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A NOTE ON LACUNARY APPROXIMATION ON [−1, 1]

BY

S. P. ZHOU (HALIFAX, NOVA SCOTIA)

1. Introduction. Denote by CN
[−1,1] the class of functions which have N

continuous derivatives on the interval [−1, 1]. Let Πn be the set of algebraic
polynomials of degree ≤ n, and

Πk
n =

{
f(x) =

n∑
j=0

ajx
j : ak = 0

}
,

where, here and throughout the paper, k is always a natural number. For
f ∈ C[−1,1] := C0

[−1,1], define

En(f) = inf{‖f − p‖ : p ∈ Πn} = inf{ max
−1≤x≤1

|f(x)− p(x)| : p ∈ Πn} ,

En,k(f) = inf{‖f − q‖ : q ∈ Πk
n} = ‖f(·)− pk

n(f, ·)‖ .

Throughout the paper, we use C(x) to indicate a positive constant de-
pending upon x only, and C a positive absolute constant, which may be
different in different relations.

The study of the approximation to continuous functions by lacunary gen-
eral polynomials in [a, 1] for a ≥ 0 started from the work of Müntz [7] in 1914,
and great advance has been made in the field since then. There are many
works concerning the Jackson type theorems for Müntz approximation.

On the other hand, several references [2]–[4], [6], [8]–[10] investigated the
approximation of continuous functions on [0, 1] and [−1, 1] by elements from
Πk

n (actually, lacunary approximation on [−1, 1] is not a special case of the
usual Müntz approximation). For instance, Hasson [2] proved that

(1) En,k(xk) ≈ n−k .

By applying (1) Hasson [2] established that if f ∈ Ck
[−1,1], f (k)(0) 6= 0, then

lim
n→∞

En,k(f)/En(f) = ∞ .

(Lorentz [6] proved this result in a different way.)
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In estimating En,k(f)/En(f) by smoothness of the function f(x), Hasson
conjectured that

Conjecture A. If f ∈ C[−1,1] and f ′ does not exist at some interior
point of [−1, 1], then

lim sup
n→∞

En,k(f)/En(f) < ∞ .

Xu [8], Yang [9] and Zhou [10] gave negative answers to the above con-
jecture in different ways. Zhou proved

Theorem B. There exist continuous and nowhere differentiable func-
tions f on [−1, 1] such that

lim sup
n→∞

En,k(f)/En(f) = ∞ .

Theorem C. There exists an infinitely differentiable function f on [−1, 1]
such that

lim sup
n→∞

En,k(f)/En(f) < ∞ .

The above results thus indicate that the boundedness of the ratios
En,k(f)/En(f) is indeed irrelevant to smoothness of functions.

If we consider the relation between smoothness and lacunary approxi-
mation, a natural question arises if there are any Jackson type estimates for
lacunary approximation. Note that all known results such as that of Hasson
cited above (see also [4], [8]–[10]) require the condition f (k)(0) 6= 0 (which
makes things easier to deal with) and thus another natural question is what
happens if we drop this condition.

The present paper will investigate those two questions.
Let ωφ

k (f, t) be the Ditzian–Totik modulus of smoothness of order k:

ωφ
k (f, t) = sup

0<h≤t
‖∆k

hφf(x)‖ ,

where φ(x) =
√

1− x2,

∆k
hφf(x) =


∑k

j=0(−1)j
(
k
j

)
f(x + (k/2− j)hφ(x)) ,

x± khφ(x)/2 ∈ [−1, 1],
0, otherwise,

and as usual, we denote by ωk(f, t) the ordinary modulus of smoothness of
order k:

ωk(f, t) = sup
{∣∣∣∣∆k

hf(x) :=
k∑

j=0

(−1)j

(
k

j

)
f(x + jh)

∣∣∣∣ :

0 < h ≤ t, x ∈ [−1, 1− kh]
}

.
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The main results of this note are the following:

Theorem 1. Let φ(x) =
√

1− x2. Then

En,k(f) ≤ C(k)ωφ
k (f, n−1) .

Corollary 1. We have

En,k(f) ≤ C(k)ωk(f, n−1) .

Theorem 2. Let 0 < % < 1. Then the set

A :=
{

f ∈ C[−1,1] : lim inf
h→0+

h−k∆k
hf(0) = 0 , lim sup

n→∞

En,k(f)
n%ωk+1(f, n−1)

= ∞

and ωk+1(f, t) > 0 for t > 0
}

is residual in C[−1,1].

Corollary 2. Let 0 < % < 1. Then the set{
f ∈ C[−1,1] : lim inf

h→0+
h−k∆k

hf(0) = 0 ,

lim sup
n→∞

En,k(f)

n%ωφ
k+1(f, n−1)

= ∞ and ωk+1(f, t) > 0 for t > 0
}

is residual in C[−1,1].

We adopt the familiar categorical vocabulary as in Borwein [1]. A set
is nowhere dense if the interior of its closure is empty. A set is category 1
if it is a countable union of nowhere dense sets. A set is residual if it is
the complement of a category 1 set. So a residual set contains almost all
functions from the Baire category point of view.

The following Corollary 3 improves Theorem B.

Corollary 3. There exist continuous and nowhere differentiable func-
tions f on [−1, 1] such that

lim inf
h→0+

h−k∆k
hf(0) = 0 and lim sup

n→∞

En,k(f)
ωk+1(f, n−1)

= ∞ .

P r o o f. This follows since the class of all continuous but nowhere dif-
ferentiable functions is also residual in C[−1,1] (cf. [10]).

2. Proof of Theorems 1 and 2

P r o o f o f T h e o r e m 1. We can prove Theorem 1 by following an
idea of Leviatan [5] so we will only give a sketch here.

Given a function f ∈ Ck
[−1,1] with

(2) ‖φkf (k)‖ ≤ 1 ,
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we find an ordinary polynomial sn(x) =
∑n

j=0 ajx
j such that

‖f − sn‖ ≤ C(k)n−k .

Then by applying (1), we have a polynomial qn ∈ Πk
n such that

‖xk − qn(x)‖ ≤ C(k)n−k .

Set

Qn(x) =
n∑

j=0, j 6=k

ajx
j + akqn(x) .

Then Qn ∈ Πk
n and

(3) ‖f −Qn‖ ≤ C(k)n−k

since |ak| = O(1) (by (2)). For any f ∈ C[−1,1] and n ≥ 1, using the
Peetre kernel Kk

φ we deduce that there exists a function g ∈ Ck
[−1,1] with the

properties

‖f − g‖ ≤ C(k)ωφ
k (f, n−1) and n−k‖φkg(k)‖ ≤ C(k)ωφ

k (f, n−1) .

Combining this with (3), we obtain the required result.

P r o o f o f T h e o r e m 2. Let 0 < % < 1. Define

An =
{

f ∈ C[−1,1] : there is an N ≥ n such that |∆k
N−1f(0)| < n−1N−k ,

EN,k(f)
N%ωk+1(f,N−1)

> n and ωk+1(f, t) > 0 for t > 0
}

.

Then A =
⋂∞

n=1 An.
Since for any g ∈ C[−1,1],

EN,k(g) = ‖g − pk
N (g)‖ ≥ ‖f − pk

N (g)‖ − ‖g − f‖ ≥ EN,k(f)− ‖g − f‖ ,

and evidently,

ωk+1(g,N−1) ≤ ωk+1(f,N−1) + 2k+1‖g − f‖ ,

we see that obviously g is in An if f ∈ An and g and f are close enough,
and thus An is open for every n = 1, 2, . . .

Let

h∗n(x) =

 xk

(
exp

(
n−4

x2 − n−4

)
− 1

)
, |x| < n−2,

−xk , n−2 ≤ |x| ≤ 1.

By calculation,

(4) ‖h∗n‖ = O(1) ,

(5) ‖h∗n(x) + xk‖ ≈ n−2k ,
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where wn ≈ vn indicates that there is a positive constant c independent of n
such that c−1wn ≤ vn ≤ cwn. Hence for any t(x) ∈ Πk

n (that is, t(k)(0) = 0),
by (5) and applying a Bernstein type inequality we obtain

n−2k ≤ C‖h∗n(x) + xk‖ ≤ C(k)n−2k|k! + t(k)(0)|
≤ C(k)n−2knk‖t(x) + xk‖ ≤ C(k)n−k(‖h∗n(x) + xk‖+ ‖h∗n − t‖) ,

or in other words,

(6) En,k(h∗n) ≥ C(k)n−k .

For any given f ∈ C[−1,1], 0 < ε ≤ 1, and sufficiently large N ≥ n, we
find a polynomial pk

N (f, x) ∈ Πk
N such that

(7) ‖f − pk
N (f)‖ ≤ ε

(since polynomials p with p(k)(0) = 0 are dense in the space of continuous
functions on [−1, 1] by Theorem 1). Define

hN (x) = εh∗mN
(x) + pk

N (f, x) ,

where

mN = max{1, ‖pk
N (f)‖1/θ}ε−1/θN (2k+2)/θ , θ =

1− %

2
.

From (4), (7),

(8) ‖f − hN‖ ≤ ‖f − pk
N (f)‖+ ε‖h∗mN

‖ = O(ε) .

It is easy to see that

EmN ,k(hN ) = εEmN ,k(h∗mN
)

since pk
N (f) ∈ Πk

N . By (6) it follows that

(9) EmN ,k(hN ) ≥ C(k)εm−k
N .

On the other hand,

ωk+1(hN ,m−1
N ) ≤ εωk+1(h∗mN

,m−1
N ) + ωk+1(pk

N (f),m−1
N )(10)

= εωk+1(h∗mN
(x) + xk,m−1

N ) + ωk+1(pk
N (f),m−1

N )

≤ 2k+1ε‖h∗mN
(x) + xk‖+ C(k)N2k+2‖pk

N (f)‖m−k−1
N

≤ 2k+1εm−2k
N + C(k)εm−k−1+θ

N = O(m−k−%−θ
N ) .

Estimates (9) and (10) give

(11)
EmN ,k(hN )

m%
Nωk+1(hN ,m−1

N )
≥ C(k)mθ

N .

It is now obvious that

(12) h
(k)
N (0) = 0 ,

(13) ωk+1(hN , t) > 0 for t > 0 .
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So (11)–(13) imply that hN ∈ An for large enough N . By (8), we have
proved that An is dense in C[−1,1].

The proof is complete.
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[5] D. Lev iatan, Improved estimates in Müntz Jackson theorems, in: Progress in Ap-
proximation Theory, Academic Press, New York 1991, 575–582.

[6] G. G. Lorentz, Problems for incomplete polynomials, in: Approximation Theory
III, Academic Press, New York 1980, 41–73.
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