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1. Introduction. Let {G;};c; be a family of nontrivial groups. We
shall consider their free product G = *,;c;G; in which every element x has
a unique representation as a reduced word

(1) T=g1...9n, wheren>0, g, € G;, \{e} and iy # i1 .

For such an x we define its length |z| = n and its type putting t(z) =41 .. .14,
(cf. [6]). A function f on *,c;G; is said to be radial if f(z) depends
only on |z|, and f is said to be type-dependent if f(x) depends only on
t(x). In particular, each radial function is type-dependent. Note that each
type-dependent function f can be uniquely expressed as the composition
f = f ot, where f’ is a function on the set of all types on G.

Harmonic analysis on the free product of groups was studied in several
papers (see [2] and [3] and the references given there). For instance Iozzi and
Picardello [3] considered the free product of finite cyclic groups of the same
order and convolution algebras of radial functions. Such algebras are com-
mutative and their multiplicative functionals are called spherical functions.
In this paper we deal with positive definite type-dependent functions on the
free product of any groups and the crucial result is given in Theorem 3.2.
Our main tool is the notion of T-positive definite function and Theorem 3.2
provides a motivation for the study of this notion presented in Section 2.
In the next section our main result is stated and proved. Then we use our
technique to describe positive definite spherical functions (defined in [2]) on
the free product of two cyclic groups and on the free product of cyclic groups
of the same order (cf. [3]).

We adopt the following notation: if X is a set then F(X) denotes the
linear space of all finitely supported complex functions on X (i.e. F(X)
consists of all linear combinations ) a;0,, where d, is the characteristic
function of {z}) and Fo(X) is the subspace of F(X) formed by all f € F(X)
such that > f(x) = 0. The dual space, i.e. the set of all complex functions
on X will be denoted by F'(X). For any complex functions f, g on X we
write (f,g) = (f,9)x = >_ f(x)g(x) whenever the sum is finite.
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2. 7-positive definite functions on S(I). Let I be any fixed set, let
S(I) (or simply S) denote the set of all formal words of the form

(2) U=11...1p, n>0, i €1, ik#ik—i-la

and denote by e the empty word in S. For such a u we define its length
|lu| = n and put u* =i, ...i7;. Let 7: I — [0,00) be a fixed function. We
define a complex *-algebra F,(S) = (F(S5), *,*) by the following relations:
(3.2) 0i*0; = (1 —7(i))0; + 7(i)6. foriel,

(3.b) Oiy % ... x0;, =108, foru=iy...i, € S(I),

(3

.c) (04)" =0y forue S(I).

c
F-(S) is in fact the free complex unital algebra generated by {9;}icr (with
unit J.) and with the only relations

(0;)*=9; and 0;%d; = (1 —7(i))0; +7(i)de foriel.

Note that Fo(S) is an ideal in F,(S). For f € F(S), ¢ € F'(S) we define
their dual left and right T-convolutions f 0 ¢, ¢ O f € F'(S) putting for any
g € F(S)

@) (FOog)= (6.8 xg) (60F0)=(Bgx ),

where by definition f¥(u) = f(u*). This means that for any f € F(S) the
map F'(S) 3¢ fooe F(S) (resp. F'(S)> ¢ — ¢ f e F(S))is dual
to F(S)2g— fVxge F(S) (resp. F(S) 29— gxf¥ € F(S)). Obviously

(5.a) (f1+f2)§¢=f1§¢+f2§¢7
(5.b) fio(fzoe)=(fixf)D¢,
(5.¢) (foe)' =¢"of",

and similarly for the right convolution, where f, f1, fo € F(S) and ¢ €
F'(S).

DEFINITION 2.1.  We say that a complex function ¢ on S(I) = S is
T-positive definite if (¢, a* xa) > 0 for all @ € F(S). Similarly, a complex
function ¥ on S is T-negative definite if (1, 3*x3) < 0 for all 8 € Fy(9).
We will denote by P-(S) and by N-(S) the convex cones of all T-positive

definite and all T-negative definite functions on S, respectively.

Notice that in the case 7 = 1, S(I) can be regarded as the free product
group *;c;Zs and in the case 7 = 0 as a *-semigroup generated by I in
which 2 = i* =i for all i € I.
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PROPOSITION 2.2. Let 0,7 : I — [0,00). Then there exists a *-isomor-
phism H,, of F5(S) onto F(S). Moreover, there exists an automorphism
T:, of the linear space F'(S) such that

(a) TTU(PU(S)) = PT(S) )
(b) TTU(NU(S)) :NT(S)7
(C) T’ra(f ([T] ¢) = H’ra(f) EI T‘I‘O’(¢) )
(d) T‘ra(d)gf) :TTG(¢) EIHTJ(f)7
where f € F(S), ¢ € F'(S).

Proof. For any i € I we put
0 e i G

Simple calculation shows that H,,(d; *0;) = H»(0;) * Hr5(6;), hence H,,

extends to a *-homomorphism of F,(.S) into F,(S). Moreover, H,; o H, =
H,, so H., is an isomorphism. Defining 75, : F'(S) — F'(S) to be the
dual of H,, : F(S) — F(S) we have

(7) (TTU¢)(U) = <¢7HUT(5U)> and <(TTU¢)?g> = <¢’ HUT(g)>
for any g € F(S) and the proposition easily follows.

ExAMPLE 2.3. In the examples below we assume 7 = 0, so that we treat
S as a *-semigroup in which i?> = i* = i for each generator i € I and our
notion of positive definiteness coincides with that on *-semigroups (see [1]).

1) Let A = (a45), i,j € I U{e}, be a positive definite matrix such that
a;; = 1 for all i € I U {e}. Define a function ¢4 on S in the following way:
¢a(e) =1and for u € S asin (2), n > 1,

pa(u) = Qeiy Aiyip Qigig - - - Qe -
Note that for any u,v € S we have ¢ (v*u) = a(v)a;, i, a(u), where a(e) =
1, a(u) = ai,iyGigig - - - @i, e for was in (2), |u| > 1, and i1, j; are the first
letters of w and v respectively; for u = eor v =e we put iy =eor j; = e
respectively. Hence for any complex finitely supported function f on S we

have

Z pa(viu)f(u)f(v) = Z a;is(i)s(j)
u,veS(I) i,jelU{e}
with s(e) = f(e) and s(i) = > a(u)f(u) for i € I, where the summation
is over all uw € S as in (2) with ¢; = 4. This proves that ¢4 is a 0-positive
definite (7 = 0) function on S. Note that if matrices A = (a;5), B = (bi;),
i,7 € I U{e}, satisfy our assumptions then ¢ps¢p = ¢paop, where Ao B
denotes the Schur product (a;;bi;), i,j € I U {e}.
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2) Assume that r € [0,1], [ = {1,...,N}, N > 2, and consider the
matrix A = (ai;), 1,7 € I U {0}, given by a;; =1 for i > 0, ajp = agi = /7
fori > 1 and a;; = (Nr —1)/(N —1) for ¢ # j, i,7 > 1. Note that A is
positive definite. Indeed, for any complex zg, 21, ..., 2Ny we have

N
Z Qij2iZ5 = |Zo + \/’F(Zl +...+ ZN)|2
i,j=0

1<i<j<N

The corresponding positive definite function ¢ 4 is

1 ifu=e,

_ o Jul-t
Palu) = r(jx;n_ 11> ifu#e.

3. Type-dependent functions. Let H be a finite group, #(H) = k,
and let ppy (resp. ) denote the probability measure equidistributed over H
(resp. over H \ {e}). Since uy * pg = pg and pug = (1/k)de + ((k—1)/k)p
we immediately obtain

() wrp=(1—r)u+rd,
where = 1/(k — 1). Now let {G,}icr be a fixed family of discrete groups.
We put (i) = 1/(#(G:) — 1),

Assume for a moment that all G; are finite and let F;(G) denote the
linear space of all finitely supported type-dependent complex functions on
G = *,c1G;. Then F;(G) consists of all linear combinations of the i,
where for u € S = S(I) as in (2), u, denotes the probability measure
equidistributed over all elements of type u, i.e. pu,(z) = 7(i1)...7(i,) if
t(z) = v and p,(z) = 0 otherwise. By (8) and by the definition of the free
product we have

(9.a) wix ;o = (1 —700))ps + 7())ppe fori el
(9.b) My = iy * ... % py, foru=1iy.. .0, €8,
(9.¢) ()" = poy=  forue S.

Formulas (3) make it obvious that the *-algebra F.(S) is isomorphic to
Fi(G) and the isomorphism is given by

F(S)3 fr> ().
u€esS

The following proposition explains the term “dual 7-convolution” intro-
duced in Section 2.
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PROPOSITION 3.1. Under the above assumptions we have

Y Sk (9ot)=(fDd)ot,

uesS

(pot)x Y flu) 0 f)ot

uesS
for any ¢ € F'(5), f € F(S5).
Proof. For any z € G we have

(Zf(U)uu “(9o))(@) = (D S * (604),5, )

ues

:<Zf % (pot), ,ut(z)>:< $ot, <Zf u> *:U’t(z)>

ues ues

We are now able to formulate the main result.

THEOREM 3.2. Let {G;}icr be any family of discrete groups and suppose
that ¢ is a complex function on S(I). Then the function ¢ot is positive (resp.
negative) definite on the free product group G = *,;c1G; if and only Zfd) 18
T-positive (resp. T-negative) definite on S(I), where 7(i) = 1/(#(G;) — 1)
for anyi € I.

Proof. Let ¢ be a T-positive definite function on S(I) = S. Fix f in

F(G) and define f € F(S) by f(u) = 3. f(x), where the summation is over
all x € G of type u. We are going to show that

(10) (f xS =f*[+R,
where R is a finite sum of terms of the form * x 3, 8 € Fy(S). We shall do

it by induction on n, the maximal length of elements in the support of f.
If n =0 we have f = f(e)d. and the formula is obvious (R = 0). Now
take any f € F(G). Then f can be expressed as

f=rebe+ > f@)e=f)et+> > g% fy,

ze€G\{e} iel geG;\{e}

where all f, satisfy the induction assumption, i.e.
(fg % fo)™ = fg * fo + R(9) .
We use the following simple formulas:

(8 % fo)™ = 0ixfy ifgeGi\{e},
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s fl™ = Fyx o+ Rlg) ifh=g,
Fixix fy ith+g,
[(Onxfn)" (09 fo)] ™ = R h,g € G\ {e},
Frxdjxdixfg if g€ Gi\{e},
hEGj\{€}7 i F J.

Hence we have
s fI™ =« f
= 3 UG ) Gy )~ b bin fy}

i,jel geGi\{e}
heG;\{e}

S (S Gk R Fessed
i€l geGi\{e}
Y (Fardirfy - Farbioie fy))
g,h€Gi\{e}
g#h

=3 (X (=756 = 8) £ o + Rlg)]

i€l geG;\{e}

Y @G-8 £ o))

g,heGi\{e}
g#h
=Y (RO + Y R9).
i€l g€Gi\{e}
where
= Y fex(e-d)x],
g€G;\{e}

if 7(i) = 0 (i.e. if G; is infinite), and
R =570 Y (o= )"« (e =6« (Fy — )

g,heG;\{e}
g#h

when G; is finite. Since we have (0, — ¢;) * (0 —0;) = (1 +7(3))(de — d;) and
(0 — ;) xa € Fo(S) for any o € F(S), formula (10) is proved.
Next, (¢pot, fi)a = (6, f1)s for any f1 € F(G) and
($ot,f"x fla = (&, ] * f)s + (6 R)s > 0

S0 ¢ ot is a positive definite function on G.
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Now, suppose that ¢ ot is positive definite on G and first suppose that
all G; are finite. Fix o € F(S) and let f = > a(u)py, v € S. Then, by
(9) we have 0 < (pot, f** fg = (¢, a* ia>s S0 ¢ is T-positive definite on
S. In the general case for any natural n define 7,(i) = 7(4) if 7(i) > 0 and
(i) = 1/n if 7(i) = 0. Let G’ = *,c;G), where G, = G, if G; is finite and
G, = Zp+1 otherwise. In virtue of Proposition 2 of [5] the function ¢ o ¢’ is
positive definite on G’, where ¢’ is the type on G’, so ¢ is 7,-positive definite
on S for all n € N. Hence we have

0 < lim (¢,a* xa) = (¢, a" xa) .
n— oo Tn T

Since the arguments remain true for negative definite functions, the proof
is complete.

COROLLARY 3.3. Let {G,}icr be any family of finite groups, let G =
*,;c1G; and consider the natural projection € from the functions on G onto
the type-dependent functions on G defined by (£¢)(x) = (@, pu(x)). Then &
maps positive (resp. negative) definite functions to positive (resp. negative)
definite functions.

Proof. Let f be any function in F;(G) (resp. in F;(G) N Fo(G)). Then
(E, [* x Y =D, E(f* = [)) = (¢, f* = f), which concludes the proof.

COROLLARY 3.4. Let G be the amalgamated free product * 4 ;c1G; and let
¢ be any function on S(I). Then the function ¢ot is positive (resp. negative)
definite on G if and only if ¢ is T-positive (resp. T-negative) definite on S(I),
where 7(i) = (G; : A) —1)7L.

Proof. For any i € I choose a set S; U {e} of left coset representatives
of G; modulo A. Then each x in G has a unique representation as a reduced
word

r=81...5,a, wheren>0, a€ A, sp €S, ik F ik+1,

and t(z) = i1...1, (see [6] for details). For ¢ € I let 7(i) be the inverse of
(Gi: A)—1 = #(S;) and let { H; };c1 be a family of groups such that #(H;) =
(G; : A). We show that a type-dependent function ¢ ot is positive (resp.
negative) definite on G if and only if ¢ ot is positive (resp. negative) definite
on H = *,crH;. To see this take a family of bijections h; : H; \ {e} — S;
and put h(g1...9n) = hi,(91) - .- hi, (gn), where g, € H;, \{e} and g1 ...9n
is a reduced word in H. It is obvious that t(h(ze) *h(z1)) = t(xy ") for
any x1,re € H. It is enough to note that for any f € F(G), o € F(H)

Yo oty ) ) f(ye) = Y ety ) fr(an) fu (o),

Y1,Y2€G x1,02€H

Yo oltay e))ale)ales) = Y G(tlyy yi))ac (yn)ac(ys)

T1,22€H Y1,Y2€G
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where frp(x) = > f(h(z)a), a € A and ag(y) = a(z) if y = h(x) and
ac(y) = 0 i y & h(H).

4. Free product of two groups. From now on we restrict our atten-
tion to the case #(I) = 2, say I = {4, —} (cf. [2]). Our aim is to characterize
positive definite spherical functions on G = Z, * Z,, r > s, considered by
D. I. Cartwright and P. M. Soardi in [2]. Recall that a type-dependent func-
tion ¢ on G = Z, x Z, is said to be spherical if ¢(e) = 1, ¢p(x) = ¢(x~1)
for all x € G and there exists a complex number A such that ¢ x x; = A¢
(x1 denotes the characteristic function of the set {x € G : |z| = 1}). Let
us also mention that our notion of type-dependent function coincides with
the notion of “semiradial function” used in [2]. Since spherical functions
are type-dependent Theorem 3.2 allows us to consider S(I) = S instead of
Z.+Zs. For simplicity we write +n and —n, n € N, todenoteu = +—+ ...+

and u = — 4+ —...F € 5, respectively, |u| = n, and 0 to denote the empty
word in S. For example —(2j 4+ 1) denotes the word — + ... — with length
25+ 1.

Let 84+, f— be any positive numbers and consider the measure p =
Byoy + PB_6_ on S. Forany 7 : I = {+,—} — [0,00) let A(7, ) denote
the convolution subalgebra of F.(S) generated by p. Note that for any
e,n € {+,—}, n € N we have

5 if e(—1)" =
o e(n+1) U
(11) den * oy = { (1 —74)0en + Ty0c(n—1) oOtherwise,

where 74 = 7(+) and 7— = 7(—). The following property can be proved
similarly to Proposition 2 of [2].

PRroOPOSITION 4.1. For a complex function f on S, fxu = puxf, if and
only if J(+2]) = [(~2j) and o
Bari f(+25+1) = b7 f(—=(2j + 1))

= [0 =70)Br = (L =7)B-]f(+2)) + B+ f(=(2) — 1)) = B_f(+25 — 1)
for all j > 1. If, moreover, f has finite support, then fxu = px f if and
only if f € A(r, ). Thus A(T, p) is a mazximal abelian sugalgebm Tof F-(S).

Now we are going to describe multiplicative functionals on A(7, ).

PROPOSITION 4.2. Let 7 : [ = {+,—} — [0,00), let B+, B— be positive
numbers, p = G40+ +PB-0_ and A\eC, \#xo=(f+(1—14)+0-(1—7-))/2.
Then there exists a unique function ¢y on S satisfying

oA Op= Aoy,  dxa(u) = oY (u) for allue S, ¢x(0)=1.
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Proof. Let ¢ be any function on S. Since
(60 p)(w) = (b0, 0u) = (¢, 0u % 1) = B1(, 0ux01) + B (P, 00 % 5-)

and by (11) we must solve the following equations:

(12.a) o(+25) = ¢(=2j),
(12.b) A= Broa(+1) + B-ga(=1),
(12.¢)  AA(+2)) = B-T-Pa(+25 —1)+B- (1=7-)dr(+27) +B+ oA (+2j+1)

for j > 1,
(12.d)  Adx(+27 + 1) = By da(+27) + B (1 — 7)o (+25 + 1)
+6_pr(+2j+2), forj>0,

(12.¢)  Apa(=2) = Br70a(=(2) = 1)) + B+ (1 — 74 )da(=2))
+0-dx(=(2j+1)), forj=>1,

(12.0)  Ada(=(2) + 1)) = B_m—r(=2)) + B-(1 = 7-)oa(=(2j + 1))
+B40x(=(27+2)), forj=0.

In particular,

(13.a) Broa(+1) + B-oa(=1) = A,
(13.b)  B[Bymy + (B+(1 = 74) = N)a(+1)]
=B-[B-m- + (B-(1=7-) = Nor(=1)].

The last two equations have a unique solution (¢ (41), px(—1)) if A # zo,
namely
M =B (1—T )N+ — 271
ﬁ+[2)\ Br(l—7y) = B-(1—7)]

— B+l =T A =PIy + B2
ﬂ—[”\ =Bl —74) = B-(1—7)]

and the rest of the proof is as in [2].

(14.2) da(+1) =

(14.b) or(~1) =

Remark 4.3. a) For any polynomial P we have
{dx; P(1)) = (62 0 P(), 00) = P(A),

hence g — (¢y, g) is the unique multiplicative functional on A(7, 1) taking
the value A at . The function ¢, is called the (7, u)-spherical function. It
is worth pointing out that this notion coincides with the notion of spherical
function defined in [2] when 7 = 1/(r — 1), 7= =1/(s — 1), By =r — 1,
O_ =s—1.

b) It is easy to check that if _(1+7_) = B4(1 + 74+) and A = x¢ then
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the equations (13) are linearly dependent. Moreover, for A # xg

b (+1) = 22 -p-(1 —be):r Bi(l—1y) ,

o) = (- ng)f B-(-7)

Therefore if _(1 + 7—) = f4+(1 + 74) then it is natural to define ¢,, to be
the pointwise limit of ¢y as A — xo. On the other hand, if f_(1 4+ 7_) #
B+(1+74) then the equations (13) are inconsistent for A = z¢ and ¢,,, does
not exist.

In case 74 = 7_ = 0 the formulas (12) easily yield

COROLLARY 4.4. Let B, B be positive numbers, p = 3404 +F_0_, and
assume that T = 17— = 0. Then for A\ # (B+ + 5-)/2 the (7, u)-spherical
function ¢y is given by

ox(0) =1,
A
gb)\(‘i———{—:l:) == m)\+)\_)\+ )\:t,
A
¢/\(_+—:F) = m)\_A_F)\_ )\:F,

where Ay = (A= 5_)/By and A_ = (A — B4)/-.

Now we are in a position to present the main theorem of this section.

THEOREM 4.5. Let 7.,7— > 0, B4,08- > 0 and let ¢ be the (1,u)-
spherical function. Assume that f_(14+7_-) < B4 (1+74). Then the following
conditions are equivalent:

(a) ¢y is T-positive definite on S,

(b) =74 < a(+1) <1 and —7— < Pr(-1) <1,

(€) A€ [=B474 = BT—, = P17y + B U [=B-7— + B4, B4 + B-].

Proof. Toshow (a)=(b) it is sufficient to observe that for any T-positive
definite function ¢ on S(I) and i € I, —7(i)p(e) < ¢(i) < ¢(e). Moreover,
routine calculations based on (14) yield (b)<(c).

Now we prove (c)=-(a) in the case 7 = 0 (i.e. 74 = 7 = 0). Suppose
that A € [0, 5_] U [B+, B+ + (] and define

(o)

e <ﬂ+(2AA(A—_ﬁf—) ﬁ))m’ ‘T 5(/3<2AA(A—_6?—) 5))1/2’
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where e = —1if A € [0,4_] and ¢ = 1 if X € [B4, B+ + [-]. According to
Corollary 4.4 we have ¢y (u) = ayw™ tag if u =+ —+... £, |u| = n, and
dr(u) = a_w" tazifu=—+—...F, |Ju/=n,n>1and 0 <w < 1,
0<ay <1, -1 <a_ <1. Consider the matrix

1 ay oa-
ar 1w
o w 1

Its determinant is 0, so the matrix is positive definite. Hence ¢, is positive
definite in view of Example 2.3.1. This proves (c)=(a) for 7 = 0.

We now turn to the general case. Let A be as in (c) and let ¢, be the
(7, u)-spherical function. Then

ATor(92) = Tor (¢ O 1) = Tor(92) O Hor (1)
and, by (6),
Hor () = B+ [(1 + 74)64 — 7400 + B-[(1 4+ 7-)d— — 730}
= B+(1+740)04 +B-(1+7-)0_ = (B474 + f-7-)d0,
hence
Tor(éx) Dv= YTor(¢x) ,

where

v=0414+74)04 + B-(L4+7-)0-, v=A+(B474 +0-7-),

so Tor (o) is the (0, v)-spherical function with eigenvalue . It remains to
observe that if

A€ [=B414 = BT, = B4y + B U [-B-T- + B4, B+ + B-]
then

YE0,B-(L+7)UB+(1+74), B4 (1+74) + 8- (1 +7)],

so Tor(¢n) is O-positive definite. Consequently, ¢n = TroTor(¢n) is 7-
positive definite on S, which completes the proof.

Remark 4.6. Using Theorem 3.2 we can easily apply the last theorem
to spherical functions on G = Z, * Zg, r > s, defined in [2]. In this case ¢y
is positive definite on G if and only if

Ae[-2,s=2|U[r—2,7r+s—2].

5. Spherical functions on Gj y = *i]\;le. In this part we indicate
how our technique may be used in the case of spherical functions on Gy, n,
the free product of N cyclic groups of order k (investigated in [3-5]). Our
purpose is to provide a new proof of [4, Theorem 3]. Let R denote the class
of all complex finitely supported radial functions on Gy n, k = 2,3,..., and
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let @, be the probability measure equidistributed over the set of words of
length n in G n. By [3, Corollary 1], R forms a commutative algebra, with
identity pg = de, generated by .

DEFINITION 5.1. A radial function ¢ on Gy v is called spherical if the
functional f +— (f,#) is multiplicative on R. For any complex z we denote
by ¢, the unique spherical function on G n such that ¢,(z) = z if [z] =1

(cf. [3)).
Now, let I = {1,..., N} and let R denote the class of all complex finitely

supported radial functions on S(I) = S. Then R is a linear space with basis
{1in}22y, where fi,, denotes the probability measure equidistributed over the
set W, of words in S of length n. Note that #(W,) = 1 and for n > 1,
#(W,) = N(N — 1)"~1. For any r € [0,00) we shall write * to denote *,
T T

where 7 =r.

LEMMA 5.2 (cf. [2, Lemma 1]). Let r € [0,00). Then for n > 1

SO o 1—7r_ N—1_
16 n — xrMn— n n .
(16) vk fin = S fin 1+ ——fin + ——Fn 41
In particular, R is a commutative algebra (with respect to *) generated
'

by pi1-

DEFINITION 5.3. A radial function ¢ on S is called r-spherical if the
functional f +— (f, ¢) is multiplicative on R with respect to .

Following (16) we note that, as on G}, n, for any complex z we have a
unique r-spherical function ¢, , such that ¢, (i) = z for i € I (cf. [3]). In
particular, we have

COROLLARY 5.4. For any z € C

1 if u=e,

_ . lul—1
¢z0(u) = Z<]sz_ 11> if u#e.

Proof. Denote by ¢ ¢(n) the value of ¢, ¢ at any word of length n. By
(16) we have

$2,0(1)¢z0(n) = (P20, 111)(P=2,0, fin) = (¢=,0, 11 E’;ﬂn>
1 N -1

- ~ N —
= B0, ) + o (B0 inin) = yobm0(m) + T uo(n+1).

Remark 5.5. The function ¢, ot can be regarded as a spherical
function on the free group G,y (cf. [5], [7] and [8]).

Let € be the projection of F'(S) onto the radial functions on S defined
by (€f)(u) = (f, fin), where n = |u|. Observe that £ is an expectation, i.e.
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(Ef1, f2) = (f1,Ef2) = (Ef1,Ef>) for all functions fi, f» on S. Combining
Theorem 3.2 and [4, Theorem 2] we get

COROLLARY 5.6. Forr = 1/k, k =1,2,..., £ maps r-positive definite
functions to r-positive definite functions.

For any r,s € [0,00) we denote by Hg,. (resp. Ts,) the map H,, (resp.
T,-) defined by (6) (resp. (7)), where 0 =5, 7 = 7.

LEMMA 5.7. For any r € [0,00), z € C
g(Troqﬁz’o) = ¢u,r, wherew = (1+r)z—r.

Proof. Observe that Ho,(fi1) = (1+7)u1 —rfo. Consequently, Ho,(R)
=R and thus for f,g e R

<g(TrO¢z,O)7f>:g> = <Tr0¢z,0af;’f.g> = <¢z,OaHOT(fjfg)>
= <¢z,07H0r(f) 3 HOr(g)> - <¢Z,07HOT‘(f)><¢Z,07HOT‘(g)>

= <TTO¢Z,07 f> <TT0¢Z,07 g> = <8~(TT0¢Z70)7 f> <g(TT0¢Z,0)7 g> )
and (E(Tr00:,0), p1) = (62,0, Hor (1)) = (1 +7)z — 1.

Now we present a new proof of [4, Theorem 3].

THEOREM 5.8. Let k € {00,2,3,...}. The spherical function ¢, on G, N
is positive definite if and only if z € [-1/(k — 1), 1].

Proof. First observe that ¢,, = ¢y, , o t, where r = 1/(k —1). It was
already noted in the proof of Theorem 4.5 that for any 7-positive definite
function on S(I) and i € I,—7(i)¢p(e) < ¢(i) < ¢(e). Therefore we only
have to prove that ¢, , is r-positive definite for w € [—r,1]. But ¢y, =
E(T,0¢-,0) by Lemma 5.7, where z = (w+7)/(1+7) € [0,1]. Therefore ¢,
is r-positive definite by Example 2.3.2, Proposition 2.2 and Corollary 5.6.

PROBLEM. We do not know whether Corollary 5.6 remains true for all
positive . The affirmative solution would allow one to formulate the last
theorem for a continuous parameter 7.
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