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ON EMBEDDABILITY OF CONES IN EUCLIDEAN SPACES

BY

WITOLD ROSICKI (GDANSK)

In 1937 S. Claytor [4] proved

THEOREM. A locally connected continuum X is embeddable in S? if and
only if X does not contain any of Kuratowski’s curves K1, Ko, K3, Kj4.

Denote by C'X the space X x [0,1]/X x {1}, called the cone of X. We
will prove the following

THEOREM 1. If X is a locally connected continuum and its cone CX is
embeddable in R™ where n < 3, then X is embeddable in S™ 1.

Proof. If CX is embeddable in R, then X is a one-point space.

If CX is embeddable in R?, then it is clear that X does not contain a
triod T" (i.e. a set homeomorphic to a cone with a three-point base), because
CT contains each of Kuratowski’s curves. A non-empty non-degenerate
locally connected continuum X which does not contain a triod is an arc or
a simply closed curve.

Now, consider the case when C'X is embeddable in R®. The theorem will
be proved if we show that the cones CKy, CKy, C K3, CK, of Kuratowski’s
curves are not embeddable in R2. This will be done in a sequence of lemmas.

First we define Kuratowski’s curves.

DEFINITION 1. Kuratowski’s graph K is a space homeomorphic to the
juncture of two three-point sets. It is equivalent to the graph shown in Fig. 1.

b
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DEFINITION 2. Kuratowski’s graph K5 is a space homeomorphic to the
1-dimensional skeleton of a 4-dimensional simplex. It is equivalent to the
graph shown in Fig. 2.

Fig. 2

DEFINITION 3. For each i € N, let Z; be a graph as in Fig. 3. Assume
that the family of graphs {Z;};cny and the family of open arcs (p;qi+1),
where p;, g; are as in Fig. 3, have the property that the sets Z; and (p;qi+1)
are pairwise disjoint and their diameters are smaller than 4%, Let g, =
lim;_, g; and let [gz] be a closed arc disjoint from ;= Z; UUse; (Pigi+1)-
Then Kuratowski’s curve Ky is defined by K3 = ;o Z; U U5, (Pigi+1) U
[qooz]-

Fig. 3

DEFINITION 4. Kuratowski’s curve K, is defined as in Definition 3 with
Z; replaced by R; shown in Fig. 4.

DEFINITION 5. We say that a set D C R? locally splits the space R? at a
point x into n components if for sufficiently small € > 0 the set B(zg;e)—D
has exactly n components A,..., A, such that zqg € 4; foralli=1,...,n.
(B(xo;€) denotes the ball with center zy and radius ¢.)

LEMMA 1. A homeomorphic image of a disk locally splits R? at any point
of its interior into two components.
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Fig. 4

Proof. Let D be a homeomorphic image of a disk. Choose € > 0 smaller
than the distance between xy and the boundary of D. Then the component
Dy of B(zg;e) N D such that xg € Dy is an open orientable 2-manifold.

If X is closed in R™ then, by Alexander duality (see [5], VIII, 8.18),
H;i 1(R" — X) =~ H?7(X), where H, denotes reduced homology and H
denotes Cech cohomology with compact supports. Therefore, ]?IO(B (xo;€)—
Dy) = HZ(Dy).

On the other hand, if L € K C X are topological spaces such that
L is closed in K, K — L is closed in X — L and X — L is an n-manifold
orientable along K — L, then H!(K, L) ~ H, _;(X — L, X — K) (see [5], VIII,
7.14). So, if L = () and K = X, then H!(K) ~ H,,_;(K) (Poincaré duality).
Therefore, H(Dy) ~ Hy(Dy) ~ Z. Hence, Hy(B(zo;€) — Do) ~ Z & Z and
B(xp;e) — Dy has two components.

For arbitrarily small § € (0,¢), Ho(B(xo;e)—(Do—B(z0;6))) ~ H2(Do—
B(z0;0)) ~ 0. Hence, B(xg;e)—(Do—B(xo;9)) is connected. So, z¢ belongs
to the closures of both components of B(zg;e) — Dy.

LEmMMA 2. If I;, i =1,...,n, are arcs with common end-points and pair-
wise disjoint interiors and the map h: C(U;—, I;) — R? is a homeomorphic
embedding, then C, = h(C(U}_, I;)) locally splits R® at its vertex zo into
n components.

Proof. If n = 1, then Cy N B(zp;¢) is a 2-manifold with boundary.
Therefore, B(xzg;e) — Oy is connected. If n = 2, Cy locally splits R? at z
into 2 components by Lemma 1.

Assume that the lemma holds for n — 1. Let yo = h~!(x¢) and let § > 0
be so small that C' = h(C(U}_, I;) N B(yo;)) C B(zo;¢), where € > 0 is
smaller than the distance between xy and the image of the base of the cone.
There exists an open connected set U in R such that C' = UNC,,. The set
C' is homeomorphic to C,,.

Consider the exact sequence of the pair (U, U — C):

..— H(U) - Hy(U,U - C)— Ho(U—-C) — Ho(U) — 0.
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Since U is an open 3-manifold, H;(U) ~ H2(U) by Poincaré duality. Also
Ho(U,U — C) ~ HZ2(C) (see [5], VIII, 7.14, where L = (), K = C and
X =U). Therefore, we can consider an exact sequence

..HHCQ(U)—)HCQ(C)—>H0(U—C)—>H0(U)—>0.

Now, we show by induction that the map H2(U) — HZ2(C) is trivial.
If n = 2, then C is a disk. Then Ho(U — C) ~ Z? by Lemma 1. Since
H?(C)~7Z and Ho(U) ~ 7Z, we obtain an exact sequence H2(U) — Z —
7? — 7 — 0. Hence, the map is trivial.

Since H2(Cy) ~ Z, we obtain by induction H*(C) ~ H?*(Ch_1) @
H?*(CY) ~ 7" 2 @& Z, where Cy = h(C(I; UI,)). The map H2(U) —
H?(C) ~ H?(C,_1) ® H2(C) is trivial because both its coordinates are
trivial by the induction hypothesis.

Therefore, the sequence 0 — H2(C) — Ho(U — C) — Hy(U) — 0 is
exact. So the sequence 0 — Z"1 — Hy(U — C) — Z — 0 is also exact.
Hence, Hy(U — C) &~ Z™ and U — C has n components.

The point zg belongs to the closure of each of them because if X is
C with a small neighborhood of o removed, then H?(X) ~ 0 and 0 —
Hy(U — X) — Ho(U) — 0 is exact, so Hy(U — X) =~ Z.

Therefore, if B(zg;¢’) C U, then B(xg;e’)—C,, has at least n components
such that xy belongs to their closures. Now, take § > 0 so small that U C
B(xg;€’). Then U — C,, has exactly n components. Therefore, B(zg;e)—C),
has exactly n components such that xg belongs to their closures.

Remark. Below we often encounter the following situation. The disks
C; locally split R? at a point zg into two components, and the e of Defini-
tion 5 is common for ¢ = 1,2,3. We then always call the components A;
and B;. Let C = C7y U Cy UC3 and K be the component of C N B(xg;¢)
such that zy € K. If K C A, we relabel the components Ay, By and As,
By if necessary to have Ay C A; and A3 C A;. Then C locally splits R? at
xo into components As, Az, B.

LEMMA 3. The cone CKy is not embeddable in R3.

Proof. Suppose that h: CK; — R? is a topological embedding and set

K = h(C((ca] Ulab))), L =h(C((cp]U[pb))), M = h(C((cd]U [db))),
Clzf_{UM, CQZI_{UE, CgZEUM, C:I_(UEUM,

where (zy] denotes a “right-closed” arc with end-points x and y, and X is
the closure of X. The points a, b etc. are as in Definition 1.

Let x¢ be the vertex of CK;. Choose ¢ > 0 smaller than the distance
from h(zp) to the image of the base of h(CK;), and t¢ such that h(K; x
{t}) C B(h(zg);e) for t > tg.
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Every set C;, i = 1,2, 3, locally splits R3 at h(zg) into two components
A; and B;. Let p’ = h(p,tg) € A;. Then we can assume that C locally
splits R? at h(xq) into three components Ao, A3, By. Observe that p’ and
q¢" = h(q,to) are in the same component, because the arc H = h((pq) x {to})
is contained in B(h(zg);e) — C. Hence either ¢’ € Ay or ¢’ € As. So the
arc I = h(((aq] U [gd)) x {to}) is contained either in A or in As. But
a' = hla,ty) € Az so I ¢ Az and d' = h(d,ty) & Ay so I ¢ As.

Remark. We have obtained a contradiction because the points p’ and
¢’ belong to the same component A;.
LEMMA 4. The cone CKs is not embeddable in R3.

Proof. Assume h: CK, — R3 is a topological embedding. Let x¢, yo,
€, to be defined as in the previous proof, with K7 replaced by K. Define:

K =n(C((ac))), L =h(C((aglU[g0))),
M = n(C((ab] U [bc))), N = h(C((ap] U[pe))),

Cy = UM, CQZKUZ, CgZEUM, C4ZI_JUN,
Cs=LUN, C¢=NUK, C=KULUMUN.

K M

i}

s
Fig. 5

Every set C; locally splits R? at yo into components A; and B;. Put
' = h(z,tg) for any € Ko and H = h((pq) x {to}), I = h((gb) x {to}),
J = h((bp)  {to}).

Observe that p’ and ¢’ belong to the same component, A; or By, because
they are the end-points of the arc H which is contained in B(yg;¢e) — Cj.

Assume that ¢’ € A;. Then K U L U M locally splits R? at 3, into
components Ay, A3 and B;. The point b’ belongs to M, so b’ ¢ A, and
I C A;. Since ¢’ € Ay we have either JUH C Ay or JUH C Asz. But
W & Ay, so JUH ¢ Ay. Hence JUH C As and NN Az # (. We can
assume Ay C As and As C As. Then the cone C locally splits R3 at 1 into
components As, Ay, As and By. The arc I is contained either in A4 or in
Ag because I C As.
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But I ¢ A, because b’ ¢ A, and I ¢ As because ¢ & As.
LEMMA 5. The cone CKj3 is not embeddable in R3.

Proof. Assume h: CK3 — R3? is a topological embedding. Let xq, yo,
e, typ be defined as previously.

The set C'{goo} is an interval. Put X = h(C{ge}). There exists § > 0
such that h(z,ty) € B(X;8) = {x € R3 : dist(X,z) < §} and h(Z; x {to})N
B(X;0) = (), because the distance between disjoint compact sets is positive.
By uniform continuity of h there exists ig such that h(CZ;,) C B(X;J).

Observe that Z; is homeomorphic to the graph K; with the arc (gp)
removed.

Define

h(C((Cioaio] U [aiobio))) )
= h(C((Ciopio] U [piobio))) )
M= h(C((Ciodio] U [diobio)))7
and, as in Lemma 3, C; = KUM,Cy = KUL,C3=LUM,C = KUMUL.
The set C; locally splits R? at 1 into two components. The points
P’ = h(piy,to) and ¢' = h(qgi,,to) lie in the same component because there
exist arcs in h(CKs — CZ,;,) joining p’ to h(z,ty) and ¢’ to h(Z; x {to}).
The rest of the proof is the same as for Lemma 3.

LEMMA 6. The cone CKy is not embeddable in R3.

K
L

Proof. Observe that the set R; is homeomorphic to the curve Ky with
the arc (gp) removed. So the proof is similar to the proof of Lemma 5, except
that after proving that the points ¢’ and p’ belong to the same component
Ay or By, we will need the proof of Lemma 4 rather than that of Lemma 3.

The proofs of Lemmas 1-6 complete the proof of Theorem 1.

COROLLARY 1. If the suspension SX of a locally connected continuum
X is embeddable in R™ where n < 3, then X is embeddable in R" 1.

COROLLARY 2. If X is a locally connected continuum and CX is em-
beddable in an n-manifold where n < 3, then X is embeddable in S™~ 1.

Proof. If there exists a topological embedding of C' X in an n-manifold,
then a neighborhood of the image of the vertex of C'X is homeomorphic to
R"”, so CX is embeddable in R™.

THEOREM 2. For each n > 3 there exists a locally conected continuum
X,, such that X,, is not embeddable in R™ but CX,, is embeddable in R"T1.

Proof. Consider Blankinship’s wild arc J, lying in the interior of an
n-dimensional ball B,, (see [2]). Define X,, to be the quotient space B,,/J,,.
It is obvious that X, is a locally connected continuum.
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Suppose that there exists a topological embedding h : X,, — R". Since
h(dB,,) is homeomorphic to S™~1, it splits R™ into two components. It is
easy to see that the closure of the bounded part U of R™ — h(9B,,) is equal
to h(X,). So h([J,]) € U has a neighborhood in U homeomorphic to an
open ball. But no neighborhood of [J,,] in X, is homeomorphic to an open
ball because the group 7(V — J,,) is non-trivial for every neighborhood V' of
J, in B,,. So X,, is not embeddable in R™.

The space X,, x(—1, 1) is homeomorphic to B,, x(—1,1). In 1962 J. J. An-
drews and M. L. Curtis [1] proved that if J is an arc, then (R"/J) x R is
homeomorphic to R™*1. The proof that X,, x (—1,1) is homeomorphic to
B, x(—1,1) is the same. The suspension SX,, of X,, is a two-point compact-
ification of X,, x (—1,1), hence a two-point compactification of B,, x (—1,1),
and this is equal to B, 1, embeddable in R"*1,

So C'X,, is embeddable in R**!, because CX,, C SX,,.

Remark. SX,, is embeddable in R**1.

The proof of Theorem 1 uses methods similar to those used in [6]. The
results of [6] were generalized by R. Cauty in [3]. The question arises whether
a similar generalization is true for the result of this paper.

PROBLEM. Let X be a locally connected continuum. Supose that C™X
is embeddable in R"T2. Is it true that X is embeddable in S??
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