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CHANGE OF VARIABLES FORMULA
UNDER MINIMAL ASSUMPTIONS

BY

PIOTR H A J  L A S Z (WARSZAWA)

1. Introduction. In the previous papers concerning the change of
variables formula (in the form involving the Banach indicatrix) various as-
sumptions were made about the corresponding transformation (see e.g. [BI],
[GR], [F], [RR]). The full treatment of the case of continuous transformation
is given in [RR]. In [BI] the transformation was assumed to be continuous,
a.e. differentiable and with locally integrable Jacobian. In this paper we
show that none of these assumptions is necessary (Theorem 2). We only
need the a.e. existence of approximate partial derivatives.

In Section 3 we consider the general form of the change of variables
formula for Sobolev mappings.

The author wishes to thank Professor Bogdan Bojarski for many stimu-
lating conversations and suggestions.

2. Assumptions and result. We start with recalling the classical res-
ult of Whitney [W] on equivalent conditions for a.e. approximate differen-
tiability of a function.

Let u be a real-valued function defined on a subset E of Rn. We say that
L = (L1, . . . , Ln) is an approximate total differential of u at x0 if for every
ε > 0 the set

Aε =
{

x :
|u(x)− u(x0)− L(x− x0)|

|x− x0|
< ε

}
has x0 as a density point. If this is the case then x0 is a density point of E
and L is uniquely determined. If x0 is a point of density in the direction of
each axis then the Li are the approximate partial derivatives of f at x0.

Theorem 1 ([W], Th. 1). Let f : E → R be measurable, E ⊆ Rn. Then
the following conditions are equivalent :

(a) f is approximately totally differentiable a.e. in E.
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(b) f is approximately derivable with respect to each variable a.e. in E.
(c) For each ε > 0 there exists a closed set F ⊆ E and a function

g ∈ C1(Rn) such that |E \F | < ε, f|F = g|F (by | · | we denote the Lebesgue
measure).

If f maps E to Rn and each component of f satisfies the conditions of
Theorem 1 (for simplicity, we will say that f itself satisfies them) then we
can define the Jacobian Jf in the usual manner.

Example. If f : Ω → R, where Ω ⊆ Rn is open, has partial derivatives
a.e. then (c) holds. For example, this is the case for f ∈ W 1,1

loc (Ω).

In the sequel Ω denotes an arbitrary open subset of Rn.
Let f : Ω → Rn. We say that f satisfies the condition N (Lusin’s

condition) if
E ⊆ Ω, |E| = 0 ⇒ |f(E)| = 0 .

Let f : Ω → Rn, and E ⊆ Ω. The function Nf (·, E) : Rn → N ∪ {∞}
defined by

Nf (y, E) = card(f−1(y) ∩ E)
is called the Banach indicatrix of f .

Now we can state our main result.

Theorem 2. Let f : Ω → Rn be any mapping , where Ω ⊆ Rn is an
arbitrary open subset.

If f satisfies one of the conditions (a), (b), (c), then we can redefine
it on a subset of measure zero in such a way that the new f satisfies the
condition N .

If f satisfies one of the conditions (a), (b), (c) and the condition N then
for every measurable function u : Rn → R and every measurable subset E
of Ω the following statements are true:

1) The functions (u ◦ f)|Jf | and u(y)Nf (y, E) are measurable.
2) If moreover u ≥ 0 then∫

E

(u ◦ f)|Jf | dx =
∫

Rn

u(y)Nf (y, E) dy .

3) If one of the functions (u ◦ f)|Jf | and u(y)Nf (y, E) is integrable then
so is the other (integrability of (u◦f)|Jf | concerns the set E) and the formula
of 2) holds.

R e m a r k s. 1) A priori it is not evident that (u ◦ f)|Jf | is well defined,
because the composition of two mappings, with the left mapping being de-
fined a.e., may be undefined on a set of positive measure. But if we put
(u ◦ f)(x)|Jf (x)| = 0 whenever |Jf (x)| = 0 (even if (u ◦ f)(x) is not defined)
it follows from the proof that the function (u ◦ f)|Jf | is well defined a.e.
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2) It may happen (see Section 3) that f is continuous and the condition
N does not hold, so when redefining f to make it satisfy this condition we
may change it to a discontinuous mapping.

P r o o f o f T h e o r e m 2. In the proof we need a classical result:

Theorem 3. Special case of Theorem 2 when f is a locally Lipschitz
mapping (in this case the condition N holds).

A short and nice proof of a slightly different version of Theorem 3 can
be found in [BI]. For the sake of completeness we sketch the proof of the
above version in the Appendix.

Now we can prove our theorem.
Suppose that f satisfies one of the conditions (a), (b), (c). By The-

orem 1(c) there exists a sequence of closed sets Xk ⊆ Ω and functions
gk ∈ C1(Rn) such that Xk ⊆ Xk+1, |Ω \

⋃
k Xk| = 0 and gk|Xk

= f|Xk
. Now

we redefine f on the set Z = Ω \
⋃

k Xk by sending this set to a point. The
new f satisfies the condition N .

Now we prove the second part of the theorem. It is easy to see that it
suffices to consider any representative satisfying the condition N ; we take
the one defined above.

Assume first that u ≥ 0 is an arbitrary measurable function and E ⊆ Ω
is an arbitrary measurable set.

It follows from Theorem 3 that for k = 1, 2, . . .∫
E∩Xk

(u ◦ gk)|Jgk
| dx =

∫
Rn

u(y)Ngk
(y, E ∩Xk) dy .

Since f = gk in Xk, it is easy to prove that Jf = Jgk
a.e. in Xk. Hence

(1)
∫

E∩Xk

(u ◦ f)|Jf | dx =
∫

Rn

u(y)Nf (y, E ∩Xk) dy .

Clearly,

(u ◦ f)|Jf |χE∩Xk
→ (u ◦ f)|Jf |χE\Z as k →∞ .

Hence passing to the limit on the left hand side of (1) we obtain

(2)
∫

E∩Xk

(u ◦ f)|Jf | dx →
∫
E

(u ◦ f)|Jf | dx as k →∞

(we have used the fact that |Z| = 0). Consider the right hand side of (1).
It is clear that

Nf (y, E ∩Xk) ↗ Nf

(
y, E ∩

⋃
k

Xk

)
for all y ∈ Rn as k →∞ .
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Since |f(Z)| = 0, we have Nf (y, Z) = 0 for a.e. y ∈ Rn, and hence

Nf (y, E ∩Xk) ↗ Nf

(
y, E ∩

⋃
k

Xk

)
+ Nf (y, E ∩ Z) = Nf (y, E)

for a.e. y ∈ Rn as k → ∞. Now passing to the limit in the right hand side
of (1) we get

(3)
∫

Rn

u(y)Nf (y, E ∩Xk) dy →
∫

Rn

u(y)Nf (y, E) dy as k →∞ .

Putting together (1)–(3) we obtain the theorem for u ≥ 0. The general case
follows by the decomposition u = u+ − u−.

R e m a r k. The above theorem admits some generalizations. For exam-
ple one can generalize the “co-area” formula (see [H]).

3. Change of variables formula for Sobolev mappings. As noticed
above, each f ∈ W 1,1

loc (Ω, Rn) satisfies condition (b) in Theorem 1, and
so Theorem 2 holds for such f . This theorem generalizes the change of
variables formula for Sobolev mappings (see e.g. [BI], Th. 8.4, [GR], Th.
1.8, Ch. 5) where the attention was restricted to continuous W 1,n mappings
satisfying the condition N . The latter formula plays an important role in the
quasiregular mappings theory, and so it seems that its extension to arbitrary
W 1,1

loc mappings can also play a role, especially in connection with the recent
results extending the quasiconformal theory to W 1,p

loc mappings where p < n
(see e.g. [IM]).

In this section we obtain another proof of Theorem 2 (avoiding Theo-
rem 1) for f ∈ W 1,1

loc (Ω, Rn). In fact, we obtain a stronger result. Namely, we
prove that it suffices to redefine f ∈ W 1,1

loc (Ω, Rn) on the set {M |∇f | = ∞}
for the condition N to be satisfied, where Mh denotes the Hardy–Littlewood
maximal function and the mapping f coincides everywhere with its canoni-
cal representative:

(4) f(x) = lim sup
r→0

1
|B(x, r)|

∫
B(x,r)

f(y) dy .

Lemma. Let f ∈ W 1,1
loc (Ω). Then there exists a sequence of compact sets

Xk ⊆ Xk+1 ⊆ Ω and Lipschitz functions gk ∈ Lip(Ω) such that f|Xk
=

gk|Xk
, Ω \

⋃
k Xk = {M |∇f | = ∞} and hence |Ω \

⋃
k Xk| = 0.

Then we can complete our proof as in Section 1.
The proof of this lemma presented below is due to Professor Bojarski.

P r o o f. It is enough to consider Ω = Rn. We need two well known
inequalities:
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For almost all y ∈ Q,

|f(y)− fQ| ≤ C1

∫
Q

|∇f(z)|
|y − z|n−1

dz .

If g is measurable then for all x ∈ Q,∫
Q

|g(y)|
|x− y|n−1

dy ≤ C2(diam Q)Mg(x) .

Here Q denotes a cube and hQ = |Q|−1
∫

Q
h. The proof of the first

inequality can be found in [GT], Lemma 7.16, for the second see [He].
Integrating both sides of the first inequality over a ball (more precisely,

taking |B(x, r)|−1
∫

B(x,r)
. . . dy) and applying the inequality

|B(x, r)|−1
∫

B(x,r)

|y − z|1−n dy ≤ C3|x− z|1−n

we see that the right hand side is estimated by C4

∫
Q
|∇f ||x−z|1−n dz. Now

letting r → 0 we obtain

|f(x)− fQ| ≤ C4

∫
Q

|∇f(z)|
|x− z|n−1

dz

for all x (where f(x) is defined by (4)).
For any x, y ∈ Rn, we can find a cube Q containing x, y with diam Q ≤

C5|x− y|. Then

|f(x)− f(y)| ≤ |f(x)− fQ|+ |f(y)− fQ|(5)

≤ C4

( ∫
Q

|∇f(z)|
|x− z|n−1

dz +
∫
Q

|∇f(z)|
|y − z|n−1

dz

)
≤ C6(diam Q)(M |∇f |(x) + M |∇f |(y))
≤ C7|x− y|(M |∇f |(x) + M |∇f |(y)) .

Hence if Ak = {x : M |∇f |(x) ≤ k} then we have f|Ak
∈ Lip2kC7

(Ak)
and |Rn \

⋃
k Ak| = 0. Now the lemma follows by the Kirszbraun’s theorem

([K], [F], Th. 2.10.43, [S], Th. 5.1) stating that each Lipschitz function de-
fined on a subset of a metric space can be extended to a Lipschitz function
defined on the whole space with the same Lipschitz constant.

Now, as noted above, the change of variables formula for Sobolev map-
pings follows by the same calculations as in Section 1.

Note that since the inequality (5) holds for all x and y such that either
Mf(x) or Mf(y) is finite (to avoid the case |∞−∞| in the left hand side of
(5)), we obtain the following well known result as an immediate consequence:
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Corollary. W 1,∞(Q) = Lip(Q).

It is well known that if p > n then every W 1,p
loc (Ω, Rn) mapping is contin-

uous and satisfies the condition N (see e.g. [BI], Lemma 8.1). An important
question arises:

Does Theorem 2 hold without redefining f on any set provided that f ∈
W 1,1

loc (Ω, Rn) is continuous?

The answer is negative. Indeed, in [P1], [P2] Ponomarev constructed an
example of a homeomorphism f : [0, 1]n → [0, 1]n of class W 1,p for all p < n
for which the condition N fails. In [R2] Reshetnyak constructed an example
of a continuous mapping of class W 1,n(Rn) without the property N when
n = 2. In [V] Väisälä extended this result to all n ≥ 2.

Assume that 1)–3) of Theorem 2 hold for a mapping f for which the
condition N fails. Then there exists a set E with |E| = 0 and |f(E)| > 0.
We have

0 =
∫
E

|Jf | dx =
∫

Rn

Nf (y, E) dy ≥ |f(E)| > 0 .

This contradiction completes the proof.
On the other hand, Reshetnyak proved in [R1], [R2] that if Ω ⊆ Rn and

f ∈ W 1,n(Ω) is a homeomorphism then f satisfies the condition N .
Other results and references concerning the condition N can be found

in [M].

4. Appendix. In this appendix we sketch the proof of Theorem 3.

Theorem. Let f : Ω → Rn, where Ω ⊆ Rn is an open subset , be a
locally Lipschitz mapping. Let u : Rn → R be a measurable function and
E ⊆ Ω a measurable set. Then

1) The functions (u ◦ f)|Jf | and u(y)Nf (y, E) are measurable.
2) If moreover u ≥ 0 then∫

E

(u ◦ f)|Jf | dx =
∫

Rn

u(y)Nf (y, E) dy .

3) If one of the functions (u ◦ f)|Jf | and u(y)Nf (y, E) is integrable then
so is the other (integrability of (u◦f)|Jf | concerns the set E) and the formula
of 2) holds.

R e m a r k s. 1) If f is a locally Lipschitz mapping then by Rademacher’s
theorem Jf exists almost everywhere and it is locally bounded because the
derivatives of f are bounded by the Lipschitz constant.

2) The first remark made after Theorem 2 also applies here, upon using
Lemma 2 below.
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S k e t c h o f p r o o f.

Lemma 1. Under the assumptions of the theorem,∫
Ω

|Jf (x)| dx =
∫

Rn

Nf (y, Ω) dy .

P r o o f. This fact is well known. The reader can find its elegant proof
in [BI], Th. 8.3.

Lemma 2. Let f satisfy the above assumptions. Let E = {x : Jf (x) = 0}.
Then

A ⊂ Rn, |A| = 0 ⇒ |f−1(A) \ E| = 0 .

P r o o f. If Ω′ b Ω then by Lemma 1, the function Nf (·, Ω′) is integrable.
Taking a sequence Ωk b Ωk+1 with

⋃
k Ωk = Ω we get the general case, so

we can restrict our attention to the case when Nf (·, Ω) is integrable.
Let A ⊂ Rn, |A| = 0. Then for each ε > 0 there exists an open set

U ⊆ Rn such that A ⊆ U , |U | < ε. Then f−1(A) ⊆ f−1(U), hence∫
f−1(A)

|Jf | ≤
∫

f−1(U)

|Jf | =
∫

Rn

Nf (y, f−1(U)) dy

=
∫
U

Nf (y, f−1(U)) dy =
∫
U

Nf (y, Ω) dy .

The function Nf (·, Ω) is integrable and U is arbitrarily small, hence∫
f−1(A)

|Jf | = 0 by absolute continuity of the integral; but now |Jf | > 0
on f−1(A) \ E, hence |f−1(A) \ E| = 0.

Now we can divide the proof of the theorem into six steps in a standard
manner. Except for Steps 1 and 3 we omit the simple proofs.

S t e p 1: E = Ω, u a simple function constant on open sets. Let V ⊆ Rn

be an open set. We have∫
Ω

χV (f(x))|Jf (x)| dx =
∫

f−1(V )

|Jf (x)| dx =
∫
V

Nf (y, f−1(V )) dy

=
∫
V

Nf (y, Ω) dy =
∫

Rn

χV (y)Nf (y, Ω) dy .

Now it suffices to take a linear combination of characteristic functions.
S t e p 2: E a compact subset of Ω, u a simple function constant on open

sets.
S t e p 3: E a compact subset of Ω, u an arbitrary simple function. It

suffices to assume that u is a characteristic function of an arbitrary mea-
surable set. Now there exists a nonincreasing sequence uk of characteristic
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functions of open sets tending to u a.e. Then:

uk(y)Nf (y, E) → u(y)Nf (y, E) for almost all y ∈ Rn ,(6)
(uk ◦ f)|Jf (x)| → (u ◦ f)(x)|Jf (x)| for almost all x ∈ Ω .(7)

The convergence (6) is obvious. To prove (7) notice that we have equality
of both sides of (7) on the set {x : Jf (x) = 0}, and the convergence on the
complement of that set is a direct consequence of Lemma 2. Now Step 3
follows by passing to the limits (6) and (7) under the integral sign.

S t e p 5: E a compact subset of Ω, u ≥ 0 an arbitrary measurable
function.

S t e p 5: E an arbitrary measurable subset of Ω, u ≥ 0 an arbitrary
measurable function.

S t e p 6: The general case.
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