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BY
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Introduction. The purpose of this paper is to study contact CR-sub-
manifolds with nonvanishing parallel mean curvature vector immersed in a
Sasakian space form.

In §1 we state general formulas on contact CR-submanifolds of a Sasakian
manifold, especially those of a Sasakian space form. §2 is devoted to the
study of contact C'R-submanifolds with nonvanishing parallel mean curva-
ture vector and parallel f-structure in the normal bundle immersed in a
Sasakian space form. Moreover, we suppose that the second fundamental
form of a contact CR-submanifold commutes with the f-structure in the
tangent bundle, and compute the restricted Laplacian for the second funda-
mental form in the direction of the mean curvature vector. As applications
of this, in §3, we prove our main theorems.

1. Preliminaries. Let M be a (2m+ 1)-dimensional Sasakian manifold
with structure tensors (¢, &, 7, g). The structure tensors of M satisfy

P’X =-X+nX), 0&=0, nE) =1, n(eX)=0,
9(pX,9Y) =g(X,Y) —n(X)n(Y), n(X)=g(X,E)

for any vector fields X and Y on M. We denote by ithe operator of
covariant differentiation with respect to the metric g on M. We then have

Vxé=¢X, (Vxp)Y =—g(X,Y)E+n(Y)X = R(X, €)Y,

R denoting the Riemannian curvature tensor of M.

Let M be an (n + 1)-dimensional submanifold of M. Throughout this
paper, we assume that the submanifold M ofM 1s tangent to the structure
vector field &.

We denote by the same g the Riemannian metric tensor field induced
on M from that of M. The operator of covariant differentiation with respect
to the induced connection on M will be denoted by V. Then the Gauss and
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Weingarten formulas are given respectively by
VxY =VxY +B(X,Y) and VxV =—AyX +DxV

for any vector fields X and Y tangent to M and any vector field V' normal
to M, where D denotes the operator of covariant differentiation with respect
to the linear connection induced in the normal bundle T(M)* of M. A and
B appearing here are both called the second fundamental forms of M and
are related by

g(B(X,Y),V)=g(AvX,Y).
The second fundamental form Ay in the direction of the normal vector V'

can be considered as a symmetric (n + 1,n + 1)-matrix.
The covariant derivative V x A of A is defined to be

(VxA)VY = VX(AVy) — ADXVY — Avvxy .

If (VxA)yY = 0 for any vector fields X and Y tangent to M, then the
second fundamental form of M is said to be parallel in the direction of V.
If the second fundamental form is parallel in any direction, it is said to be
parallel.

The mean curvature vector v of M is defined to be v = (Tr B)/(n + 1),
where Tr B denotes the trace of B. If v = 0, then M is said to be minimal.
If the second fundamental form A vanishes identically, then M is said to
be totally geodesic. A vector field V normal to M is said to be parallel if
DxV = 0 for any vector field X tangent to M. A parallel normal vector
field V' (#£ 0) is called an isoperimetric section if Tr Ay is constant, and is
called a minimal section if Tr Ay is zero.

For any vector field X tangent to M, we put

0X =PX +FX,

where PX is the tangential part and F'X the normal part of ¢X. Then P
is an endomorphism of the tangent bundle 7'(M) and F' is a normal bundle
valued 1-form on the tangent bundle 7'(M). Similarly, for any vector field
V normal to M, we put

oV =tV + fV,

where tV is the tangential part and fV the normal part of V. We then
have

g(PX,Y)+g(X,PY)=0, g(fV.U)+g(V,fU) -0,
g(FX,V)+g(X,tV)=0.
Moreover,
P’= -] -tF+n®¢, FP+fF=0,
Pt+tf=0, f*=—I—Ft.
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We define the covariant derivatives of P, F', t and f by
(VxP)Y =Vx(PY)-PVxY, (VxF)Y =Dx(FY)—-FVxY,
(Vxt)V =Vx (V) —tDxV, (Vxf)V =Dx(fV) - fDxV,

respectively.
For any vector field X tangent to M, we have

Vx¢é =X = Vx&+ B(X,¢§),

and hence

(1.1) Vxé=PX,

(1.2) AvE=—-tV, B(X,§) =FX.
Furthermore,

(1.3) (VxP)Y = Apy X+tB(X,Y) — g(X,Y){+n(Y) X,
(1.4) (VxF)Y =—-B(X,PY)+ fB(X,Y),
(1.5) (Vxt)V =A;y X — PAy X,

(1.6) (Vxf)V =—-FAy X — B(X,tV).

A submanifold M of a Sasakian manifold M tangent to the structure
vector field £ is called a contact CR-submanifold of M if there exists a dif-
ferentiable distribution H : * — H, C T, (M) on M satisfying the following
conditions (see [6]-[8]):

(1) H is invariant with respect to @, i.e. pH, C H, for each z in M, and

(2) the complementary orthogonal distribution H+ : x — H} C T,(M)
is anti-invariant with respect to ¢, i.e. pH;- C T(M)* for each = in M.

For a contact CR-submanifold M, the structure vector field £ satisfies
EcHoréec H.

We put dim H = h, dim H+ = p and codimM =2m —n =gq. If p =0,
then a contact CR-submanifold M is called an invariant submanifold of M,

and if A = 0, then M is called an anti-invariant submanifold of M tangent
to . If p=gqand £ € H, then a contact CR-submanifold M is called a
generic submanifold of M (see [2], [3], [5]).

In the following, we suppose that M is a contact C'R-submanifold of a

Sasakian manifold M. Then
(1.7) FP=0, fF=0, tf=0, Pt=0,
(1.8) P34+P=0, f+f=0.

The equations in (1.8) show that P is an f-structure in M and f is an
f-structure in the normal bundle of M (see [4]). From (1.3) we obtain

(1.9) ApxY — Apy X =n(Y)X —n(X)Y for X, Y € H*.
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We denote by M’ Zm+1(c) a (2m 4+ 1)-dimensional Sasakian space form of
constant yp-sectional curvature c. Then the Gauss and Codazzi equations of
M are respectively
(110)  R(X,Y)Z = L(c+3)[g(Y, 2)X — g(X, Z)Y]

+3(c=DX)N(2)Y —n(Y)n(Z)X + (X, Z)n(Y)¢
— 9(Y, Z)(X)¢ + g(PY, Z)PX — g(PX, Z)PY + 29(X, PY)PZ]

+ Ay, )X — Apx,2)Y

where R is the Riemannian curvature tensor of M, and
(L.11)  g((VxAvY,2) —g((VyA)v X, Z)

=9((VxB)(Y,2),V) - g((VyB)(X,Z),V)

= 1(c=1)[g(PY, Z)g(FX,V) — g(PX, Z)g(FY,V)

+29(X,PY)g(FZ,V)].
We define the curvature tensor R+ of the normal bundle of M by
R*(X,Y)V = DxDyV — DyDxV — Dixy]V .
Then we have the Ricci equation
(112)  g(RH(X,Y)V,U) + g([Av, Av]X,Y)
= 1(c=1)[g(FY,V)g(FX,U) — g(FX,V)g(FY,U)
T 29(X, PY)g(fV,U)].

2. Parallel mean curvature vector. In this section we prepare some
lemmas for later use.

Let M be an (n+ 1)-dimensional contact CR-submanifold of a (2m + 1)-
dimensional Sasakian manifold M. We have the following decomposition of
the tangent space T, (M) at each point z in M:

Tw(M) = Hy (M) + {£} + No (M),

where H,(M) = ¢H,(M) and N,(M) is the orthogonal complement of

Hy (M) +{¢} in T,(M). Then ¢N,(M) = FN (M) C T,(M)*. Similarly,
T.(M)* = FN,(M) + N, (M)*,

where N, (M)* is the orthogonal complement of FN, (M) in T,,(M)*. Then
‘PNJ(M)L:fo(M)L:Nx(M)L~ .

We take an orthonormal basis ey, ..., e,+1 of M such that, when re-

stricted to M, eq,...,e,11 are tangent to M. Then eq,...,e,41 form an

orthonormal basis of M. We can choose them so that e;,...,e, form an

orthonormal basis of N,(M) and ep41,...,e, form an orthonormal ba-
sis of H,(M) and e,+1 = £ Moreover, we can take e,ia,...,€,4+1 Of



CONTACT CR-SUBMANIFOLDS 177

an orthonormal basis of T (M)J- such that e,42,...,€ep414p form an or-
thonormal basis of F'N,(M) and epio4p,.-.,€2m+1 form an orthonormal
basis of N,(M)=L. In case of need, we can take e, o,... s €nt1+p such that
ent2 = Fei,...,ent14p = Fep. Unless otherwise stated, we use the con-
vention that the ranges of indices are respectively:

i,5,k=1,....,.n+1; =z,y,z=1,...,p; a,bc=n+2,....2m+1.

LEMMA 2.1. Let M be a contact CR-submanifold of a Sasakian mani-
fold M. If the f-structure f in the normal bundle of M is parallel, i.e.
Vf =0, then

(2.1) AptV = AytU

for any vector fields U and V normal to M, and the mean curvature vector
v satisfies

(2.2) fr=0.

Proof. From (1.6) we have
This gives (2.1). Since fF =0, (1.4) implies

0=—fB(X,PY)+ f*B(X,Y).

Hence we obtain f2 > B(e;, e;) = 0. From this and the equation f3+ f = 0,
we get (2.2).

From (2.2) we see that the mean curvature vector v of M is in FN,(M).

In the following, we suppose that M is an (n + 1)-dimensional contact
CR-submanifold of a Sasakian space form M?™ 1 (¢) with nonvanishing par-
allel mean curvature vector v and parallel f-structure f in the normal bundle
of M. Furthermore, we assume that the second fundamental form A and the
f-structure P on M commute, PA = AP, which means that PAy = Ay P
for any vector field V normal to M. In this case, the contact CR-structure
P induced on M is normal (see [3]).

We put p = v/|v|. Then p is a nonvanishing parallel unit normal vector
with fu = 0,i.e. pisan isoperimetric section in the normal bundle of M. We

notice that (VxA),Y = (VxA,)Y for any vector fields X and Y tangent
to M.

LEMMA 2.2. The second fundamental forms of M satisfy
(2.3)  g(AuX, AvY) = ;(c+3)9(X,Y)g(u, V)
— e =DgFX, W)g(FY, V) +n(X)n(Y)g(u, V)]

+) gAY tea)g(AaX,Y),

where A, denotes the second fundamental form in the direction of e,.
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Proof. By the assumption PA = AP, we have g(A,PX,tV) = 0 for
any vector field X tangent to M and any vector field V normal to M. We
then have

9(Vy A)uPX,tV) 4 g(Au(Vy P)X,tV) + g(A,PX, (Vy)V) = 0,
and hence
9(Vey A)uPX,tV) + g(X, PY)g(1, V) + Y g(AutV,tea)g(Aa X, PY)
+g(A,PX,AvY) 4+ g(A,PX, Ay PY) =0.
Using the Codazzi equation (1.11) and the Ricci equation (1.12) gives
He+3)g(PX,Y)g(p, V) + Y g(AutV, tea)g(Aa X, PY)
+9(A,PX,AvY)=0.
Hence
9(A,PX,AyPY) = ;(c+3)g(PX,PY)g(u, V)
+> " g(AutV teqd)g(AdX, P?Y).
On the other hand,
9(AuPX, Ay PY) = g(A, X, AvY) + g(Au X, ApytV) +n(Y)g(Au X, tV),
= g(AutV tea)g(Aa X, P?Y)
=) g(AutVitea)g(AaX,Y) + g(AutV, Apy X)
— 9(AutV.§)g(&, Ary X) +n(Y)g(AutV, X)
= n(Y)g(AutV;€)g(&; X)
=Y g(AutVitea)g(AaX,Y) + g(AutV, Apy X)
+g(FX, FY)g(p, V) +n(X)g(p, V) +n(Y)g(A. X, tV) .
From the above equations, we find
g(Au X, AvY) = g(AutV tea)g(AuX,Y)
+3(c = Dg(PX, PY)g(n, V) + g(X,Y)g(u, V)
+ 9([Ary, AV, X) .
Since, by the Ricci equation (1.12),
9([Apy, AV, X) = 1(c = DIg(FX, FY)g(u, V) — g(FX, n)g(FY, V)],
the equation above becomes our result (2.3).

Since the mean curvature vector of M is parallel, we see that, by the
Codazzi equation (1.11),

(2.4) > (Vid)uei =0,
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where V,; denotes the covariant differentiation in the direction of e;.

LEMMA 2.3. The restricted laplacian for A, is given by
(25)  (VPA)X = (R(es, X)A)ue; + (e — 1)

x { — Apxcty — tB(tu, X) + 3PA,PX + g(tu, X)t Tr B
—2(Tr Apx)tp — g(X, tu) Z Agteq — 2 Zg(Aatea, X)tu

= (n = )g(t, X)€ = (20 + Vn(X)tp]
Proof. From (1.11) and (2.4) we have
(V24),X = Z(V'V'A) X
= Z (e;, X e;
+1(c—1) Z[Q((Vz‘F)ei,M)PX + g(Fe;, 1) (ViP)X
= 9((ViF) X, p)Pe; — g(FX, 1)(ViP)e;
+29((ViP)ei, X)tp+ 2g(Pei, X)(Vit)u] -
Using (1.2)—(1.5) and Lemma 2.1, we find (2.5).

From (2.5) we have
26)  g(V2A), A) = 3 g((ViVid)es Auey)
= Zg (€i,€5)A)ei, Ape;)
+3(c— 1)[Tr(A P)? =3 g(Autu, Autes)
+ Zg(Autu, te,) Tr A, + n} .
On the other hand, by the Gauss equation (1.10),
(2.7) Zg (ei,€j)A)ues, Ayej) = 2(c+3)(n+1) Tr Ai
—1(c— 1) TrA2 —2(c+3)(TrA,)* — c—1)(n+1)
+ ) Te(ApAl)’ =D TrAZAZ 4+ TrA, TrA%A,

pfla
=) (TrA,A.)°
LEMMA 2.4. The curvature tensor R of M satisfies
(2.8) Zg (eire5)A)uei, Apes) = 15(c = 1)(n—p).

Proof. From the Ricci equation (1.12) we have

(2.9) > Tr(AuA)? =) TrAZAY = —L(c—1)>(p-1).
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On the other hand, (2.3) implies
D Tr A, TrAZA, = 3(c+3)(TrAu)? + ) Tr Ay Tr A, Apg(Autea, tey)
—i(c=1)> g(Autp,te,) Tr Ay
D (TrA,A.)? = tc+3)(n+1)A% - $(c—1)A

+ ) Tr A, Tr Ay Apg(Ayteq, tey) .
Hence
(210) > TrA, TrAZA, - (TrA,A,)°

= —1(c+3)(n+1)A% + F(c—1)A2
+ e+ 3)(TrA,)? — 1(c— 1)) g(Autu, teq) Tr A, .
Substituting (2.9) and (2.10) into (2.7), we find
(211) > g((R(ei, e5)A) ues, Ayey)
=1(c—1) [TrAi — Zg(AMt,u,tea) TrAs— (n+1)— (c=1)(p—1)|.

Since, by (2.3),
(212) TrAL=l(c—Dn-1)+m+1)+> g(Autpte)) Tr A,
equation (2.11) becomes (2.8).

LEMMA 2.5. For the second fundamental form A, we have

(2.13) 9((V2A),, Ay) = —g(c = 1)*(n—p).
Proof. First of all,
(2.14) Tr(A,P)’ = —Tr A2 + 1+ Y g(Auteq, Aytes).

Furthermore, (2.3) implies

(215) > g(Auteq, Ayteq) = H(c—1)(p— 1)+ > _ g(Autu, Aqte,).
From (2.12), (2.13) and (2.15) we obtain

(2.16)  Tr(A,P)* = g(Autp, Aatea) + > g(Autp, teq) Tr A +n

=—ilc=1)(n—p).
Substituting (2.8) and (2.16) into (2.6) yields (2.13).

3. Theorems. Let M be an (n+1)-dimensional contact CR-submanifold

of a Sasakian space form M 2m+1(c) with nonvanishing parallel mean curva-
ture vector. We suppose that Vf =0 and PA = AP.
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First of all, we prove that ATr Ai = (0. We take an orthonormal basis
{A.} such that e,42 = pand Tr A, =0,a =n+3,...,2m+ 1. Then (2.12)
becomes

Tr Ai =1c—1n—-1)+(n+1)+g(Autu tp)Tr A, .
Hence
(31) ATr AL => ViViTr A2 = > g((VZA)utp,tp) Tr A,
+2) " g((ViA)utp, (Vit)p) Tr A, .

On the other hand, (2.5) implies
(32)  g(V2A)utp,tp) = g((Rlei, tu)A)pes, tye)

+3(c—1) {Tr A, - Zg(AMtea, tea)} :
From (1.5) and (1.11) we also have
(33) Y g((Vid)utp, (Vit)u) Tr A,

=—1(c—-1) {Tr A, - Zg(Autea, tea)} .
Using the Gauss equation, we see that
Zg((Rei,tu JA) e, th)
= Zg (e, tp)Apei, tp) — Zg (e, tp)e;, Aytp)
= z(c+3)(n+ Dg(Autp, tp) — 3(c = Dg(Aputp, tp)
— He+3)TrA, + Zg(Aatu, [A,, Aglt)
- Zg(Aat,u,t,u) TrA,Aq + g(Autp, Auytp) Tr A, .
By the Ricci equation (1.12) and the equation
Tr A A, = 3(c+3)(n+1)g(p, eq) — 5(c — 1)g(p, eq)
+ g(Auteq, tn) Tr A,
we find
(3.4) Zg (e tp)A) e, tp) = T(c — 1)[g(Ayteq, teg) — Tr A,].
From (3.1)—(3.4) we have the following
LEMMA 3.1.  ATrA? =0.

We next prove

THEOREM 3.1. Let M be an (n+1)-dimensional contact CR-submanifold

of a Sasakian space form MQmJ“l(c) with nonvanishing parallel mean cur-
vature vector. If the f-structure f in the normal bundle is parallel, and if
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PA = AP, then
|(VA)M|2 = %(c —1)%(n—1p).
Proof. Generally,
AT AZ = g((VZA)u, Ay) + [(VA)I
Thus our assertion follows by Lemmas 2.5 and 3.1.
Let us put
T(X,Y) = (VxA)Y + 3(c = V)[g(FY, ) PX — g(PX,Y )ty].
Then, by the Codazzi equation (1.11),
IT]? = |(VA)|> = 2(c—1)*(n—p) > 0.
Therefore, T vanishes identically if and only if
(VA)? = §(c = 1)*(n—p).
COROLLARY 3.1. Under the same assumptions as in Theorem 3.1,
(85)  (VxA)Y = —(c— D[g(FY, n)PX — g(PX,Y)t]
for any vector fields X and Y tangent to M.

THEOREM 3.2. Let M be an (n+ 1)-dimensional generic submanifold of

a Sasakian space form M 2m+1(c) with nonvanishing parallel mean curvature
vector. If PA = AP, then

(VA)u|* = §(e=1)*(n—p),
or equivalently
(VxA)Y = —1(c=V[g(FY, ) PX — g(PX,Y )ty
for any vector fields X and Y tangent to M.
Theorems 3.1 and 3.2 are generalizations of some theorems in [1] and [2].

THEOREM 3.3. Let M be an (n+1)-dimensional contact CR-submanifold

of a Sasakian space form MQerl(c) with nonvanishing parallel mean cur-
vature vector. If the f-structure f in the normal bundle is parallel, and if
PA = AP, then each eigenvalue of A, is constant.

Proof. We suppose that A,X = AX. Then A,PX = PA,X = APX.
Using (3.5), we also have

Replacing X by PX, we obtain (Y\)g(PX,PX) = 0. If PX = 0, then
(YAN)g(X,X) = 0 and hence YA = 0. If PX # 0, we also have YA = 0.
Consequently, A is constant.
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THEOREM 3.4. Let M be an (n + 1)-dimensional generic submanifold of

a Sasakian space form M 2m+1 () with nonvanishing parallel mean curvature
vector. If PA = AP, then each eigenvalue of A, is constant.

THEOREM 3.5. Let M be an (n + 1)-dimensional complete and simply
connected contact CR-submanifold with nonvanishing parallel mean curva-
ture vector and with parallel f-structure f in the normal bundle in a unit
sphere S*™+1. If PA = AP, then M is a product of Riemannian manifolds,
My x ... x M, where s is the number of the distinct eigenvalues of A, and
the mean curvature vector of M is an umbilical section of My (t =1,...,s).

Proof. From Theorems 3.1 and 3.3 we see that the smooth distribu-
tion Ty (t = 1,...,s) which consists of all eigenspaces associated with the
eigenvalues of A, can be defined and is parallel. M is assumed to be simply
connected and complete, and therefore our assertion follows from the de
Rham decomposition theorem.

THEOREM 3.6. Let M be an (n + 1)-dimensional complete and simply
connected gemeric submanifold with nonvanishing parallel mean curvature
vector in a unit sphere S*™+1. If PA = AP, then M is a product of Rie-
mannian manifolds, My X ... x Mg, where s is the number of the distinct
eigenvalues of Ay, and the mean curvature vector of M is an umbilical
section of My (t=1,...,s).

THEOREM 3.7. Let M be an (n+1)-dimensional contact CR-submanifold
of a Sasakian space form ]\72m+1(c) with nonvanishing parallel mean curva-
ture vector and parallel f-structure f in the normal bundle. If PA = AP,
and if the sectional curvature of M 1is nonpositive, then the second funda-
mental form in the direction of the mean curvature vector is parallel. More-
over, either ¢ = 1, or P = 0 and M is anti-invariant in M*™*1(c) with
respect to .

Proof. We take an orthonormal basis eq,...,en41 such that A,e; =
Xiei (i =1,...,n+1). We denote by K;; the sectional curvature of M
spanned by e; and e;. Then

D 9(Rles ) A)uei, Aues) = 5> (N = 1)Ky .
Substituting this into (2.8), we obtain

Z()\Z - )\j)2Kij = é(c - 1)2(1’L —p) >0.

Thus, if K;; < 0, then (¢ — 1)*(n — p) = 0, and hence (VA), = 0 by
Theorem 3.1. Moreover, we have either ¢ = 1 or n = p. If n = p, then
P =0 and M is an anti-invariant submanifold of M?™*1(c) tangent to the
structure vector field &.
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THEOREM 3.8. Let M be an (n + 1)-dimensional generic submanifold of

a Sasakian space form M 2m+1 () with nonvanishing parallel mean curvature
vector. If PA = AP, and if the sectional curvature of M is nonpositive, then
the second fundamental form in the direction of the mean curvature vector
is parallel. Moreover, either ¢ = 1, or P = 0 and M s anti-invariant in
M2+ (c) with respect to .
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