equivalence relation on IUj . Let Kj consist of exactly one element
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from each ≡-class. Then V =
⋃
j∈J

⋃
p∈Kj

IUpj , and IUpj ∩ IUqk = 0 if j 6= k or
p 6= q.

Another notion we will need is well known in set theory. An ultrafilter F on
a set X is regular if there is an a ∈ XF such that

⋂
x∈M ax = 0 for every infinite

subset M of X. Another way of saying this is that there is an h ∈ X{M : M ⊆ X,
M finite} such that {x : y ∈ hx} ∈ F for all y ∈ X. [To see the existence of h,
let hx = {y : x ∈ ay} for all x ∈ X. Assuming that such an h exists, to see the
existence of a, let ay = {x : y ∈ hx} for all y ∈ X.] It is known that for every
infinite set X there is a regular ultrafilter on X (in fact, “most” ultrafilters are
regular). Moreover, for any infinite set A, |XA/F | ≥ 2|X|. For more on regular
ultrafilters see Chang, Keisler [2] and Comfort, Negrepontis [3].

The following version of the upward Löwenheim–Skolem–Tarski theorem is
crucial in the proof of V.

Theorem 14.2. Suppose that |I| ≥ 2. Let A be a weak cylindric set algebra
with infinite base U . Let κ be a cardinal such that max(|A|, |U |) ≤ κ and κ|I| = κ.
Then A is sub-isomorphic to a CsI with base of power κ.

P r o o f. Let A have unit element V def= IUp, and let λ = max(|I|, κ). It is
convenient to assume that I ⊆ λ. Let F be a λ-regular ultrafilter on λ. So there
is an h ∈ λ{Γ ⊆ I : Γ finite} such that {α : i ∈ hα} ∈ F for all i ∈ I. For each
a∈A let δa = 〈a : α < λ〉/F . Thus δ is an isomorphism from A into IA/F . Also,
for each u ∈ U let εu = 〈u : α < λ〉/F . Let X = λU/F . Now we define a function
c : I ×X → λU as follows: for any i ∈ I, x ∈ X, and α < λ, write x = y/F with
y = 〈u : α < λ〉 if x = εu, and let

c(i, x)α =
{
pi if i 6∈ hα;
yα otherwise.

Since {α : i ∈ hα} ∈ F , it follows that c(i, x)/F = y/F = x, so c is an (F,U, I)-
choice function. Let f = Rep(c). So by Lemma 10.2, f ◦ δ is a homomorphism
from A onto some CrsI .

(1) fδV = IX.

In fact, ⊆ is true by the definition of f . Now let q ∈ IX; we want to show
that {α < λ : (c+q)α∈V }∈F . In fact, (c+q)α ∈ V for all α < λ. For, if i ∈ I,
then ((c+q)α)i = c(i, qi)α ∈ U , so (c+q)α ∈ IU . And if i 6∈ hα, then ((c+q)α)i =
c(i, qi)α = pi, so {i ∈ I : ((c+q)α)i 6= pi} ⊆ hα, which is finite, so (c+q)α ∈ IUp =
V , as desired in (1).

(2) If u ∈ IUp then there is a Γ ∈ F such that (c+(ε ◦u))α = u for all α ∈ Γ .

In fact, let M be a finite subset of I such that ui = pi for all i ∈ I\M . Let
Γ = {α < λ : M ⊆ hα}. So Γ ∈ F . Then i ∈ hα implies that c(i, εui)α = ui, and
i 6∈ hα implies that c(i, εui)α = pi = ui. So ((c+(ε ◦ u))α)i = c(i, εui)α = ri for
all i ∈ I, and (2) follows.
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(3) f ◦ δ is one-one.

For, let a be a non-zero element of A; say u ∈ a. Taking Γ as in (2), we get
(c+(ε ◦ u))α = u ∈ a for all α ∈ Γ , and hence ε ◦ u ∈ fδa, as desired in (3).

Let Z = I(ε[U ])ε◦p. Then the following statement is clear:

(4) ε̃V = Z.
(5) rlZ ◦f ◦ δ = ε̃.

To prove (5), suppose a ∈ A and q ∈ Z. Say q = ε ◦ u with u ∈ IUp. Choose
Γ in accordance with (2). Then

q ∈ rlZ fδa iff q ∈ fδa
iff {α < λ : (c+q)α ∈ a} ∈ F
iff {α ∈ Γ : (c+q)α ∈ a} ∈ F
iff {α < λ : u ∈ a} ∈ F
iff u ∈ a
iff ε−1 ◦ q ∈ a
iff q ∈ ε̃a,

as desired.
By (5), f ◦ δ is a sub-base-isomorphism. By Proposition 6.4, there is a base

isomorphism h′ and an ext-isomorphism g′ such that (f ◦ δ)−1 = g′ ◦ h′. Say h′

is a base isomorphism of B onto C. Clearly then C is a CsI with a base T such
that |T | = |X|. Moreover, g′ = rlV is an ext-isomorphism from C onto A. Note
that |T | = |X| = 2λ. Thus |A| ≤ κ ≤ 2λ = |T |. And U ⊆ T with |U | ≤ κ.
Therefore by Theorem 11.1 there is a W such that U ⊆ W ⊆ T , |W | = κ, and
rlW is an ext-isomorphism from C onto a CsI with base W . Clearly then rlU is an
isomorphism from C onto A, as desired.

Let ∞CsI be the class of all cylindric set algebras of dimension I with infinite
base, and let ∞GsI be the class of all generalized cylindric set algebras of dimen-
sion I with unit of the form

⋃
j∈J

IYj , the Yj ’s infinite and pairwise disjoint. The
result V now reads as follows:

Theorem 14.3. For I infinite, HSP(∞CsI) = I(∞GsI) = I(∞CsI).

P r o o f. First note that HSP(∞CsI) = I(∞GsI) by reading over the proofs of
Lemmas 13.1 and 13.2. So we just have to show that every ∞GsI is isomorphic to
an ∞CsI . Let A be an ∞GsI . By Proposition 14.1 we can write the unit element
of A in the form

⋃
j∈J Vj , where Vj = IU

pj
j , each Uj infinite, Vj ∩ Vk = 0 for

distinct j, k. Choose j ∈ AJ so that a ∩ Vja 6= 0 for all a ∈ A\{0}. For all a ∈ A
let Ba be the CrsI of all subsets of Vja ; so Ba is a weak cylindric set algebra.
Let ha = rlAVja . By Proposition 5.1, ha is a homomorphism from A into Ba, and
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haa 6= 0. Let

κ = |I| ∪
⋃
j∈J
|Uj | ∪

⋃
a∈A\{0}

|Ba|.

Let 〈Wa : a ∈ A〉 be such that 2κ =
⋃
a∈AWa, |Wa| = 2κ for all a ∈ A, and

Wa ∩Wb = 0 for all distinct a, b. By Theorem 14.2, Ba is isomorphic to a CsI
Ca with base Wa for each a ∈ A; let ka be an isomorphism from Ba onto Ca.
Choose z ∈ A(I(2κ)) so that za ∈ kahaa for each a ∈ A\{0}. For each a ∈ A\{0}
let Xa = I(2κ)za , and let X0 = I(2κ)\

⋃
a∈A\{0}Xa. Note that each Xa is a zero-

dimensional element in the CsI of all subsets of I(2κ). Since |I| ≤ κ, for every
a ∈ A\{0} there is a one-one function fa from Wa onto 2κ such that fazai = zai
for all i ∈ I. Let f0 be any one-one function from W0 onto 2κ. Finally, for all
a ∈ A let

ga =
⋃
b∈A

rlXb f̃bkbhba.

We claim that g is an isomorphism from A onto a CsI with infinite base. It is
straightforward to check everything except one-one-ness and preservation of Ci.
If a 6= 0, then za ∈ rlXa f̃akahaa, showing that g is one-one. To check that g
preserves Ci, suppose that t ∈ Ciga. Say α ∈ 2κ and tiα ∈ ga. Choose b ∈ A such
that tiα ∈ rlXb f̃kbhba. In particular, tiα ∈ Xb. From the form of the definition
of Xb it follows that also t ∈ Xb. Hence t ∈ C

[Xb]
i rlXb f̃kbhba. Then the fact

that all of the functions rlXb , f̃ , kb, and hb are homomorphisms easily yields that
t ∈ gCia. The converse is similar, so the proof is finished.
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