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UNIFORMLY COMPLETELY RAMSEY SETS
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Galvin and Prikry defined completely Ramsey sets and showed that the
class of completely Ramsey sets forms a σ-algebra containing open sets.
However, they used two definitions of completely Ramsey. We show that
they are not equivalent as they remarked. One of these definitions is a
more uniform property than the other. We call it the uniformly com-
pletely Ramsey property. We show that some of the results of Ellentuck,
Silver, Brown and Aniszczyk concerning completely Ramsey sets also hold
for uniformly completely Ramsey sets. We also investigate the relation-
ships between uniformly completely Ramsey sets, universally measurable
sets, sets with the Baire property in the restricted sense and Marczewski
sets.

1. Introduction. Lebesgue measurability may be defined as follows:
M ∈ L iff M is the union of two sets, one of which is Fσ and the other is of
measure zero. The Baire property in the wide sense (i.e. M ∈ Bw iff M is
the union of two sets, one of which is Gδ and the other is of first category) is
a topological analogue of L. The class of completely Ramsey sets, CR, has
meaning only in [ω]ω. The class CR was first defined by Galvin and Prikry
in [GP], where they proved that the Borel sets are completely Ramsey. This
theorem was extended to analytic sets by Silver in [S], and Silver’s proof was
greatly simplified by Ellentuck in [E] and independently by Louveau in [L].
CR may be viewed as a combinatorial analogue of the classes L and Bw.

A set M ⊆ [ω]ω is Ramsey, or for short M ∈ R, iff there exists U ∈ [ω]ω

such that [U ]ω ⊆ M or [U ]ω ⊆ M c. The class of Ramsey sets does not form
a σ-algebra.

We say that [F,U ] is an E-set if F is a finite subset of ω, U is an in-
finite subset of ω, and [F,U ] = {x : x is in [ω] and x = F ∪ V where
V ∈ [U ] and minV > max F}. Without loss of generality, we will assume
that for an E-set [F,U ], min U > max F . Also, we write [U ] = [∅, U ].
M ⊆ [ω] is completely Ramsey, or for short M is CR, provided that for
every E-set [F,U ] there is an E-set [F, V ] such that [F, V ] ⊆ [F,U ] and
[F, V ] ⊆ M or [F, V ] ⊆ M c. M is CR0 provided that if [F,U ] is an
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E-set, then there is an E-set [F, V ] ⊆ [F,U ] such that [F, V ] ⊆ M c.
This is equivalent to M being hereditarily CR, i.e. every subset of M is
CR.

Let Φ : [ω] → 2ω be the characteristic function. Φ([ω]) is 2ω minus the
countable set D, where D is the set of all points of 2ω that have only finitely
many 1’s. We use the product topology on 2ω, and define a topology on [ω]
by just taking the preimage under Φ of open sets in 2ω. Using this map, [ω]
may be viewed as a subset of 2ω. We also define the following set function
which we will use frequently. For each U in [ω], let Φ∗(U) =

∏
Ai where

Ai = {0, 1} if i ∈ U , otherwise Ai = {0}. Note that Φ([U ]) = Φ∗(U) \ D.
Sometimes we will abuse the definition of Ramsey sets and completely Ram-
sey sets and call a set M ⊆ 2ω Ramsey and respectively, completely Ram-
sey. By this, we mean that Φ−1(M) is Ramsey and respectively, completely
Ramsey, in [ω].

M is universally measurable, denoted by M ∈ U , iff M is measurable
with respect to the completion of every non-atomic Borel measure on the
space. Equivalently, M ∈ U iff the image of M under every homeomorphism
is Lebesgue measurable. M has the Baire property in the restricted sense,
denoted by M ∈ Br, iff M has the Baire property in the wide sense relative
to every perfect subset of the space. The classes U and Br are in some
sense “uniformly” L and Bw, respectively. M is a Marczewski set, denoted
by M ∈ (s), iff for every perfect set P , there is a perfect set Q ⊆ P such
that Q ⊆ M or Q ⊆ M c. Galvin and Prikry in [GP] gave two definitions
of completely Ramsey, one of which we stated earlier. They suggested that
they are not equivalent. Theorem 3 shows that indeed they are not equiva-
lent, and that one of them is a more uniform property, analogous to U and
Br. We call this property uniformly completely Ramsey. A set M ⊆ 2ω

(if M ⊆ [ω], embed it into 2ω using Φ) is uniformly completely Ramsey,
denoted by M ∈ UCR, iff for every continuous function f : 2ω → 2ω,
f−1(M) is Ramsey. Or, more precisely, Φ−1(f−1(M)) is Ramsey. M is
UCR0 iff M is hereditarily UCR, i.e. every subset of M is UCR. M is U0,
and AFC (always first category) iff M is hereditarily U and Br, respec-
tively.

In Section 2, we will investigate the relationships between U , Br, (s),
UCR and S, the smallest σ-algebra containing open sets and closed under
operation A. In Section 3, we state some facts about CR sets and state
some open questions. Before we prove our results, we state some well known
theorems concerning completely Ramsey sets.

Theorem [Galvin–Prikry]. Each of CR and UCR forms a σ-algebra
containing open sets. Each of CR0 and UCR0 forms a σ-ideal.

P r o o f. Refer to [GP].
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Theorem [Silver]. Analytic sets are CR.

P r o o f. Refer to [S].

Theorem [Silver]. Under MA, the union of less than continuum many
CR-sets is CR.

P r o o f. Refer to [S].

A collection G of sets is called an A-system provided that G = {Mf}f∈ω<ω

and that if f , g ∈ ω<ω and f ⊆ g, then Mf ⊇ Mg. If f ∈ ωω, then f |k is the
restriction of f to {0, 1, . . . , k}. If G is an A-system, then the statement that
M is the result of operation A on G means that M =

⋃
f∈ωω

⋂∞
k=0 Mf |k.

A collection H of sets is closed under operation A provided that if G is an
A-system such that every member of G is in H, then the result of operation
A on G is in H.

Theorem. If M ∈ S, the smallest σ-algebra containing opens sets and
closed under operation A, then M is completely Ramsey.

P r o o f. Refer to [E] or [L].

2. Relationships between S, (s), U , Br, and UCR. First, we prove
that there is a set which is CR0 but not UCR.

Lemma 1. If U ∈ [ω] and M = {V ∈ [ω] : U ⊆ V }, then M is CR0.

P r o o f. Let U ∈ [ω] and M = {V ∈ [ω] : U ⊆ V }. Let [F, T ] be an
E-set. Assume that [F, T ] intersects M . Then U ∩ T is an infinite set. Let
T ′ be an infinite subset of T such that U\({1, 2, . . . ,max F} ∪ T ′) 6= ∅. Let
p ∈ U\({1, 2, . . . ,max F} ∪ T ′). Then [F, T ′] ⊆ [F, T ] and [F, T ′] ⊆ M c

because no element of [F, T ′] contains p whereas every element of M does.
Therefore, M is CR0.

Lemma 2. If M ⊆ [ω] and M contains a perfect set , then M contains a
set which is not UCR.

P r o o f. Suppose M ⊆ [ω] is perfect. Let C be a Cantor set contained
in M . Now, let h : 2ω → Φ(C) be a homeomorphism onto Φ(C). Let B be a
Bernstein set in Φ(C). Then Φ−1(h−1(B)) is Bernstein in [ω] and therefore
is not Ramsey. So, B is not UCR.

A set which is completely Ramsey does not have to be (s). To see this
consider a Bernstein subset B of M = {V ∈ [ω] : V contains positive
odd integers}. B is CR0 by Lemma 1, but it is not (s). However, for the
uniformly completely Ramsey sets, we have the following theorem.

Theorem 3. UCR ⇒ CR, UCR0 ⇒ CR0, and CR0 6⇒ UCR, UCR ⇒
(s), UCR0 ⇒ (s0).
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P r o o f. Refer to [GP] for the proofs of the first two claims. To prove
the third claim, consider the set M = {X ∈ [ω] : X contains all the positive
odd integers}. Since M is perfect in [ω], M contains a set which is not UCR
by Lemma 2, but M is CR0 by Lemma 1. So, there exists a set which is
CR0 but not UCR.

Let us now show that UCR ⊆ (s). Let M be a subset of 2ω that is
UCR. Let P be a perfect set contained in 2ω. Let f : 2ω → 2ω be a
homeomorphism onto P . Since M is UCR, Φ−1(f−1(M)) is R. Let U ∈ [ω]
such that [U ] ⊆ Φ−1(f−1(M)) or [U ] ⊆ (Φ−1(f−1(M)))c. Let K be a Cantor
set which is a subset of [U ]. Then f(Φ(K)) is a Cantor set which is a subset
of P such that f(Φ(K)) ⊆ M or f(Φ(K)) ⊆ M c. Thus, M is Marczewski.
If M is UCR0, then by what we just proved, M is (s). And by Lemma 2,
M is totally imperfect. Since all totally imperfect (s) sets are (s0), M is
(s0).

Lemma 4. M ⊆ 2ω is UCR if and only if for every continuous f : 2ω →
2ω, Φ−1(f−1(M)) is CR.

P r o o f. This lemma follows from the Galvin–Prikry theorem which
states that UCR ⊆ CR.

Theorem 5. UCR is closed under operation A so S is also a subclass of
UCR.

P r o o f. Let T = {Mf}f∈ω<ω be an A-system of sets such that each
element of T is UCR. Let

M =
⋃

f∈ωω

⋂
k∈ω

Mf |k .

We want to show that M is UCR. Let f : 2ω → 2ω be a continuous function.
Then

Φ−1(f−1(M)) =
⋃
n∈ω

⋂
k∈ω

Φ−1(f−1(Mn|k)) .

By Lemma 4, Φ−1(f−1(Mn|k)) is CR, and since the class CR is closed
under operation A, Φ−1(f−1(M)) is CR. Thus, Φ−1(f−1(M)) is R for every
continuous f : 2ω → 2ω. So, M is UCR.

Lemma 6. Suppose f : 2ω → 2ω is a continuous function and M ⊆ 2ω.
If there is U ∈ [ω] such that f(Φ∗(U)) ∩M is UCR, then there is V ∈ [U ]
such that [V ] ⊆ Φ−1(f−1(M)) or [V ] ⊆ Φ−1(f−1(M))c.

P r o o f. Let h be the increasing function from ω onto U . Now, let
H : 2ω → 2ω be a homeomorphism such that if (x0, x1, x2, . . .) ∈ 2ω, then
H((x0, x1, x2, . . .)) = (y0, y1, y2, . . .) where yn = 0 when n 6∈ U and if n ∈ U ,
then yn = xh(n). H(f) is a continuous function from 2ω into 2ω, and
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M ∩ [H(f(2ω))] is UCR. So, there is V ′ ∈ [ω] such that

[V ′] ⊆ Φ−1(H ◦ f)−1(M) or [V ′] ⊆ ((Φ−1(H ◦ f)−1(M)))c .

Let V = h(V ′). Then we have V ∈ [U ] and V ⊆ Φ−1(f−1(M)) or V ⊆
(Φ−1(f−1(M)))c.

A set M is (s0) iff M is (s) and totally imperfect. We have a similar
theorem for the uniformly completely Ramsey sets.

Theorem 7. Suppose M ⊆ 2ω is UCR. Then M is UCR0 iff M is
totally imperfect.

P r o o f. Suppose M is UCR0. Then M is totally imperfect by Lemma 2.
Assume that M is UCR and totally imperfect. We want to show that

M is hereditarily UCR. So, let K ⊆ M , and f : 2ω → 2ω. We want to show
that Φ−1(f−1(K)) is R. Since M is UCR, there is U ∈ [ω] such that

[U ] ⊆ Φ−1(f−1(M)) or [U ] ⊆ (Φ−1(f−1(M)))c .

If [U ] ⊆ (Φ−1(f−1(M)))c, then we would have [U ] ⊆ (Φ−1(f−1(K)))c, and
so Φ−1(f−1(K)) would be R. So, let us assume that [U ] ⊆ Φ−1(f−1(M)).
Since M is totally imperfect and f(Φ∗(U)) is compact, f(Φ∗(U)) ∩ M is
countable. So, f(Φ∗(U)) ∩ K is countable and therefore UCR. Then, by
Lemma 6, there is V ∈ [U ] such that

[V ] ⊆ Φ−1(f−1(K)) or [V ] ⊆ (Φ−1(f−1(K)))c .

So, we have shown that for every K ⊆ M and every f : 2ω → 2ω,
Φ−1(f−1(K)) is R. Therefore, M is hereditarily UCR.

Note that, by Lemma 1, the corresponding statement for the class CR is
not true. However, we should not expect it to be true because CR is similar
to L and Bw, and the corresponding statements for the classes L and Bw

are false.
The natural metric on 2ω is the following: If x = (x1, x2, x3, . . .) and

y = (y1, y2, y3, . . .) are two points in 2ω, then d(x, y) =
∑

2−i|xi − yi|. The
Lebesgue measure µ on 2ω is the product measure on 2ω. The Lebesgue
measure µ on [ω] is the measure induced on [ω] by the homeomorphism Φ.
The statement that M is a Lusin (Sierpiński) set in [ω] means that if K
is a first category set (measure zero set), then M ∩ K is countable. The
statement that M is a c-Lusin (c-Sierpi/nski) set in [ω] means that if K is
a first category set (measure zero set), then M ∩K has cardinality less than
that of the continuum. Refer to [M] for more information regarding Lusin
sets and Sierpiński sets.

Lemma 8. Let f : 2ω → 2ω be a continuous function. Then there is
U ∈ [ω] such that f(Φ∗(U)) is of measure zero and nowhere dense in 2ω.
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P r o o f. We use the metric on 2ω as defined earlier. Since f is continuous
on a compact metric space, f is uniformly continuous. Let εn = (n+1)−1×
2−n−1 for n ∈ ω. By uniform continuity, for each n ∈ ω, let m(n) be
such that if x, y ∈ 2ω and d(x, y) < 2−m(n)+1, then d(f(x), f(y)) < εn and
m(n + 1) > m(n). Now, let U = {m(n) : n ∈ ω}. First, we want to show
that f(Φ∗(U)) has measure zero. Let ε > 0. Let n be a positive integer such
that (n + 1)−2 < ε. Let T = {h ∈ 2m(n): if j 6∈ {m(0),m(1), . . . ,m(n)},
then h(j) = 0}. Then |T | = 2n+1. Now, for each h ∈ T , let Oh = h ×
{0, 1} × {0, 1} × . . . Then Oh is an open set in 2ω, and if x and y are in
Oh, then d(x, y) < 2m(n)−1. So, d(f(x), f(y)) < εn for every x and y in
Oh. From this it follows that µ(f(Oh)) < εn. But f(Φ∗(U)) =

⋃
h∈T f(Oh).

Since there are not more than 2n+1 elements in T ,

µ(f(Φ∗(U))) = µ
( ⋃

h∈T

f(Oh)
)
≤

∑
h∈T

µ(f(Oh)) ≤ 2n+1εn < ε .

So, we have shown that f(Φ∗(U)) has measure zero, and since every open
subset of 2ω has positive measure, f(Φ∗(U)) is nowhere dense.

Theorem 9. Lusin sets and Sierpiński sets are UCR0.

P r o o f. Let M ⊆ 2ω be a Lusin or a Sierpiński set. We want to show
that M is UCR. Let f : 2ω → 2ω be a continuous function. By Lemma 8,
there is U ∈ [ω] such that f(Φ∗(U)) has measure zero and is of first category.
So, M ∩f(Φ∗(U)) is countable. Since countable sets are UCR, by Lemma 6,
there is V ∈ [U ] such that

[V ] ⊆ Φ−1(f−1(M)) or [V ] ⊆ (Φ−1(f−1(M)))c .

Therefore, Φ−1(f−1(M)) is R and we conclude that M is UCR. Since Lusin
and Sierpiński sets are hereditarily Lusin and Sierpiński, respectively, M is
UCR0.

Corollary 10. Under CH , UCR does not imply L or Bw.

P r o o f. Under the assumption of the continuum hypothesis, there are
Lusin and Sierpiński sets of the cardinality of the continuum. Let A1 and
A2 be Lusin and Sierpiński sets, respectively. Then A1 ∪ A2 is UCR by
Theorem 9, but A1 ∪A2 is neither L nor Bw.

Under the assumption of MA, there are no Lusin nor Sierpiński sets. We
modify our Theorem 9 so we can show that c-Lusin and c-Sierpiński sets are
UCR. This way we will get a UCR0 set of cardinality of the continuum under
MA. It will also show us where the difficulties lie in trying to construct, in
ZFC, a UCR0 set of the cardinality that of the continuum.

Lemma 11. Under MA, less than the continuum union of UCR sets is
UCR.
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P r o o f. Let G be a collection of UCR sets such that |G| is less that con-
tinuum. Let f : 2ω → 2ω be a continuous map. Then, for each g ∈ G, f−1(g)
is CR by Lemma 4. We have Φ−1(f−1(

⋃
g∈G g)) =

⋃
g∈G Φ−1(f−1(g)).⋃

g∈G Φ−1(f−1(g)) is CR by the theorem of Silver that states that the union
of less than continuum many CR sets is CR [S]. So, we have shown that
Φ−1(f−1(

⋃
G)) is R, and therefore,

⋃
G is CR1.

Theorem 12. Under MA, c-Lusin and c-Sierpiński sets are UCR0.

P r o o f. We need MA to prove this theorem, whereas we proved Theo-
rem 9 in ZFC. The reason for needing MA for this part is that we do not
know in ZFC whether every set of cardinality less than that of the continuum
is UCR0. This may possibly be true.

Let M be a c-Lusin (c-Sierpiński) set. Let f : 2ω → 2ω be a continuous
function. By Lemma 8, there is U ∈ [ω] such that f(Φ∗(U)) is of measure
zero and first category. So, f(Φ∗(U)) ∩ M has cardinality less than that
of the continuum. But, by Lemma 11, f(Φ∗(U)) ∩ M is UCR. So, by
Lemma 6, there exists a V ∈ [U ] such that [V ] ⊆ Φ−1(f−1(M)) or [V ] ⊆
[Φ−1(f−1(M))]c. Therefore, Φ−1(f−1(M)) is R, and M is UCR0.

Corollary 13. Under MA, there is a UCR0 set of cardinality that of
the continuum.

3. Some facts about CR sets and questions. Aniszczyk et al. in
[AFP] showed that under MA there is a U0 set which is not R. Brown in
[B] showed that under CH there is an (s0) set which is not R. It also follows
from Example 6 in [B] that assuming CH there is an AFC set which is not
R. We show that under MA there is an AFC set which is not R. We present
our argument here because it uses a technique different from that of Brown.

Theorem 14. Under MA, there is an AFC set which is not R, therefore
not CR or UCR.

P r o o f. For each U ∈ [ω], let µU be a measure defined on Φ∗(U) in
the following fashion. Let h be the increasing function from ω onto U . Let
H : 2ω → Φ∗(U) be defined in the following manner. If (x1, x2, x3, . . .) ∈ 2ω,
then H((x1, x2, x3, . . .)) = (y1, y2, y3, . . .), where yn = 0 if n 6∈ U , otherwise
yn = xm where m is h−1(n). Let µU be the measure on Φ∗(U) induced by
the measure on 2ω under the homeomorphism H. Now, let {Gα}α<c be a
well-ordering of those Gδ subsets of 2ω that satisfy the condition that for
each U ∈ [ω], µU (Gα ∩ Φ∗(U)) = 0. Let {Aα}α<c be a well-ordering of [ω].
Now for each α < c, let pα and qα be such that pα 6= qα and {pα, qα} ⊆
Φ∗(Aα)\Φ−1((

⋃
β≤α Gβ) ∪ (

⋃
β<α{pβ , qβ})). Under the assumption of MA,

the choice of such pα and qα is possible. Now, let M = {pα : α < c}. Then
it is clear that M is not R.
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Now, we want to show that M is AFC. Let P be a perfect set in 2ω.
First, we will construct a dense Gδ subset G of P such that µU (G∩Φ∗(U))
= 0 for each U ∈ [ω]. Let p0, p1, p2, . . . be a countable dense subset of P ,
where pn = (pn,0, pn,1, pn,2, . . .). For each (k, l) ∈ ω × ω, let

Uk,l = {pk,0} × {pk,1} × . . .× {pk,l} × {0, 1} × {0, 1} × . . .

Now, let On =
⋃∞

i=0 Ui,n+i. Let G = P ∩ (
⋂∞

i=0 On). Then G is Gδ in
P and has the desired property that µU (G) = 0 for each U ∈ [ω]. Then
M ∩P = M ∩ ((P\G)∪G) = (M ∩ (P\G))∪ (M ∩G). Now, M ∩ (P\G) is
of first category in P , and M ∩G is of first category because the cardinality
of M ∩ G is less than that of the continuum by the construction and MA
implies that if a set has cardinality less than the continuum then it is of first
category. So, we see that M ∩ P is first category. Therefore, M is AFC in
2ω but not R.

We summarize the results of this note in the following diagram.
L

↗
A U CR

↗ ↘ ↗ ↘↗
B S → UCR → (s)
↘ ↗ ↘ ↗

CA Br
↘

Bw

Question 1. Is there, in ZFC, a UCR0 set of the cardinality of the
continuum?

Question 2. Ellentuck in [E] showed that the set of all E-sets forms a
basis for a topology on [ω], and the class of Bw sets forms in this topology
is precisely the class of CR sets. Can the class of UCR sets be characterized
in this topology as perhaps Br sets? Or may be as (s) sets?
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