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ON EMBEDDABILITY OF CONES IN EUCLIDEAN SPACES

BY

WITOLD ROS ICK I (GDAŃSK)

In 1937 S. Claytor [4] proved

Theorem. A locally connected continuum X is embeddable in S2 if and

only if X does not contain any of Kuratowski’s curves K1, K2, K3, K4.

Denote by CX the space X × [0, 1]/X × {1}, called the cone of X. We
will prove the following

Theorem 1. If X is a locally connected continuum and its cone CX is

embeddable in R
n where n ≤ 3, then X is embeddable in Sn−1.

P r o o f. If CX is embeddable in R, then X is a one-point space.
If CX is embeddable in R

2, then it is clear that X does not contain a
triod T (i.e. a set homeomorphic to a cone with a three-point base), because
CT contains each of Kuratowski’s curves. A non-empty non-degenerate
locally connected continuum X which does not contain a triod is an arc or
a simply closed curve.

Now, consider the case when CX is embeddable in R
3. The theorem will

be proved if we show that the cones CK1, CK2, CK3, CK4 of Kuratowski’s
curves are not embeddable in R

3. This will be done in a sequence of lemmas.
First we define Kuratowski’s curves.

Definition 1. Kuratowski’s graph K1 is a space homeomorphic to the
juncture of two three-point sets. It is equivalent to the graph shown in Fig. 1.

Fig. 1
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Definition 2. Kuratowski’s graph K2 is a space homeomorphic to the
1-dimensional skeleton of a 4-dimensional simplex. It is equivalent to the
graph shown in Fig. 2.

Fig. 2

Definition 3. For each i ∈ N, let Zi be a graph as in Fig. 3. Assume
that the family of graphs {Zi}i∈N and the family of open arcs (piqi+1),
where pi, qi are as in Fig. 3, have the property that the sets Zi and (piqi+1)
are pairwise disjoint and their diameters are smaller than 4−i. Let q∞ =
limi→∞ qi and let [q∞z] be a closed arc disjoint from

⋃
∞

i=1
Zi∪

⋃
∞

i=1
(piqi+1).

Then Kuratowski’s curve K3 is defined by K3 =
⋃

∞

i=1
Zi ∪

⋃
∞

i=1
(piqi+1) ∪

[q∞z].

Fig. 3

Definition 4. Kuratowski’s curve K4 is defined as in Definition 3 with
Zi replaced by Ri shown in Fig. 4.

Definition 5. We say that a set D ⊂ R
3 locally splits the space R

3 at a
point x0 into n components if for sufficiently small ε > 0 the set B(x0; ε)−D
has exactly n components A1, . . . , An such that x0 ∈ Ai for all i = 1, . . . , n.
(B(x0; ε) denotes the ball with center x0 and radius ε.)

Lemma 1. A homeomorphic image of a disk locally splits R
3 at any point

of its interior into two components.
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Fig. 4

P r o o f. Let D be a homeomorphic image of a disk. Choose ε > 0 smaller
than the distance between x0 and the boundary of D. Then the component
D0 of B(x0; ε) ∩ D such that x0 ∈ D0 is an open orientable 2-manifold.

If X is closed in R
n then, by Alexander duality (see [5], VIII, 8.18),

H̃i−1(R
n − X) ≈ Ȟn−i

c (X), where H̃∗ denotes reduced homology and Ȟ∗

c

denotes Čech cohomology with compact supports. Therefore, H̃0(B(x0; ε)−
D0) ≈ Ȟ2

c (D0).

On the other hand, if L ⊂ K ⊂ X are topological spaces such that
L is closed in K, K − L is closed in X − L and X − L is an n-manifold
orientable along K−L, then Ȟi

c(K,L) ≈ Hn−i(X−L,X−K) (see [5], VIII,
7.14). So, if L = ∅ and K = X, then Ȟi

c(K) ≈ Hn−i(K) (Poincaré duality).
Therefore, Ȟ2

c (D0) ≈ H0(D0) ≈ Z. Hence, H0(B(x0; ε) − D0) ≈ Z ⊕ Z and
B(x0; ε) − D0 has two components.

For arbitrarily small δ ∈ (0, ε), H̃0(B(x0; ε)−(D0−B(x0; δ))) ≈ Ȟ2
c (D0−

B(x0; δ)) ≈ 0. Hence, B(x0; ε)−(D0−B(x0; δ)) is connected. So, x0 belongs
to the closures of both components of B(x0; ε) − D0.

Lemma 2. If Ii, i = 1, . . . , n, are arcs with common end-points and pair-

wise disjoint interiors and the map h : C(
⋃

n

i=1
Ii) → R

3 is a homeomorphic

embedding , then Cn = h(C(
⋃

n

i=1
Ii)) locally splits R

3 at its vertex x0 into

n components.

P r o o f. If n = 1, then C1 ∩ B(x0; ε) is a 2-manifold with boundary.
Therefore, B(x0; ε) − C1 is connected. If n = 2, C2 locally splits R

3 at x0

into 2 components by Lemma 1.

Assume that the lemma holds for n− 1. Let y0 = h−1(x0) and let δ > 0
be so small that C = h(C(

⋃
n

i=1
Ii) ∩ B(y0; δ)) ⊂ B(x0; ε), where ε > 0 is

smaller than the distance between x0 and the image of the base of the cone.
There exists an open connected set U in R

3 such that C = U ∩Cn. The set
C is homeomorphic to Cn.

Consider the exact sequence of the pair (U,U − C):

. . . → H1(U) → H0(U,U − C) → H0(U − C) → H0(U) → 0 .
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Since U is an open 3-manifold, H1(U) ≈ Ȟ2
c (U) by Poincaré duality. Also

H0(U,U − C) ≈ Ȟ2
c (C) (see [5], VIII, 7.14, where L = ∅, K = C and

X = U). Therefore, we can consider an exact sequence

. . . → Ȟ2
c (U) → Ȟ2

c (C) → H0(U − C) → H0(U) → 0 .

Now, we show by induction that the map Ȟ2
c (U) → Ȟ2

c (C) is trivial.
If n = 2, then C is a disk. Then H0(U − C) ≈ Z

2 by Lemma 1. Since
Ȟ2

c (C) ≈ Z and H0(U) ≈ Z, we obtain an exact sequence Ȟ2
c (U) → Z →

Z
2 → Z → 0. Hence, the map is trivial.

Since Ȟ2
c (C2) ≈ Z, we obtain by induction H2(C) ≈ H2(Cn−1) ⊕

H2(C ′

2) ≈ Z
n−2 ⊕ Z, where C ′

2 = h(C(I1 ∪ In)). The map Ȟ2
c (U) →

Ȟ2
c (C) ≈ Ȟ2

c (Cn−1) ⊕ Ȟ2
c (C ′

2) is trivial because both its coordinates are
trivial by the induction hypothesis.

Therefore, the sequence 0 → Ȟ2
c (C) → H0(U − C) → H0(U) → 0 is

exact. So the sequence 0 → Z
n−1 → H0(U − C) → Z → 0 is also exact.

Hence, H0(U − C) ≈ Z
n and U − C has n components.

The point x0 belongs to the closure of each of them because if X is
C with a small neighborhood of x0 removed, then Ȟ2

c (X) ≈ 0 and 0 →
H0(U − X) → H0(U) → 0 is exact, so H0(U − X) ≈ Z.

Therefore, if B(x0; ε
′) ⊂ U , then B(x0; ε

′)−Cn has at least n components
such that x0 belongs to their closures. Now, take δ > 0 so small that U ⊂
B(x0; ε

′). Then U −Cn has exactly n components. Therefore, B(x0; ε)−Cn

has exactly n components such that x0 belongs to their closures.

R e m a r k. Below we often encounter the following situation. The disks
Ci locally split R

3 at a point x0 into two components, and the ε of Defini-
tion 5 is common for i = 1, 2, 3. We then always call the components Ai

and Bi. Let C = C1 ∪ C2 ∪ C3 and K be the component of C ∩ B(x0; ε)
such that x0 ∈ K. If K ⊂ A1 we relabel the components A2, B2 and A3,
B3 if necessary to have A2 ⊂ A1 and A3 ⊂ A1. Then C locally splits R

3 at
x0 into components A2, A3, B1.

Lemma 3. The cone CK1 is not embeddable in R
3.

P r o o f. Suppose that h : CK1 → R
3 is a topological embedding and set

K = h(C((ca] ∪ [ab))), L = h(C((cp] ∪ [pb))), M = h(C((cd] ∪ [db))) ,

C1 = K ∪ M, C2 = K ∪ L, C3 = L ∪ M, C = K ∪ L ∪ M ,

where (xy] denotes a “right-closed” arc with end-points x and y, and X is
the closure of X. The points a, b etc. are as in Definition 1.

Let x0 be the vertex of CK1. Choose ε > 0 smaller than the distance
from h(x0) to the image of the base of h(CK1), and t0 such that h(K1 ×
{t}) ⊂ B(h(x0); ε) for t ≥ t0.
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Every set Ci, i = 1, 2, 3, locally splits R
3 at h(x0) into two components

Ai and Bi. Let p′ = h(p, t0) ∈ A1. Then we can assume that C locally
splits R

3 at h(x0) into three components A2, A3, B1. Observe that p′ and
q′ = h(q, t0) are in the same component, because the arc H = h((pq)×{t0})
is contained in B(h(x0); ε) − C. Hence either q′ ∈ A2 or q′ ∈ A3. So the
arc I = h(((aq] ∪ [qd)) × {t0}) is contained either in A2 or in A3. But
a′ = h(a, t0) 6∈ A3 so I 6⊂ A3 and d′ = h(d, t0) 6∈ A2 so I 6⊂ A2.

R e m a r k. We have obtained a contradiction because the points p′ and
q′ belong to the same component A1.

Lemma 4. The cone CK2 is not embeddable in R
3.

P r o o f. Assume h : CK2 → R
3 is a topological embedding. Let x0, y0,

ε, t0 be defined as in the previous proof, with K1 replaced by K2. Define:

K = h(C((ac))), L = h(C((aq] ∪ [qc))) ,

M = h(C((ab] ∪ [bc))), N = h(C((ap] ∪ [pc))) ,

C1 = K ∪ M, C2 = K ∪ L , C3 = L ∪ M, C4 = L ∪ N ,

C5 = L ∪ N, C6 = N ∪ K, C = K ∪ L ∪ M ∪ N .

Fig. 5

Every set Ci locally splits R
3 at y0 into components Ai and Bi. Put

x′ = h(x, t0) for any x ∈ K2 and H = h((pq) × {t0}), I = h((qb) × {t0}),
J = h((bp) × {t0}).

Observe that p′ and q′ belong to the same component, A1 or B1, because
they are the end-points of the arc H which is contained in B(y0; ε) − C1.

Assume that q′ ∈ A1. Then K ∪ L ∪ M locally splits R
3 at y0 into

components A2, A3 and B1. The point b′ belongs to M , so b′ 6∈ A2 and
I ⊂ A3. Since q′ ∈ A1 we have either J ∪ H ⊂ A2 or J ∪ H ⊂ A3. But
b′ 6∈ A2, so J ∪ H 6⊂ A2. Hence J ∪ H ⊂ A3 and N ∩ A3 6= ∅. We can
assume A4 ⊂ A3 and A5 ⊂ A3. Then the cone C locally splits R

3 at y0 into
components A2, A4, A5 and B1. The arc I is contained either in A4 or in
A5 because I ⊂ A3.
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But I 6⊂ A4 because b′ 6∈ A4 and I 6⊂ A5 because q′ 6∈ A5.

Lemma 5. The cone CK3 is not embeddable in R
3.

P r o o f. Assume h : CK3 → R
3 is a topological embedding. Let x0, y0,

ε, t0 be defined as previously.
The set C{q∞} is an interval. Put X = h(C{q∞}). There exists δ > 0

such that h(z, t0) 6∈ B(X; δ) = {x ∈ R
3 : dist(X,x) < δ} and h(Z1 ×{t0})∩

B(X; δ) = ∅, because the distance between disjoint compact sets is positive.
By uniform continuity of h there exists i0 such that h(CZi0

) ⊂ B(X; δ).
Observe that Zi is homeomorphic to the graph K1 with the arc (qp)

removed.
Define

K = h(C((ci0
ai0

] ∪ [ai0
bi0

))) ,

L = h(C((ci0
pi0

] ∪ [pi0
bi0

))) ,

M = h(C((ci0
di0

] ∪ [di0
bi0

))) ,

and, as in Lemma 3, C1 = K∪M , C2 = K∪L, C3 = L∪M , C = K∪M∪L.
The set C1 locally splits R

3 at y0 into two components. The points
p′ = h(pi0

, t0) and q′ = h(qi0
, t0) lie in the same component because there

exist arcs in h(CK3 − CZi0
) joining p′ to h(z, t0) and q′ to h(Z1 × {t0}).

The rest of the proof is the same as for Lemma 3.

Lemma 6. The cone CK4 is not embeddable in R
3.

P r o o f. Observe that the set Ri is homeomorphic to the curve K2 with
the arc (qp) removed. So the proof is similar to the proof of Lemma 5, except
that after proving that the points q′ and p′ belong to the same component
A1 or B1, we will need the proof of Lemma 4 rather than that of Lemma 3.

The proofs of Lemmas 1–6 complete the proof of Theorem 1.

Corollary 1. If the suspension SX of a locally connected continuum

X is embeddable in R
n where n ≤ 3, then X is embeddable in R

n−1.

Corollary 2. If X is a locally connected continuum and CX is em-

beddable in an n-manifold where n ≤ 3, then X is embeddable in Sn−1.

P r o o f. If there exists a topological embedding of CX in an n-manifold,
then a neighborhood of the image of the vertex of CX is homeomorphic to
R

n, so CX is embeddable in R
n.

Theorem 2. For each n ≥ 3 there exists a locally conected continuum

Xn such that Xn is not embeddable in R
n but CXn is embeddable in R

n+1.

P r o o f. Consider Blankinship’s wild arc Jn lying in the interior of an
n-dimensional ball Bn (see [2]). Define Xn to be the quotient space Bn/Jn.
It is obvious that Xn is a locally connected continuum.
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Suppose that there exists a topological embedding h : Xn → R
n. Since

h(∂Bn) is homeomorphic to Sn−1, it splits R
n into two components. It is

easy to see that the closure of the bounded part U of R
n − h(∂Bn) is equal

to h(Xn). So h([Jn]) ∈ U has a neighborhood in U homeomorphic to an
open ball. But no neighborhood of [Jn] in Xn is homeomorphic to an open
ball because the group π(V −Jn) is non-trivial for every neighborhood V of
Jn in Bn. So Xn is not embeddable in R

n.
The space Xn×(−1, 1) is homeomorphic to Bn×(−1, 1). In 1962 J. J. An-

drews and M. L. Curtis [1] proved that if J is an arc, then (Rn/J) × R is
homeomorphic to R

n+1. The proof that Xn × (−1, 1) is homeomorphic to
Bn×(−1, 1) is the same. The suspension SXn of Xn is a two-point compact-
ification of Xn×(−1, 1), hence a two-point compactification of Bn×(−1, 1),
and this is equal to Bn+1, embeddable in R

n+1.
So CXn is embeddable in R

n+1, because CXn ⊂ SXn.

R e m a r k. SXn is embeddable in R
n+1.

The proof of Theorem 1 uses methods similar to those used in [6]. The
results of [6] were generalized by R. Cauty in [3]. The question arises whether
a similar generalization is true for the result of this paper.

Problem. Let X be a locally connected continuum. Supose that CnX
is embeddable in R

n+2. Is it true that X is embeddable in S2?
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