COLLOQUIUM MATHEMATICUM

VOL. LXIV

1993

FASC. 1

A FIXED POINT THEOREM FOR ASYMPTOTICALLY REGULAR MAPPINGS

BY

JAROSŁAW GÓRNICKI (RZESZÓW)

1. Introduction. The concept of asymptotic regularity is due to F. E. Browder and W. V. Petryshyn and in metric notation can be stated as follows: a mapping $T: M \to M$ of a metric space (M, d) to itself is asymptotically regular if for any $x \in M$, $\lim_{n\to\infty} d(T^{n+1}x, T^nx) = 0$. It is known (see [1]) that if T is a nonexpansive map of a Banach space, then $T_{\lambda} = \lambda \mathrm{Id} + (1 - \lambda)T$ is asymptotically regular for all $0 < \lambda < 1$.

Recently, in 1987, M. Krüppel [2] proved the following result: Denote by |||T||| the Lipschitz norm of T. Let E be a uniformly convex Banach space and C a closed, convex, bounded subset in E, and let T be a mapping from C into itself. If T is asymptotically regular and $\liminf_{n\to\infty} |||T^n||| \leq 1$ then T has a fixed point in C.

At the same time, P. K. Lin [4] constructed an asymptotically regular mapping acting on a weakly compact subset of the Hilbert space l^2 with no fixed point. So the following question is natural: when does an asymptotically regular mapping have a fixed point? In this note we give a sufficient condition for existence of a fixed point generalizing Krüppel's theorem.

2. Main result. Recall that E. A. Lifshitz [3] associated with each metric space (M, d) a constant $\kappa(M)$ defined as follows: denote by $\overline{B}(x, r)$ the closed ball of radius r centered at x. Then

$$\kappa(M) = \sup\{b > 0 : \exists_{a>1} \forall_{x,y \in M} \forall_{r>0} [d(x,y) > r \\ \Rightarrow \exists_{z \in M} \overline{B}(x,br) \cap \overline{B}(y,ar) \subset \overline{B}(z,r)]\}.$$

It is immediate that $\kappa(M) \ge 1$ for any metric space. For strictly convex spaces $\kappa(M) > 1$, and it is not difficult to verify that $\kappa(H) = \sqrt{2}$ if H is a Hilbert space.

THEOREM. Let (M, d) be a complete metric space and T be a mapping from M to M. If T is asymptotically regular, $\liminf_{n\to\infty} |||T^n||| < \kappa(M)$ and for some $x \in M$ the sequence $\{T^nx\}$ is bounded then T has a fixed point in C. Proof. Let $\{n_i\}$ be a sequence of natural numbers such that $\liminf_{n\to\infty} |||T^n||| = \lim_{i\to\infty} |||T^{n_i}||| = k < \kappa(M)$. For any $y \in M$, let

$$r(y) = \inf \{R > 0 : \exists_{x \in M} \limsup_{i \to \infty} d(y, T^{n_i}x) \le R \}.$$

Observe that r is a lower semicontinuous function, and r(y) = 0 implies Ty = y.

If $\kappa(M) = 1$ then k < 1 and the Banach Contraction Principle implies that T has a fixed point. Thus we assume that $k \ge 1$. For $b \in (k, \kappa(M))$ there exists a > 1 such that

$$(1) \quad \forall_{u,v \in M} \forall_{r>0} [d(u,v) > r \Rightarrow \exists_{w \in M} \overline{B}(u,br) \cap \overline{B}(v,ar) \subset \overline{B}(w,r)]$$

Take $\lambda \in (0, 1)$ such that $\gamma = \min\{\lambda a, \lambda b/k\} > 1$. We claim that there exists a sequence $\{y_s\} \subset M$ having the property

(2)
$$\forall_{s \in \mathbb{N}} [r(y_{s+1}) \le \lambda r(y_s) \text{ and } d(y_{s+1}, y_s) \le (\lambda + \gamma) r(y_s)].$$

Indeed, take y_1 to be an arbitrary point in M and assume y_1, \ldots, y_s are given. We now construct y_{s+1} . If $r(y_s) = 0$ then $y_{s+1} = y_s$. If $r(y_s) > 0$ then there exists $n_j \in \mathbb{N}$ such that $d(T^{n_j}y_s, y_s) > \lambda r(y_s)$ and $|||T^{n_j}||| \leq k\gamma$. From the definition of $r(y_s)$ there exists $x \in M$ for which $\limsup_{i \to \infty} d(T^{n_j}x, y_s) \leq r(y_s) < \gamma r(y_s)$. Hence

$$d(T^{n_i}x, T^{n_j}y_s) \le d(T^{n_i}x, T^{n_i+n_j}x) + d(T^{n_i+n_j}x, T^{n_j}y_s)$$
$$\le \sum_{q=0}^{n_j-1} d(T^{n_i+q+1}x, T^{n_i+q}x) + |||T^{n_j}|||d(T^{n_i}x, y_s)$$

and by asymptotic regularity of T, $\limsup_{i\to\infty} d(T^{n_i}x, T^{n_j}y_s) \le k\gamma r(y_s)$. Since

$$\overline{B}(y_s,\gamma r(y_s)) \cap \overline{B}(T^{n_j}y_s,k\gamma r(y_s)) \subset \overline{B}(y_s,a\lambda r(y_s)) \cap \overline{B}(T^{n_j}y_s,b\lambda r(y_s)) = D$$

the set D is contained in a closed ball centered at w with radius $\lambda r(y_s)$ (condition (1)). Thus $\limsup_{i\to\infty} d(T^{n_i}x,w) \leq \lambda r(y_s)$. Take $y_{s+1} = w$. It follows from the above that the sequence $\{y_s\}$ satisfies condition (2). Since $\lambda < 1, \{y_s\}$ converges to $y \in M$. But since r(y) = 0, y is a fixed point of T.

Added in proof. For the lower bound for $\kappa(L^p)$, 1 , see: J. R. L. Webb and W. Zhao, On connections between set and ball measures of noncompactness, Bull. London Math. Soc. 22 (1990), 471–477.

REFERENCES

- K. Goebel and W.A. Kirk, *Topics in Metric Fixed Point Theory*, Cambridge Stud. Adv. Math. 28, Cambridge University Press, 1990.
- M. Krüppel, Ein Fixpunktsatz für asymptotisch reguläre Operatoren, Wiss. Z. Pädagog. Hochsch. "Liselotte Herrmann" Güstrow Math.-Natur. Fak. 25 (1987), 241–246.
- [3] E. A. Lifshitz, *Fixed point theorems for operators in strongly convex spaces*, Voronezh. Gos. Univ. Trudy Mat. Fak. 16 (1975), 23–28 (in Russian).
- P. K. Lin, A uniformly asymptotically regular mapping without fixed points, Canad. Math. Bull. 30 (1987), 481–483.

INSTITUTE OF MATHEMATICS PEDAGOGICAL UNIVERSITY OF RZESZÓW REJTANA 16A 35-310 RZESZÓW, POLAND

Reçu par la Rédaction le 6.5.1991