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1. Introduction. The present paper builds on work by Z. Olszak [16].
There, locally conformal cosymplectic (l.c.c.) manifolds are defined to be
almost contact metric (a.ct.m.) manifolds whose almost contact and fun-
damental forms 7, © are subject to dn = %w An, dO = w A O for some
closed 1-form w and with a (1, 1)-structure tensor ¢ integrable. The reason
for which such manifolds are termed l.c.c. is that the metric of the under-
lying a.ct.m. structure appears to be conformal to a (local) cosymplectic
metric in some neighborhood of each point of the manifold. Our results are
organized as follows. Totally geodesic orientable real hypersurfaces M?7+!
of a locally conformal Kaehler (1.c.K.) manifold M?"*2 are shown to carry
a naturally induced l.c.c. structure, provided the Lee field By of M?"*2 is
tangent to M2"+1. The same conclusion occurs if M?"*1 is totally umbilical
and its mean curvature vector is given by H = —i nor(By) (cf. our The-
orem 7). In Section 3 we show that odd-dimensional real Hopf manifolds
RH?" ! ~ §27 x §1 n > 2, thought of as local similarity (l.s.) manifolds
carrying the metric discovered by C. Reischer and I. Vaisman [19] turn out
to be l.c.c. manifolds in a natural way, yet admit no globally defined cosym-
plectic metrics, by a result of D. E. Blair and S. Goldberg [3]. Leaving
definitions momentarily aside, we may also state

THEOREM 1. Fach leaf of the canonical foliation X of a strongly non-
cosymplectic l.c.c. manifold M?"*' carries an induced (f,g,u,v, \)-struc-
ture whose 1-form v is closed. If the characteristic 1-form w of M?"*+1 is
parallel, then X has totally geodesic leaves. If moreover the local cosymplec-
tic metrics g;, i € I, of M?" ! are flat then the leaves of X are Riemannian
manifolds of constant sectional curvature. If additionally M*" ' is nor-
mal, then each complete leaf of X is holomorphically isometric to CP™(c?),
)
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THEOREM 2. Let M?"*! be a compact normal l.c.c. manifold. If the
structure vector £ is reqular then:

(i) M* L s a principal S*-bundle over M?™ = M*"+1/¢,
(ii) the almost contact 1-form n yields a flat connection 1-form on M?"T1

(iii) the base manifold M>" has a natural structure of Kaehlerian mani-
fold.

THEOREM 3. Let M?"*! be a connected compact orientable (strongly
non-cosymplectic) l.c.c. manifold with a parallel characteristic 1-form w
and flat Weyl connection. Then the Betti numbers of M*"*! are given by:

bO(MQn—i-l) — b2n+1(M2n+1) — 1’ bl (M2n+1) — b2n(M2n+1) — 1’
by(M* ) =0, 2<p<2n-—1,
i.e. M?"+1 js a real homology real Hopf manifold.

In addition to (odd-dimensional) real Hopf manifolds, several examples
of l.c.c. manifolds (such as real hypersurfaces of a complex Inoue surface
endowed with the l.c.K. metric discovered by F. Tricerri [23]) are discussed
in Section 7.

2. Conformal changes of almost contact metric structures. Let
(M?"+1 . €.m,g) be an almost contact metric (a.ct.m.) manifold of (real)
dimension 2n + 1 (cf. D. E. Blair [2], pp. 19-20). It is said to be normal if
N' =0, where N = [p, 0] +2dn®€£. An a.ct.m. manifold is cosymplectic if
it is normal and both the almost contact and fundamental forms are closed.
See D. E. Blair [1], Z. Olszak [15], S. Tanno [22] for general properties of
cosymplectic manifolds.

Let M?"*! be an a.ct.m. manifold. Then M?"*! is said to be locally
conformal cosymplectic (l.c.c.) if there exists an open covering {U;};cr of
M2+ and a family {fi}ier, fi € C*(U;), of real-valued smooth functions
such that (U;, i, &1, 9:) is a cosymplectic manifold, where ¢; = O\U»
& = exp(fi/2)&v,, ni = exp(—fi/2)nv,, g9i = exp(—fi)gv,, i € I. Clearly,
if M?"+1is l.c.c. then ¢ is integrable.

Let M?"*1 be an a.ct.m. manifold and f € C°°(M?"*1) a smooth real-
valued function on M?" 1. A conformal change of the a.ct.m. structure (cf.
I. Vaisman [25]) is a transformation of the form

f /
(1) ¢r=¢, & =exp <2 & mp=exp| =)0, gr=exp(=f)g.
The Riemannian connections of g, gy are related by
(2) VY = VY = L[X(/)Y + Y ()X — g(X,Y) grad(f)],
where grad(f) = (df)? and # denotes raising of indices with respect to g.
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Clearly (M?"*1 ¢, £¢,mf,gf) is an a.ct.m. manifold and is cosymplectic iff
dn = %df/\n, dO =df NO, [p, ] =0, where O(X,Y) = g(X, pY). We may
establish the following:

LEMMA 4. Let (M?"1 ¢ £ n,g) be a cosymplectic manifold, n > 1. If
the cosymplectic property is invariant by the transformation (1) then df =0
on M?"+1,

Proof. Note that (2) yields

(3) (VA9 = (Vx)Y +3[Y (NeX — (9¥) ()X

+O(X,Y) grad(f) — g(X, Y)p(grad(f))] -
Since M?"*! is cosymplectic it is normal, so that N! = 0. This yields
N2 =0, where N2 = (L,xn)Y — (L,oyn)X (cf. [2], p. 50). Here £ denotes
the Lie derivative. Then Vo = 0, by [2], p. 53. Now, by (3) we obtain

4)  Y(f)pX +O(X,Y)grad(f) = (¢Y)(f)X + g(X, Y )p(grad(f)) .

Let X =Y = ¢ in (4). Then p(grad(f)) = 0. Use this to modify (4) and
apply ¢ to the resulting equation. This yields Y (f)p?X = (¢Y)(f)pX.
Take the inner product with ¢2X to get Y (f)||p?X|> = 0. Finally, replace
X by ¢X; as ¢ is an f-structure (in the sense of [26], p. 379), rank(yp) = 2n,
n>1,so that Y(f) =0forany V. m

THEOREM 5. Let (M*"* o & n,g) be a l.c.c. manifold. Then for any
i,j €1,1%# j, withU;NU; # 0, one has df; = df; on U; N Uj; therefore the
(local) 1-forms df; glue up to a globally defined (closed) 1-form w. Also the
Riemannian connections Vi of (U, g;), i € I, glue up to a globally defined
torsion-free linear connection D on M?"+1 expressed by

(5) DxY =VxY — iw(X)Y +w(Y)X — g(X,Y)B],
where B = w* and V is the Levi-Civita connection of (M?"*1 g).

Proof. Let Uij =U; N U]', i # 4, 4,5 €1, Uij # (). Then both
(0, &, mi,9:), (0, &5,m;,9;) are cosymplectic structures on U;; and are related

by a conformal transformation (1) with f = f; — f;; thus one may apply
Lemma 4.

The 1-form w furnished by Theorem 5 is referred to as the characteristic
1-form of M?"*!; also B is the characteristic field and D the Weyl con-
nection. Since dn; = 0, dO; = 0, i € I, where ©; denotes the fundamental
2-form of (¢, &;,ni, i), it follows that

(6) dp=iwAn, dO=wA6.

Also, for any l.c.c. manifold, [p, ] = 0. Conversely, any a.ct.m. manifold
M?* 1 satisfying (6) for some closed 1-form w and with ¢ integrable is l.c.c.
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If w = 0 then M?"*! is a cosymplectic manifold. If w has no singular points,
M?"+1 is termed strongly non-cosymplectic.

3. Odd-dimensional real Hopf manifolds. A similarity transforma-
tion of R™ is given by
(7) z't = gaé-wj + b,
where ¢ > 0 and [a}] € O(n). A manifold M" is a local similarity (l.s.)
manifold if it possesses a smooth atlas whose transition functions have the
form (7) (see [19]). Let 0 < A < 1 be fixed. Let Ay, be the cyclic group
generated by the transformation 2 = Az’ of R™ — {0}. Then RH" =

(R™ — {0})/Ax is the real Hopf manifold. Define a diffeomorphism f :
RH"™ — S"~1 x S! by setting:

il = (s s exp T2l )

for any [z] € RH™. Here [2] = n(z), x = (2%,...,2"), x € R™ — {0},
lz|? = Y% ()% and m : R™ — {0} — RH" denotes the natural pro-
jection. Then RH™, n > 1, is a compact connected l.s. manifold (with
transition functions z”* = Az*). Let us endow R?"*! — {0} with the met-
ric

(8) ds? = (|z)? +t*) " {6;;dx’ @ da? + dt*}

where (z%,t), 1 < i < 2n, are the natural coordinates (cf. (4.4) in [19],
p. 287). As (8) is invariant under any transformation

9) g = A\"2' meZ,

it gives a globally defined metric gy on RH?"*!. We organize RH?"*!
into a l.c.c. manifold as follows. Let o = log{|z|?> + t?}. One may endow
R+l = R?" x R! with a cosymplectic structure (cf. Z. Olszak [15], p. 241).
Namely, let g = §;;dz’ ® dz? + dt? be the product metric on R?*"*1. Let
o(X + f0/0t) = JX, where X is tangent to R?" and f € C°°(R*"+1).
Here J denotes the canonical complex structure of R?" ~ C". Also set
n(X + fo/ot) = f. Then (p,&,n,9), £ = 0/0t, is a cosymplectic struc-
ture on R?"t1. Note that e?/2¢, e=7/%n and (as noticed above) e~ 7g are
invariant under any transformation (9). Therefore RH?"*1 inherits a l.c.c.
structure (o, &0, M0,90). Furthermore, by Proposition 3.5 in [19], p. 286,
any orientable compact 1.s. manifold of dimension m > 3 is a real homology
real Hopf manifold, i.e. it has the Betti numbers by = b1 = b,,,_1 = b, = 1
and b, = 0 for 2 < p < m — 2. By a theorem of D. E. Blair and S. Gold-
berg (Th. 2.4, in [3], p. 351), the Betti numbers of a compact cosymplectic
manifold are non-zero. Combining the above statements one obtains in par-
ticular
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THEOREM 6. Any odd-dimensional real Hopf manifold RH?*"+1, n > 2,
has a natural structure of l.c.c. manifold but admits no globally defined
cosymplectic metrics. The Weyl connection of RH?"1 is flat and its char-

acteristic form w = do s parallel with respect to the Levi-Civita connection
of (RH2"1, gy).

4. Real hypersurfaces of a locally conformal Kaehler manifold.
Let (M?"*2 go,J) be a locally conformal Kaehler (l.c.K.) manifold, with
the complex structure J and the Hermitian metric go (cf. e.g. P. Liber-
mann [14]). Let M?"*! be an orientable real hypersurface of M?"2. Given
a unit normal field N on M?"*! we put as usual £ = —JN. Set pX =
tan(JX), FX = nor(JX), for any tangent vector field X on M?"*1. Here
tan,, nor, denote the natural projections associated with the direct sum de-
composition T (M?"+2) = T,(M*" )@ E,, x € M*"*1. Also E — M?"+!
is the normal bundle of + : M?" 1 C M?" 2. Let n(X) = go(FX,N). Let
g = t*go be the induced metric. By a result of [2], p. 30, (¢,&,7,9) is an
a.ct.m. structure on M?" 1. Let wy = (1/n)i(2)dS2. Here i(£2) denotes the
adjoint (with respect to go) of e(£2), where e(£2) A = £2A\, for any differential
form A on M?"+2 while {2 is the Kaehler 2-form of M?"*+2. Then dwg = 0,
df2 = wo A §2 (see e.g. [24]). Let w = t*wp. Let © be the fundamental form
of the a.ct.m. structure (¢,&,n,g). Clearly © = .*2. Thus

(10) dO =w N6, dw =20.
We recall the Gauss—Weingarten formulae:
(11) V&Y =VxY 4+ g(AX,Y)N, VYN =-AX,

where A denotes the shape operator of ¢, while V is the induced connection.
Then (11) leads to

(12) (Vxp)Y =n(Y)AX — g(AX,Y)§
+ Hw(@Y)X — w(Y)pX + g(X,Y)eB - O(X,Y)B
+wo(N)[n(Y)X — g(X,Y)¢]}

Here B = tan(By), By = w} (indices being raised with respect to go).
Moreover,

(13) (Vi)Y = — O(AX,Y)
+ 319X, Y)w(§) — O(X, Y)wo(N) — n(X)w(Y)].
As V is torsion free, (13) leads to
(14) 2dn)(X,)Y) = (wAn)(X,Y) - O(AX,Y)
—O(X, AY) — O(X,Y)wo(N).
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Also (12) gives

(15) [, pl(X,Y) = n(Y)[A, 0] X —n(X)[A4, ¢]Y
—{9((Ap + pA) X, Y) — O(X,Y)wo (N) }¢ .

As an application of (14)—(15) one obtains

THEOREM 7. Let M?"™1 be a real hypersurface of the l.c.K. manifold
M?"+2 and assume that either M?" 1 is totally umbilical and its mean
curvature vector satisfies H = —%Bl, Bt = nor(By), or M*"*1 is totally
geodesic and tangent to the Lee field By of M?"™2. Then (p,£,m,9) is a
l.c.c. structure on M*"+1,

Let CH? 1 ~ §2n+1 % 81 be the complex Hopf manifold (cf. [13], Vol. II,
p. 137) carrying the l.c.K. metric go induced by the (Gg4-invariant) met-
ric ds* = |z|720;;dz’ @ dx?, where (z',...,2%"2?) are the natural (real-
analytic) coordinates on C"*!. Here Gy = {d™I : m € Z}, d € C — {0},
|d] # 1, while I is the identical transformation of C"*! — {0}. Let 7 :
C*t! — {0} — CH™"! be the natural map (a local diffeomorphism). Let
Lo ML — (C™T — {0}, 6;;) be an orientable totally geodesic real hyper-
surface. Then v : M2+t — CH" !, 1) = m oy, is totally umbilical. Indeed,
let h, I/ be the second fundamental forms of M?"*! in (C"*! |z|=24;;)
and (C"*1,6;;), respectively. Let g be the metric induced on M?"*! by
|z|=26;;. Then v is an isometric immersion of (M?"*1, g) in (CH™!, go).
Let BL be the normal component of —2x0/0z® (with respect to M?"+1).
Then

(16) 2h' =2h +g® B*.

Now (16) and b’ = 0 give h = g® H, 2H = —B* i.e. M2t — (C"*1—{0},
|z|~26;;) is totally umbilical. Let V be the Riemannian connection of
|2|728;;. For any tangent vector fields X, Y on C"*! one has VY 7.V =
m.VxY (cf. [13], Vol. I, p. 161). Thus hy = m.h, where hy, is the second
fundamental form of . Also (16) yields

(17) H' = exp(f){H + 58"},

where f is the restriction to M?"*! of log|x|~2. Thus (17) gives hy =
g ® Hy, i.e. 1 is totally umbilical. We may apply Theorem 7 to M?"+1 —
CH™! to conclude that M?"*! inherits a l.c.c. structure.

5. The canonical foliation of a locally conformal cosymplec-
tic manifold. Let M?" be a real 2n-dimensional differentiable manifold.
An (f,g,u,v,\)-structure on M?" consists of a (1, 1)-tensor field F, a Rie-
mannian metric G, two 1-forms u, v and a smooth real-valued function
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A € C*°(M?™) subject to:
fP=—-T+u@U+vRV,
uof=M, vof=-=-Xu, fU=-AV, V=AU,
u(V)=vU)=0, uU)=0v(V)=1-\,
g(f X, fY) = g(X,Y) = u(X)u(Y) — v(X)v(Y),

(18)

where U = u*, V = v (raising of indices is performed with respect to g)
(see [26], p. 386).

Let (M?"*1 ¢ €,1,90) be a strongly non-cosymplectic manifold with
characteristic 1-form w. Then M?"*! admits a canonical foliation X~ whose
leaves are the maximal connected integral manifolds of the Pfaffian equation
w =0.

Now we may prove Theorem 1. To this end, let M?" be a leaf of X. Let
By = w* be the characteristic field of M?"*!. Then C = ||w||~!By is a unit
normal vector field on M?". Let X be tangential and set fX = tan(pX),
w(X) = go(pX,C), v(X) =n(X), A\ =n(C). Then M>" inherits an obvious
(f,g,u,v, \)-structure, where g is the induced metric, while V' = tan(§),
U = —¢C. Since w = 0 on T(M?>") by (6) one has dv = 0.

Let D° be the Weyl connection of M?"*! and K its curvature tensor
field. As a consequence of (5) one has

(19)  Ko(X,Y)Z = Ro(X,Y)Z — L[| 2(X AY)Z
Here Ry denotes the curvature of (M?"*1 gy) and
L(X,Y) = (Vy)Y + bw(X)u(Y).
(X AY)Z = golY, Z)X — go(X, Z)Y .
Let Ko = 0; apply (19) and the Gauss equation of M?" — M?"*! to ob-
tain
(20) R(X,Y)Z = {|w|? (X ANY)Z + (AX NAY)Z
+ 3{w(h(Y, 2))X — w(h(X, 2))Y}
+ 3llwll{g(Y; 2)AX — 9(X, 2)AY}.
As ¥ has codimension 1 and w is parallel, h = 0 and (20) gives R(X,Y) =
?XAY, ¢ = i|w|,i.e. M?" is an elliptic space-form. To prove the last state-
ment in Theorem 1, assume M?"*! is normal. Then w = 2\cn; as n(C) = A,
this yields A2 = 1. Then (18) gives u = 0, v = 0, f2 = —I and M?" turns

out to be an almost Hermitian manifold. Moreover, [, ] = 0, u = 0 lead

to [f,f] = 0. Let £ be the Kaehler 2-form of M?". By (6), df2 = 0,
i.e. M?" is Kaehlerian. Suppose M?" is complete. Then 71(M?") = 0,
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by a classical result in [20] and one may apply Th. 7.9 in [13], Vol. II,
p- 170. =

6. Regular locally conformal cosymplectic manifolds. A l.c.c.
manifold M?"+! with the characteristic 1-form w is normal iff

(21) w=w()n.

The structure vector £ is regular if it defines a regular foliation (i.e. each
point of M?*"*!1 admits a flat coordinate neighborhood, say (U, z%,t),
1 < i < 2n, which intersects the orbits of ¢ in at most one slice 2 = const.,
cf. [18]). By (21), if M?"*1 is strongly non-cosymplectic, then ¢ is regular
iff B = w! is regular.

Let M?"*! be compact; then £ is complete (cf. [13], Vol. I, p. 14).
Let P(§) be the period function of &, P(£), # 0, x € M?"*! (see [5],
pp. 722-723). The global 1-parameter transformation group of P(£)71¢,
P(P(£)71¢) = 1, induces a free action of S* on M?"*!. By standard ar-
guments (cf. [5], p. 725, [4], p. 178, and [2], p. 15), M2 L (M?*" 7, S1) is a
principal S'-bundle over the space of orbits M?" = M?"*1/¢. By a result
in [21], p. 236, as n(§) = 1 and L¢n = 0 it follows that P(§) = const. Thus
Lpey-1¢n = 0 and therefore 7 is invariant under the action of S L. Now
we may prove Theorem 2. Clearly £ is vertical, i.e. tangent to the fibres
of m. Let A € L(S') be the unique left invariant vector field on S with
A* = €. (Here A* denotes the fundamental vector field on M?"*! associ-
ated with A, cf. [13], Vol. I, p. 51). Let 7 =n ® A. Then 7 is a connection
1-form on M?"*1. Let H = Ker(7). By normality N3 = 0, where N3 = L¢¢
(see [2], p. 50). Thus ¢ commutes with right translations. Consequently,
JpZy = (dem) . ZH, 2 € 771 (p), p € M?", Z € T,(M?"), is a well defined
complex structure on M?". (Here Z denotes the horizontal lift of Z (with
respect to 1).) Let g(Z, W) = g(Z",WH). By (21), w = 0 on H and thus
(M?",g,J) is Kaehlerian. m

Remark. M?" carries the Riemannian metric g, so it is paracompact.
By [13], Vol. I, p. 92, as 7 is flat, if 71 (M?") = 0 then M?"*! ~ M?" x S*
(i.e. M?"*1 s the trivial S'-bundle).

7. Submanifolds of complex Inoue surfaces. Let Ct = {z € C :
Im(z) > 0} be the upper half of the complex plane. Let (z,w) be the natural
complex coordinates on C* xC. We endow C xC with the Hermitian metric

(22) ds* =y 2dz ® dz + y dw ® dw,

where 2 = x + iy, i = v/—1. Then (22) makes C* x C into a glob-
ally conformal Kaehlerian manifold with the Lee form w = y~'dy. Let
A € SL(3,Z) with a real eigenvalue @ > 0 and two complex eigenvalues
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B # B. Let (a1,as2,as), (bi,ba,b3) be respectively a real eigenvector and
an eigenvector corresponding to «, 3. Let G4 be the discrete group gen-
erated by the transformations f,, a = 0,1,2,3, where fo(z,w) = (az, fw),
filz,w) = (z 4+ a;,w + b;), i = 1,2,3. Then G4 acts freely and properly
discontinuously on C* x C so that CI? = (C* x C)/G 4 becomes a (com-
pact) complex surface. This is the Inoue surface (cf. [12]). It was observed
in [23], p. 84, that (22) is G s-invariant. Thus CI? turns out to be a l.c.K.
manifold with a non-parallel Lee form (see Prop. 2.4 of [23], p. 85). Let
7 : Ct x C — CI? be the natural projection. Let ¢ : M C Ct x C be a sub-
manifold and ¢ the metric induced by (22). Then v : M — CI?, ) = w o,
is an isometric immersion of (M, g) into CI2.

It is our purpose to build examples of (immersed) submanifolds of CI?
(and motivate the results in Section 4). Let w = a + ib; we set X = 9/0x,
Y =0/0y, A= 0/0a, B = 0/0b. The real components of (22) are:

y2 0 0 0

_ 0 y 0 0

gdo : 0 0 y—2 0
0 0 0

Thus the non-zero Christoffel symbols of the Levi-Civita connection V° of
CI? are

Dig=TIgy=—I7 =—y ',
F223:F§14:%3/71, I3y =T} =—359°.
The Lee field of CI? is (locally) given by £ = yY. Let L" = {2 € C* :
Im(z) = 1} and ¢ : L" x C — C* x C the natural inclusion. The tangent

space at a point of L" x C is spanned by X, A and B. Then N = yY is a
unit normal vector field on L" x C. By (23) one obtains

(24) VYN =-X, VON=14, VON-=1B.

Let ax be the shape operator of ¢ : L" x C — CI?, ¢ = mo. Then
Trace(ay) = 0, i.e. 1 is minimal. Clearly L" x C is a maximal connected
integral manifold of the Pfaff equation y~'dy = 0, i.e. a leaf of the canonical
foliation of the (strongly non-Kaehler) l.c.K. manifold CI?, and therefore
normal to L.

Let LV = {2z € C* : Re(z) =0} and ¢ : LY x C — C* x C the inclusion.
Tangent spaces at points of LY x C are spanned by A, Y, B, and N = yX
is a unit normal. By (23),

VOiA=-12Y, V9Y =1yt4, Vi4B=0,

VYY =—y7'Y, VyB=14iy'B, VLB=-142Y.

(23)

(25)

Consequently, ¢ : LY x C — CI?, 1) = wou, is a totally geodesic immersion.
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Clearly LV x C is tangent to £ and inherits a l.c.c. structure (via our
Theorem 7). Both L" x C and LY x C are generic, as real hypersurfaces
of CI2.

8. Betti numbers of locally conformal cosymplectic manifolds.
Let M?"*! be a l.c.c. manifold with Vw = 0, K = 0 (i.e. having a flat Weyl
connection). Set |lw|| = 2¢, ¢ > 0. By (19) the curvature of M?"*! has the
expression
(26) R = A{gju0l™ — 9ik0;"}

+ Wi — w;d"wr + (ginw;j — gjkwi) B™} .
Suitable contraction of indices in (26) gives the Ricci curvature
(27) Rjr = (2n — 1){c®gjx — Jwjwg} .

If o = (l/p!)ailmipdxil A ... Adz' is a differential p-form on M?"*!, we
consider the quadratic form

Fy(a) = Rja™ ol . — 3(p— 1) Rijrma@sraf .
(cf. [10], p. 88). Then (26)—(27) lead to
(28)  Rya' v, = (2n—1{Ipall® - 1(p — 1)!ltsal?},
(29) Rijrmaai™ = 2¢plal? = (p— 1)!|pal?,

where tp denotes interior product with B.
Now we may prove our Theorem 3. Let a be a harmonic p-form on
M2+ By (3.2.9) in [10], p. 88, it follows that

(30) f {pr(Oz) + Viail,_ipvia““'ip} *x1=0.
M

On the other hand, by (28)—(29),

(31)  Fy(a) ={p!ln = p)llal® + (p — )I(2p — 20 = Dwal*},
where U = |lw||7'B. Hence, if n +1 < p < 2n — 1, then b,(M?*" 1) = 0
(cf. our (30)-(31)). By Poincaré duality one also has b,(M?*"t1) = 0
when 2 < p < n. Since w is parallel, it is harmonic. Thus by (M?"*1) =
bon (M?" 1) > 1 (as ¢ # 0). To compute the first Betti number of M?" 1

let 0 be a harmonic 1-form. Then *o is a harmonic 2n-form, where * denotes
the Hodge operator. Then (31) leads to

Fon(x0) = *(2n — 1)!(2n — 1) ||y (x0) ||

and thus ty(x0) = 0, by (30). By applying once more the Hodge operator
one has u Ao =0 or 0 = fu for some nowhere vanishing f € C>°(M?"+1).
Here u = |lw| !w. As o is harmonic, it is closed, so that df A u = 0
or df = v for some A\ € C®°(M?"*t1). But o is also coclosed, so that
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(df,o0) = (f,00) =0 (by (2.9.3) in [10], p. 74), i.e. df and o are orthogonal.
Thus 0 = (df, o) = Af vol(M?"+1) yields A = 0. As M?"*! is connected one
obtains f = const., i.e. by (M?"+1) = 1.
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