COLLOQUIUM MATHEMATICUM

ON EMBEDDABILITY OF CONES IN EUCLIDEAN SPACES

By
WITOLD ROSICKI (GDAŃSK)

In 1937 S. Claytor [4] proved
Theorem. A locally connected continuum X is embeddable in S^{2} if and only if X does not contain any of Kuratowski's curves $K_{1}, K_{2}, K_{3}, K_{4}$.

Denote by $C X$ the space $X \times[0,1] / X \times\{1\}$, called the cone of X. We will prove the following

Theorem 1. If X is a locally connected continuum and its cone $C X$ is embeddable in \mathbb{R}^{n} where $n \leq 3$, then X is embeddable in S^{n-1}.

Proof. If $C X$ is embeddable in \mathbb{R}, then X is a one-point space.
If $C X$ is embeddable in \mathbb{R}^{2}, then it is clear that X does not contain a $\operatorname{triod} T$ (i.e. a set homeomorphic to a cone with a three-point base), because $C T$ contains each of Kuratowski's curves. A non-empty non-degenerate locally connected continuum X which does not contain a triod is an arc or a simply closed curve.

Now, consider the case when $C X$ is embeddable in \mathbb{R}^{3}. The theorem will be proved if we show that the cones $C K_{1}, C K_{2}, C K_{3}, C K_{4}$ of Kuratowski's curves are not embeddable in \mathbb{R}^{3}. This will be done in a sequence of lemmas.

First we define Kuratowski's curves.
Definition 1. Kuratowski's graph K_{1} is a space homeomorphic to the juncture of two three-point sets. It is equivalent to the graph shown in Fig. 1.

Fig. 1

Definition 2. Kuratowski's graph K_{2} is a space homeomorphic to the 1-dimensional skeleton of a 4-dimensional simplex. It is equivalent to the graph shown in Fig. 2.

Fig. 2
Definition 3. For each $i \in \mathbb{N}$, let Z_{i} be a graph as in Fig. 3. Assume that the family of graphs $\left\{Z_{i}\right\}_{i \in \mathbb{N}}$ and the family of open $\operatorname{arcs}\left(p_{i} q_{i+1}\right)$, where p_{i}, q_{i} are as in Fig. 3, have the property that the sets Z_{i} and $\left(p_{i} q_{i+1}\right)$ are pairwise disjoint and their diameters are smaller than 4^{-i}. Let $q_{\infty}=$ $\lim _{i \rightarrow \infty} q_{i}$ and let $\left[q_{\infty} z\right]$ be a closed arc disjoint from $\bigcup_{i=1}^{\infty} Z_{i} \cup \bigcup_{i=1}^{\infty}\left(p_{i} q_{i+1}\right)$. Then Kuratowski's curve K_{3} is defined by $K_{3}=\bigcup_{i=1}^{\infty} Z_{i} \cup \bigcup_{i=1}^{\infty}\left(p_{i} q_{i+1}\right) \cup$ $\left[q_{\infty} z\right]$.

Fig. 3
Definition 4. Kuratowski's curve K_{4} is defined as in Definition 3 with Z_{i} replaced by R_{i} shown in Fig. 4.

Definition 5. We say that a set $D \subset \mathbb{R}^{3}$ locally splits the space \mathbb{R}^{3} at a point x_{0} into n components if for sufficiently small $\varepsilon>0$ the set $B\left(x_{0} ; \varepsilon\right)-D$ has exactly n components A_{1}, \ldots, A_{n} such that $x_{0} \in \bar{A}_{i}$ for all $i=1, \ldots, n$. ($B\left(x_{0} ; \varepsilon\right)$ denotes the ball with center x_{0} and radius ε.)

Lemma 1. A homeomorphic image of a disk locally splits \mathbb{R}^{3} at any point of its interior into two components.

Fig. 4
Proof. Let D be a homeomorphic image of a disk. Choose $\varepsilon>0$ smaller than the distance between x_{0} and the boundary of D. Then the component D_{0} of $B\left(x_{0} ; \varepsilon\right) \cap D$ such that $x_{0} \in D_{0}$ is an open orientable 2-manifold.

If X is closed in \mathbb{R}^{n} then, by Alexander duality (see [5], VIII, 8.18), $\widetilde{H}_{i-1}\left(\mathbb{R}^{n}-X\right) \approx \check{H}_{\mathrm{c}}^{n-i}(X)$, where \widetilde{H}_{*} denotes reduced homology and $\check{H}_{\mathrm{c}}^{*}$ denotes Čech cohomology with compact supports. Therefore, $\widetilde{H}_{0}\left(B\left(x_{0} ; \varepsilon\right)-\right.$ $\left.D_{0}\right) \approx \check{H}_{\mathrm{c}}^{2}\left(D_{0}\right)$.

On the other hand, if $L \subset K \subset X$ are topological spaces such that L is closed in $K, K-L$ is closed in $X-L$ and $X-L$ is an n-manifold orientable along $K-L$, then $\check{H}_{\mathrm{c}}^{i}(K, L) \approx H_{n-i}(X-L, X-K)$ (see [5], VIII, 7.14). So, if $L=\emptyset$ and $K=X$, then $\mathscr{H}_{\mathrm{c}}^{i}(K) \approx H_{n-i}(K)$ (Poincaré duality). Therefore, $\check{H}_{\mathrm{c}}^{2}\left(D_{0}\right) \approx H_{0}\left(D_{0}\right) \approx \mathbb{Z}$. Hence, $H_{0}\left(B\left(x_{0} ; \varepsilon\right)-D_{0}\right) \approx \mathbb{Z} \oplus \mathbb{Z}$ and $B\left(x_{0} ; \varepsilon\right)-D_{0}$ has two components.

For arbitrarily small $\delta \in(0, \varepsilon), \widetilde{H}_{0}\left(B\left(x_{0} ; \varepsilon\right)-\left(D_{0}-B\left(x_{0} ; \delta\right)\right)\right) \approx \check{H}_{\mathrm{c}}^{2}\left(D_{0}-\right.$ $\left.B\left(x_{0} ; \delta\right)\right) \approx 0$. Hence, $B\left(x_{0} ; \varepsilon\right)-\left(D_{0}-B\left(x_{0} ; \delta\right)\right)$ is connected. So, x_{0} belongs to the closures of both components of $B\left(x_{0} ; \varepsilon\right)-D_{0}$.

Lemma 2. If $I_{i}, i=1, \ldots, n$, are arcs with common end-points and pairwise disjoint interiors and the map $h: C\left(\bigcup_{i=1}^{n} I_{i}\right) \rightarrow \mathbb{R}^{3}$ is a homeomorphic embedding, then $C_{n}=h\left(C\left(\bigcup_{i=1}^{n} I_{i}\right)\right)$ locally splits \mathbb{R}^{3} at its vertex x_{0} into n components.

Proof. If $n=1$, then $C_{1} \cap B\left(x_{0} ; \varepsilon\right)$ is a 2 -manifold with boundary. Therefore, $B\left(x_{0} ; \varepsilon\right)-C_{1}$ is connected. If $n=2, C_{2}$ locally splits \mathbb{R}^{3} at x_{0} into 2 components by Lemma 1 .

Assume that the lemma holds for $n-1$. Let $y_{0}=h^{-1}\left(x_{0}\right)$ and let $\delta>0$ be so small that $C=h\left(C\left(\bigcup_{i=1}^{n} I_{i}\right) \cap B\left(y_{0} ; \delta\right)\right) \subset B\left(x_{0} ; \varepsilon\right)$, where $\varepsilon>0$ is smaller than the distance between x_{0} and the image of the base of the cone. There exists an open connected set U in \mathbb{R}^{3} such that $C=U \cap C_{n}$. The set C is homeomorphic to C_{n}.

Consider the exact sequence of the pair $(U, U-C)$:

$$
\ldots \rightarrow H_{1}(U) \rightarrow H_{0}(U, U-C) \rightarrow H_{0}(U-C) \rightarrow H_{0}(U) \rightarrow 0 .
$$

Since U is an open 3-manifold, $H_{1}(U) \approx \breve{H}_{\mathrm{c}}^{2}(U)$ by Poincaré duality. Also $H_{0}(U, U-C) \approx \check{H}_{\mathrm{c}}^{2}(C)$ (see [5], VIII, 7.14, where $L=\emptyset, K=C$ and $X=U)$. Therefore, we can consider an exact sequence

$$
\ldots \rightarrow \check{H}_{\mathrm{c}}^{2}(U) \rightarrow \check{H}_{\mathrm{c}}^{2}(C) \rightarrow H_{0}(U-C) \rightarrow H_{0}(U) \rightarrow 0
$$

Now, we show by induction that the map $\check{H}_{\mathrm{c}}^{2}(U) \rightarrow \check{H}_{\mathrm{c}}^{2}(C)$ is trivial. If $n=2$, then C is a disk. Then $H_{0}(U-C) \approx \mathbb{Z}^{2}$ by Lemma 1 . Since $\check{H}_{\mathrm{c}}^{2}(C) \approx \mathbb{Z}$ and $H_{0}(U) \approx \mathbb{Z}$, we obtain an exact sequence $\check{H}_{\mathrm{c}}^{2}(U) \rightarrow \mathbb{Z} \rightarrow$ $\mathbb{Z}^{2} \rightarrow \mathbb{Z} \rightarrow 0$. Hence, the map is trivial.

Since $\check{H}_{\mathrm{c}}^{2}\left(C_{2}\right) \approx \mathbb{Z}$, we obtain by induction $H^{2}(C) \approx H^{2}\left(C_{n-1}\right) \oplus$ $H^{2}\left(C_{2}^{\prime}\right) \approx \mathbb{Z}^{n-2} \oplus \mathbb{Z}$, where $C_{2}^{\prime}=h\left(C\left(I_{1} \cup I_{n}\right)\right)$. The map $\check{H}_{\mathrm{c}}^{2}(U) \rightarrow$ $\check{H}_{\mathrm{c}}^{2}(C) \approx \check{H}_{\mathrm{c}}^{2}\left(C_{n-1}\right) \oplus \check{H}_{\mathrm{c}}^{2}\left(C_{2}^{\prime}\right)$ is trivial because both its coordinates are trivial by the induction hypothesis.

Therefore, the sequence $0 \rightarrow \check{H}_{\mathrm{c}}^{2}(C) \rightarrow H_{0}(U-C) \rightarrow H_{0}(U) \rightarrow 0$ is exact. So the sequence $0 \rightarrow \mathbb{Z}^{n-1} \rightarrow H_{0}(U-C) \rightarrow \mathbb{Z} \rightarrow 0$ is also exact. Hence, $H_{0}(U-C) \approx \mathbb{Z}^{n}$ and $U-C$ has n components.

The point x_{0} belongs to the closure of each of them because if X is C with a small neighborhood of x_{0} removed, then $\check{H}_{\mathrm{c}}^{2}(X) \approx 0$ and $0 \rightarrow$ $H_{0}(U-X) \rightarrow H_{0}(U) \rightarrow 0$ is exact, so $H_{0}(U-X) \approx \mathbb{Z}$.

Therefore, if $B\left(x_{0} ; \varepsilon^{\prime}\right) \subset U$, then $B\left(x_{0} ; \varepsilon^{\prime}\right)-C_{n}$ has at least n components such that x_{0} belongs to their closures. Now, take $\delta>0$ so small that $U \subset$ $B\left(x_{0} ; \varepsilon^{\prime}\right)$. Then $U-C_{n}$ has exactly n components. Therefore, $B\left(x_{0} ; \varepsilon\right)-C_{n}$ has exactly n components such that x_{0} belongs to their closures.

Remark. Below we often encounter the following situation. The disks C_{i} locally split \mathbb{R}^{3} at a point x_{0} into two components, and the ε of Definition 5 is common for $i=1,2,3$. We then always call the components A_{i} and B_{i}. Let $C=C_{1} \cup C_{2} \cup C_{3}$ and K be the component of $C \cap B\left(x_{0} ; \varepsilon\right)$ such that $x_{0} \in K$. If $K \subset \bar{A}_{1}$ we relabel the components A_{2}, B_{2} and A_{3}, B_{3} if necessary to have $A_{2} \subset A_{1}$ and $A_{3} \subset A_{1}$. Then C locally splits \mathbb{R}^{3} at x_{0} into components A_{2}, A_{3}, B_{1}.

Lemma 3. The cone $C K_{1}$ is not embeddable in \mathbb{R}^{3}.
Proof. Suppose that $h: C K_{1} \rightarrow \mathbb{R}^{3}$ is a topological embedding and set

$$
\begin{gathered}
K=h(C((c a] \cup[a b))), \quad L=h(C((c p] \cup[p b))), \quad M=h(C((c d] \cup[d b))), \\
C_{1}=\bar{K} \cup \bar{M}, \quad C_{2}=\bar{K} \cup \bar{L}, \quad C_{3}=\bar{L} \cup \bar{M}, \quad C=\bar{K} \cup \bar{L} \cup \bar{M},
\end{gathered}
$$

where ($x y$] denotes a "right-closed" arc with end-points x and y, and \bar{X} is the closure of X. The points a, b etc. are as in Definition 1.

Let x_{0} be the vertex of $C K_{1}$. Choose $\varepsilon>0$ smaller than the distance from $h\left(x_{0}\right)$ to the image of the base of $h\left(C K_{1}\right)$, and t_{0} such that $h\left(K_{1} \times\right.$ $\{t\}) \subset B\left(h\left(x_{0}\right) ; \varepsilon\right)$ for $t \geq t_{0}$.

Every set $C_{i}, i=1,2,3$, locally splits \mathbb{R}^{3} at $h\left(x_{0}\right)$ into two components A_{i} and B_{i}. Let $p^{\prime}=h\left(p, t_{0}\right) \in A_{1}$. Then we can assume that C locally splits \mathbb{R}^{3} at $h\left(x_{0}\right)$ into three components A_{2}, A_{3}, B_{1}. Observe that p^{\prime} and $q^{\prime}=h\left(q, t_{0}\right)$ are in the same component, because the arc $H=h\left((p q) \times\left\{t_{0}\right\}\right)$ is contained in $B\left(h\left(x_{0}\right) ; \varepsilon\right)-C$. Hence either $q^{\prime} \in A_{2}$ or $q^{\prime} \in A_{3}$. So the arc $I=h\left(((a q] \cup[q d)) \times\left\{t_{0}\right\}\right)$ is contained either in A_{2} or in A_{3}. But $a^{\prime}=h\left(a, t_{0}\right) \notin \bar{A}_{3}$ so $I \not \subset A_{3}$ and $d^{\prime}=h\left(d, t_{0}\right) \notin \bar{A}_{2}$ so $I \not \subset A_{2}$.

Remark. We have obtained a contradiction because the points p^{\prime} and q^{\prime} belong to the same component A_{1}.

Lemma 4. The cone $C K_{2}$ is not embeddable in \mathbb{R}^{3}.
Proof. Assume $h: C K_{2} \rightarrow \mathbb{R}^{3}$ is a topological embedding. Let x_{0}, y_{0}, ε, t_{0} be defined as in the previous proof, with K_{1} replaced by K_{2}. Define:

$$
\begin{gathered}
K=h(C((a c))), \quad L=h(C((a q] \cup[q c))), \\
M=h(C((a b] \cup[b c))), \quad N=h(C((a p] \cup[p c))), \\
C_{1}=\bar{K} \cup \bar{M}, \quad C_{2}=\bar{K} \cup \bar{L}, \quad C_{3}=\bar{L} \cup \bar{M}, \quad C_{4}=\bar{L} \cup \bar{N} \\
C_{5}=\bar{L} \cup \bar{N}, \quad C_{6}=\bar{N} \cup \bar{K}, \quad C=\bar{K} \cup \bar{L} \cup \bar{M} \cup \bar{N}
\end{gathered}
$$

Fig. 5
Every set C_{i} locally splits \mathbb{R}^{3} at y_{0} into components A_{i} and B_{i}. Put $x^{\prime}=h\left(x, t_{0}\right)$ for any $x \in K_{2}$ and $H=h\left((p q) \times\left\{t_{0}\right\}\right), I=h\left((q b) \times\left\{t_{0}\right\}\right)$, $J=h\left((b p) \times\left\{t_{0}\right\}\right)$.

Observe that p^{\prime} and q^{\prime} belong to the same component, A_{1} or B_{1}, because they are the end-points of the arc H which is contained in $B\left(y_{0} ; \varepsilon\right)-C_{1}$.

Assume that $q^{\prime} \in A_{1}$. Then $\bar{K} \cup \bar{L} \cup \bar{M}$ locally splits \mathbb{R}^{3} at y_{0} into components A_{2}, A_{3} and B_{1}. The point b^{\prime} belongs to M, so $b^{\prime} \notin \bar{A}_{2}$ and $I \subset A_{3}$. Since $q^{\prime} \in A_{1}$ we have either $J \cup H \subset A_{2}$ or $J \cup H \subset A_{3}$. But $b^{\prime} \notin \bar{A}_{2}$, so $J \cup H \not \subset A_{2}$. Hence $J \cup H \subset A_{3}$ and $N \cap A_{3} \neq \emptyset$. We can assume $A_{4} \subset A_{3}$ and $A_{5} \subset A_{3}$. Then the cone C locally splits \mathbb{R}^{3} at y_{0} into components A_{2}, A_{4}, A_{5} and B_{1}. The arc I is contained either in A_{4} or in A_{5} because $I \subset A_{3}$.

But $I \not \subset A_{4}$ because $b^{\prime} \notin \bar{A}_{4}$ and $I \not \subset A_{5}$ because $q^{\prime} \notin \bar{A}_{5}$.
Lemma 5. The cone $C K_{3}$ is not embeddable in \mathbb{R}^{3}.
Proof. Assume $h: C K_{3} \rightarrow \mathbb{R}^{3}$ is a topological embedding. Let x_{0}, y_{0}, ε, t_{0} be defined as previously.

The set $C\left\{q_{\infty}\right\}$ is an interval. Put $X=h\left(C\left\{q_{\infty}\right\}\right)$. There exists $\delta>0$ such that $h\left(z, t_{0}\right) \notin B(X ; \delta)=\left\{x \in \mathbb{R}^{3}: \operatorname{dist}(X, x)<\delta\right\}$ and $h\left(Z_{1} \times\left\{t_{0}\right\}\right) \cap$ $B(X ; \delta)=\emptyset$, because the distance between disjoint compact sets is positive. By uniform continuity of h there exists i_{0} such that $h\left(C Z_{i_{0}}\right) \subset B(X ; \delta)$.

Observe that Z_{i} is homeomorphic to the graph K_{1} with the arc $(q p)$ removed.

Define

$$
\begin{aligned}
K & =h\left(C\left(\left(c_{i_{0}} a_{i_{0}}\right] \cup\left[a_{i_{0}} b_{i_{0}}\right)\right)\right), \\
L & =h\left(C\left(\left(c_{i_{0}} p_{i_{0}}\right] \cup\left[p_{i_{0}} b_{i_{0}}\right)\right)\right), \\
M & =h\left(C\left(\left(c_{i_{0}} d_{i_{0}}\right] \cup\left[d_{i_{0}} b_{i_{0}}\right)\right)\right),
\end{aligned}
$$

and, as in Lemma 3, $C_{1}=\bar{K} \cup \bar{M}, C_{2}=\bar{K} \cup \bar{L}, C_{3}=\bar{L} \cup \bar{M}, C=\bar{K} \cup \bar{M} \cup \bar{L}$.
The set C_{1} locally splits \mathbb{R}^{3} at y_{0} into two components. The points $p^{\prime}=h\left(p_{i_{0}}, t_{0}\right)$ and $q^{\prime}=h\left(q_{i_{0}}, t_{0}\right)$ lie in the same component because there exist arcs in $h\left(C K_{3}-C Z_{i_{0}}\right)$ joining p^{\prime} to $h\left(z, t_{0}\right)$ and q^{\prime} to $h\left(Z_{1} \times\left\{t_{0}\right\}\right)$. The rest of the proof is the same as for Lemma 3.

Lemma 6. The cone $C K_{4}$ is not embeddable in \mathbb{R}^{3}.
Proof. Observe that the set R_{i} is homeomorphic to the curve K_{2} with the arc $(q p)$ removed. So the proof is similar to the proof of Lemma 5, except that after proving that the points q^{\prime} and p^{\prime} belong to the same component A_{1} or B_{1}, we will need the proof of Lemma 4 rather than that of Lemma 3.

The proofs of Lemmas 1-6 complete the proof of Theorem 1.
Corollary 1. If the suspension $S X$ of a locally connected continuum X is embeddable in \mathbb{R}^{n} where $n \leq 3$, then X is embeddable in \mathbb{R}^{n-1}.

Corollary 2. If X is a locally connected continuum and $C X$ is embeddable in an n-manifold where $n \leq 3$, then X is embeddable in S^{n-1}.

Proof. If there exists a topological embedding of $C X$ in an n-manifold, then a neighborhood of the image of the vertex of $C X$ is homeomorphic to \mathbb{R}^{n}, so $C X$ is embeddable in \mathbb{R}^{n}.

TheOrem 2. For each $n \geq 3$ there exists a locally conected continuum X_{n} such that X_{n} is not embeddable in \mathbb{R}^{n} but $C X_{n}$ is embeddable in \mathbb{R}^{n+1}.

Proof. Consider Blankinship's wild arc J_{n} lying in the interior of an n-dimensional ball B_{n} (see [2]). Define X_{n} to be the quotient space B_{n} / J_{n}. It is obvious that X_{n} is a locally connected continuum.

Suppose that there exists a topological embedding $h: X_{n} \rightarrow \mathbb{R}^{n}$. Since $h\left(\partial B_{n}\right)$ is homeomorphic to S^{n-1}, it splits \mathbb{R}^{n} into two components. It is easy to see that the closure of the bounded part U of $\mathbb{R}^{n}-h\left(\partial B_{n}\right)$ is equal to $h\left(X_{n}\right)$. So $h\left(\left[J_{n}\right]\right) \in U$ has a neighborhood in U homeomorphic to an open ball. But no neighborhood of $\left[J_{n}\right]$ in X_{n} is homeomorphic to an open ball because the group $\pi\left(V-J_{n}\right)$ is non-trivial for every neighborhood V of J_{n} in B_{n}. So X_{n} is not embeddable in \mathbb{R}^{n}.

The space $X_{n} \times(-1,1)$ is homeomorphic to $B_{n} \times(-1,1)$. In $1962 \mathrm{~J} . \mathrm{J}$. Andrews and M. L. Curtis [1] proved that if J is an arc, then $\left(\mathbb{R}^{n} / J\right) \times \mathbb{R}$ is homeomorphic to \mathbb{R}^{n+1}. The proof that $X_{n} \times(-1,1)$ is homeomorphic to $B_{n} \times(-1,1)$ is the same. The suspension $S X_{n}$ of X_{n} is a two-point compactification of $X_{n} \times(-1,1)$, hence a two-point compactification of $B_{n} \times(-1,1)$, and this is equal to B_{n+1}, embeddable in \mathbb{R}^{n+1}.

So $C X_{n}$ is embeddable in \mathbb{R}^{n+1}, because $C X_{n} \subset S X_{n}$.
Remark. $S X_{n}$ is embeddable in \mathbb{R}^{n+1}.
The proof of Theorem 1 uses methods similar to those used in [6]. The results of [6] were generalized by R. Cauty in [3]. The question arises whether a similar generalization is true for the result of this paper.

Problem. Let X be a locally connected continuum. Supose that $C^{n} X$ is embeddable in \mathbb{R}^{n+2}. Is it true that X is embeddable in S^{2} ?

REFERENCES

[1] J. J. Andrews and M. L. Curtis, n-Space modulo an arc, Ann. of Math. 75 (1962), 1-7.
[2] W. A. Blankinship, Generalization of a construction of Antoine, ibid. 53 (1951), 276-297.
[3] R. Cauty, Sur le plongement de $X \times I^{n-2}$ dans une n-variété, Proc. Amer. Math. Soc. 94 (1985), 516-522.
[4] S. Claytor, Peanian continua not imbeddable in a spherical surface, Ann. of Math. 38 (1937), 631-646.
[5] A. Dold, Lectures on Algebraic Topology, Springer, Berlin 1972.
[6] W. Rosicki, On topological factors of 3-dimensional locally connected continuum embeddable in E^{3}, Fund. Math. 99 (1978), 141-154.

INSTITUTE OF MATHEMATICS
GDAŃSK UNIVERSITY
WITA STWOSZA 57
80-952 GDAŃSK, POLAND

Reçu par la Rédaction le 16.2.1990;
en version modifiée le 21.5.1991 et 21.4.1992

