COLLOQUIUM MATHEMATICUM
 VOL. LXIV

CONTACT CR-SUBMANIFOLDS WITH PARALLEL MEAN CURVATURE VECTOR OF A SASAKIAN SPACE FORM

BY
U-HANG KI (TAEGU) and MASAHIRO KON (HIROSAKI)
Introduction. The purpose of this paper is to study contact $C R$-submanifolds with nonvanishing parallel mean curvature vector immersed in a Sasakian space form.

In $\S 1$ we state general formulas on contact $C R$-submanifolds of a Sasakian manifold, especially those of a Sasakian space form. $\S 2$ is devoted to the study of contact $C R$-submanifolds with nonvanishing parallel mean curvature vector and parallel f-structure in the normal bundle immersed in a Sasakian space form. Moreover, we suppose that the second fundamental form of a contact $C R$-submanifold commutes with the f-structure in the tangent bundle, and compute the restricted Laplacian for the second fundamental form in the direction of the mean curvature vector. As applications of this, in $\S 3$, we prove our main theorems.

1. Preliminaries. Let \widetilde{M} be a $(2 m+1)$-dimensional Sasakian manifold with structure tensors (φ, ξ, η, g). The structure tensors of \widetilde{M} satisfy

$$
\begin{gathered}
\varphi^{2} X=-X+\eta(X) \xi, \quad \varphi \xi=0, \quad \eta(\xi)=1, \quad \eta(\varphi X)=0 \\
g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y), \quad \eta(X)=g(X, \xi)
\end{gathered}
$$

for any vector fields X and Y on \widetilde{M}. We denote by $\widetilde{\nabla}$ the operator of covariant differentiation with respect to the metric g on \widetilde{M}. We then have

$$
\widetilde{\nabla}_{X} \xi=\varphi X, \quad\left(\widetilde{\nabla}_{X} \varphi\right) Y=-g(X, Y) \xi+\eta(Y) X=\widetilde{R}(X, \xi) Y
$$

\widetilde{R} denoting the Riemannian curvature tensor of \widetilde{M}.
Let M be an $(n+1)$-dimensional submanifold of \widetilde{M}. Throughout this paper, we assume that the submanifold M of \widetilde{M} is tangent to the structure vector field ξ.

We denote by the same g the Riemannian metric tensor field induced on M from that of \widetilde{M}. The operator of covariant differentiation with respect to the induced connection on M will be denoted by ∇. Then the Gauss and

Weingarten formulas are given respectively by

$$
\tilde{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y) \quad \text { and } \quad \tilde{\nabla}_{X} V=-A_{V} X+D_{X} V
$$

for any vector fields X and Y tangent to M and any vector field V normal to M, where D denotes the operator of covariant differentiation with respect to the linear connection induced in the normal bundle $T(M)^{\perp}$ of $M . A$ and B appearing here are both called the second fundamental forms of M and are related by

$$
g(B(X, Y), V)=g\left(A_{V} X, Y\right)
$$

The second fundamental form A_{V} in the direction of the normal vector V can be considered as a symmetric $(n+1, n+1)$-matrix.

The covariant derivative $\nabla_{X} A$ of A is defined to be

$$
\left(\nabla_{X} A\right)_{V} Y=\nabla_{X}\left(A_{V} Y\right)-A_{D_{X} V} Y-A_{V} \nabla_{X} Y
$$

If $\left(\nabla_{X} A\right)_{V} Y=0$ for any vector fields X and Y tangent to M, then the second fundamental form of M is said to be parallel in the direction of V. If the second fundamental form is parallel in any direction, it is said to be parallel.

The mean curvature vector ν of M is defined to be $\nu=(\operatorname{Tr} B) /(n+1)$, where $\operatorname{Tr} B$ denotes the trace of B. If $\nu=0$, then M is said to be minimal. If the second fundamental form A vanishes identically, then M is said to be totally geodesic. A vector field V normal to M is said to be parallel if $D_{X} V=0$ for any vector field X tangent to M. A parallel normal vector field $V(\neq 0)$ is called an isoperimetric section if $\operatorname{Tr} A_{V}$ is constant, and is called a minimal section if $\operatorname{Tr} A_{V}$ is zero.

For any vector field X tangent to M, we put

$$
\varphi X=P X+F X
$$

where $P X$ is the tangential part and $F X$ the normal part of φX. Then P is an endomorphism of the tangent bundle $T(M)$ and F is a normal bundle valued 1-form on the tangent bundle $T(M)$. Similarly, for any vector field V normal to M, we put

$$
\varphi V=t V+f V
$$

where $t V$ is the tangential part and $f V$ the normal part of φV. We then have

$$
\begin{gathered}
g(P X, Y)+g(X, P Y)=0, \quad g(f V, U)+g(V, f U)-0 \\
g(F X, V)+g(X, t V)=0
\end{gathered}
$$

Moreover,

$$
\begin{gathered}
P^{2}=-I-t F+\eta \otimes \xi, \quad F P+f F=0, \\
P t+t f=0, \quad f^{2}=-I-F t
\end{gathered}
$$

We define the covariant derivatives of P, F, t and f by

$$
\begin{aligned}
& \left(\nabla_{X} P\right) Y=\nabla_{X}(P Y)-P \nabla_{X} Y, \quad\left(\nabla_{X} F\right) Y=D_{X}(F Y)-F \nabla_{X} Y, \\
& \left(\nabla_{X} t\right) V=\nabla_{X}(t V)-t D_{X} V, \quad\left(\nabla_{X} f\right) V=D_{X}(f V)-f D_{X} V,
\end{aligned}
$$

respectively.
For any vector field X tangent to M, we have

$$
\widetilde{\nabla}_{X} \xi=\varphi X=\nabla_{X} \xi+B(X, \xi)
$$

and hence

$$
\begin{gather*}
\nabla_{X} \xi=P X \tag{1.1}\\
A_{V} \xi=-t V, \quad B(X, \xi)=F X \tag{1.2}
\end{gather*}
$$

Furthermore,

$$
\begin{align*}
\left(\nabla_{X} P\right) Y= & A_{F Y} X+t B(X, Y)-g(X, Y) \xi+\eta(Y) X \tag{1.3}\\
& \left(\nabla_{X} F\right) Y=-B(X, P Y)+f B(X, Y) \tag{1.4}\\
& \left(\nabla_{X} t\right) V=A_{f V} X-P A_{V} X \tag{1.5}\\
& \left(\nabla_{X} f\right) V=-F A_{V} X-B(X, t V) \tag{1.6}
\end{align*}
$$

A submanifold M of a Sasakian manifold \widetilde{M} tangent to the structure vector field ξ is called a contact $C R$-submanifold of \widetilde{M} if there exists a differentiable distribution $H: x \rightarrow H_{x} \subset T_{x}(M)$ on M satisfying the following conditions (see [6]-[8]):
(1) H is invariant with respect to φ, i.e. $\varphi H_{x} \subset H_{x}$ for each x in M, and
(2) the complementary orthogonal distribution $H^{\perp}: x \rightarrow H_{x}^{\perp} \subset T_{x}(M)$ is anti-invariant with respect to φ, i.e. $\varphi H_{x}^{\perp} \subset T_{x}(M)^{\perp}$ for each x in M.

For a contact $C R$-submanifold M, the structure vector field ξ satisfies $\xi \in H$ or $\xi \in H^{\perp}$.

We put $\operatorname{dim} H=h, \operatorname{dim} H^{\perp}=p$ and $\operatorname{codim} M=2 m-n=q$. If $p=\underline{0}$, then a contact $C R$-submanifold M is called an invariant submanifold of \widetilde{M}, and if $h=0$, then M is called an anti-invariant submanifold of \widetilde{M} tangent to ξ. If $p=q$ and $\xi \in H$, then a contact $C R$-submanifold M is called a generic submanifold of \widetilde{M} (see [2], [3], [5]).

In the following, we suppose that M is a contact $C R$-submanifold of a Sasakian manifold \widetilde{M}. Then

$$
\begin{gather*}
F P=0, \quad f F=0, \quad t f=0, \quad P t=0, \tag{1.7}\\
P^{3}+P=0, \quad f^{3}+f=0 . \tag{1.8}
\end{gather*}
$$

The equations in (1.8) show that P is an f-structure in M and f is an f-structure in the normal bundle of M (see [4]). From (1.3) we obtain

$$
\begin{equation*}
A_{F X} Y-A_{F Y} X=\eta(Y) X-\eta(X) Y \quad \text { for } X, Y \in H^{\perp} \tag{1.9}
\end{equation*}
$$

We denote by $\widetilde{M}^{2 m+1}(c)$ a $(2 m+1)$-dimensional Sasakian space form of constant φ-sectional curvature c. Then the Gauss and Codazzi equations of M are respectively

$$
\begin{align*}
& R(X, Y) Z=\frac{1}{4}(c+3)[g(Y, Z) X-g(X, Z) Y] \tag{1.10}\\
& \quad+\frac{1}{4}(c-1)[\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi \\
& -g(Y, Z) \eta(X) \xi+g(P Y, Z) P X-g(P X, Z) P Y+2 g(X, P Y) P Z] \\
& +A_{B(Y, Z)} X-A_{B(X, Z)} Y
\end{align*}
$$

where R is the Riemannian curvature tensor of M, and

$$
\begin{align*}
& g\left(\left(\nabla_{X} A\right)_{V} Y, Z\right)-g\left(\left(\nabla_{Y} A\right)_{V} X, Z\right) \tag{1.11}\\
& =\quad g\left(\left(\nabla_{X} B\right)(Y, Z), V\right)-g\left(\left(\nabla_{Y} B\right)(X, Z), V\right) \\
& =\frac{1}{4}(c-1)[g(P Y, Z) g(F X, V)-g(P X, Z) g(F Y, V) \\
& \quad+2 g(X, P Y) g(F Z, V)] .
\end{align*}
$$

We define the curvature tensor R^{\perp} of the normal bundle of M by

$$
R^{\perp}(X, Y) V=D_{X} D_{Y} V-D_{Y} D_{X} V-D_{[X, Y]} V
$$

Then we have the Ricci equation

$$
\begin{align*}
& g\left(R^{\perp}(X, Y) V, U\right)+g\left(\left[A_{U}, A_{V}\right] X, Y\right) \tag{1.12}\\
& =\frac{1}{4}(c-1)[g(F Y, V) g(F X, U)-g(F X, V) g(F Y, U) \\
& \quad+2 g(X, P Y) g(f V, U)]
\end{align*}
$$

2. Parallel mean curvature vector. In this section we prepare some lemmas for later use.

Let M be an $(n+1)$-dimensional contact $C R$-submanifold of a $(2 m+1)$ dimensional Sasakian manifold \widetilde{M}. We have the following decomposition of the tangent space $T_{x}(M)$ at each point x in M :

$$
T_{x}(M)=H_{x}(M)+\{\xi\}+N_{x}(M),
$$

where $H_{x}(M)=\varphi H_{x}(M)$ and $N_{x}(M)$ is the orthogonal complement of $H_{x}(M)+\{\xi\}$ in $T_{x}(M)$. Then $\varphi N_{x}(M)=F N_{x}(M) \subset T_{x}(M)^{\perp}$. Similarly,

$$
T_{x}(M)^{\perp}=F N_{x}(M)+N_{x}(M)^{\perp}
$$

where $N_{x}(M)^{\perp}$ is the orthogonal complement of $F N_{x}(M)$ in $T_{x}(M)^{\perp}$. Then $\varphi N_{x}(M)^{\perp}=f N_{x}(M)^{\perp}=N_{x}(M)^{\perp}$.

We take an orthonormal basis $e_{1}, \ldots, e_{2 m+1}$ of \widetilde{M} such that, when restricted to $M, e_{1}, \ldots, e_{n+1}$ are tangent to M. Then e_{1}, \ldots, e_{n+1} form an orthonormal basis of M. We can choose them so that e_{1}, \ldots, e_{p} form an orthonormal basis of $N_{x}(M)$ and e_{p+1}, \ldots, e_{n} form an orthonormal basis of $H_{x}(M)$ and $e_{n+1}=\xi$. Moreover, we can take $e_{n+2}, \ldots, e_{2 m+1}$ of
an orthonormal basis of $T_{x}(M)^{\perp}$ such that $e_{n+2}, \ldots, e_{n+1+p}$ form an orthonormal basis of $F N_{x}(M)$ and $e_{n+2+p}, \ldots, e_{2 m+1}$ form an orthonormal basis of $N_{x}(M)^{\perp}$. In case of need, we can take $e_{n+2}, \ldots, e_{n+1+p}$ such that $e_{n+2}=F e_{1}, \ldots, e_{n+1+p}=F e_{p}$. Unless otherwise stated, we use the convention that the ranges of indices are respectively:
$i, j, k=1, \ldots, n+1 ; \quad x, y, z=1, \ldots, p ; \quad a, b, c=n+2, \ldots, 2 m+1$.
Lemma 2.1. Let M be a contact CR-submanifold of a Sasakian manifold \widetilde{M}. If the f-structure f in the normal bundle of M is parallel, i.e. $\nabla f=0$, then

$$
\begin{equation*}
A_{U} t V=A_{V} t U \tag{2.1}
\end{equation*}
$$

for any vector fields U and V normal to M, and the mean curvature vector ν satisfies

$$
\begin{equation*}
f \nu=0 \tag{2.2}
\end{equation*}
$$

Proof. From (1.6) we have

$$
g\left(A_{V} t U, X\right)=g(B(X, t V), U)=g\left(A_{U} t V, X\right)
$$

This gives (2.1). Since $f F=0$, (1.4) implies

$$
0=-f B(X, P Y)+f^{2} B(X, Y)
$$

Hence we obtain $f^{2} \sum B\left(e_{i}, e_{i}\right)=0$. From this and the equation $f^{3}+f=0$, we get (2.2).

From (2.2) we see that the mean curvature vector ν of M is in $F N_{x}(M)$.
In the following, we suppose that M is an $(n+1)$-dimensional contact $C R$-submanifold of a Sasakian space form $\widetilde{M}^{2 m+1}(c)$ with nonvanishing parallel mean curvature vector ν and parallel f-structure f in the normal bundle of M. Furthermore, we assume that the second fundamental form A and the f-structure P on M commute, $P A=A P$, which means that $P A_{V}=A_{V} P$ for any vector field V normal to M. In this case, the contact $C R$-structure P induced on M is normal (see [3]).

We put $\mu=\nu /|\nu|$. Then μ is a nonvanishing parallel unit normal vector with $f \mu=0$, i.e. μ is an isoperimetric section in the normal bundle of M. We notice that $\left(\nabla_{X} A\right)_{\mu} Y=\left(\nabla_{X} A_{\mu}\right) Y$ for any vector fields X and Y tangent to M.

Lemma 2.2. The second fundamental forms of M satisfy

$$
\begin{align*}
g\left(A_{\mu} X, A_{V} Y\right)= & \frac{1}{4}(c+3) g(X, Y) g(\mu, V) \tag{2.3}\\
& -\frac{1}{4}(c-1)[g(F X, \mu) g(F Y, V)+\eta(X) \eta(Y) g(\mu, V)] \\
& +\sum g\left(A_{\mu} t V, t e_{a}\right) g\left(A_{a} X, Y\right)
\end{align*}
$$

where A_{a} denotes the second fundamental form in the direction of e_{a}.

Proof. By the assumption $P A=A P$, we have $g\left(A_{\mu} P X, t V\right)=0$ for any vector field X tangent to M and any vector field V normal to M. We then have

$$
g\left(\left(\nabla_{Y} A\right)_{\mu} P X, t V\right)+g\left(A_{\mu}\left(\nabla_{Y} P\right) X, t V\right)+g\left(A_{\mu} P X,\left(\nabla_{Y} t\right) V\right)=0
$$

and hence

$$
\begin{aligned}
g\left(\left(\nabla_{P Y} A\right)_{\mu} P X, t V\right) & +g(X, P Y) g(\mu, V)+\sum g\left(A_{\mu} t V, t e_{a}\right) g\left(A_{a} X, P Y\right) \\
& +g\left(A_{\mu} P X, A_{V} Y\right)+g\left(A_{\mu} P X, A_{f V} P Y\right)=0
\end{aligned}
$$

Using the Codazzi equation (1.11) and the Ricci equation (1.12) gives

$$
\begin{aligned}
\frac{1}{4}(c+3) g(P X, Y) g(\mu, V) & +\sum g\left(A_{\mu} t V, t e_{a}\right) g\left(A_{a} X, P Y\right) \\
& +g\left(A_{\mu} P X, A_{V} Y\right)=0
\end{aligned}
$$

Hence

$$
\begin{aligned}
g\left(A_{\mu} P X, A_{V} P Y\right)=\frac{1}{4}(c+3) g(P X, & P Y) g(\mu, V) \\
& +\sum g\left(A_{\mu} t V, t e_{a}\right) g\left(A_{a} X, P^{2} Y\right)
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& g\left(A_{\mu} P X, A_{V} P Y\right)=g\left(A_{\mu} X, A_{V} Y\right)+g\left(A_{\mu} X, A_{F Y} t V\right)+\eta(Y) g\left(A_{\mu} X, t V\right) \\
&-\sum g\left(A_{\mu} t V, t e_{a}\right) g\left(A_{a} X, P^{2} Y\right) \\
&= \sum g\left(A_{\mu} t V, t e_{a}\right) g\left(A_{a} X, Y\right)+g\left(A_{\mu} t V, A_{F Y} X\right) \\
&-g\left(A_{\mu} t V, \xi\right) g\left(\xi, A_{F Y} X\right)+\eta(Y) g\left(A_{\mu} t V, X\right) \\
&-\eta(Y) g\left(A_{\mu} t V, \xi\right) g(\xi, X) \\
&= \sum g\left(A_{\mu} t V, t e_{a}\right) g\left(A_{a} X, Y\right)+g\left(A_{\mu} t V, A_{F Y} X\right) \\
&+g(F X, F Y) g(\mu, V)+\eta(X) g(\mu, V)+\eta(Y) g\left(A_{\mu} X, t V\right)
\end{aligned}
$$

From the above equations, we find

$$
\begin{aligned}
g\left(A_{\mu} X, A_{V} Y\right)= & \sum g\left(A_{\mu} t V, t e_{a}\right) g\left(A_{a} X, Y\right) \\
& +\frac{1}{4}(c-1) g(P X, P Y) g(\mu, V)+g(X, Y) g(\mu, V) \\
& +g\left(\left[A_{F Y}, A_{\mu}\right] t V, X\right)
\end{aligned}
$$

Since, by the Ricci equation (1.12),

$$
g\left(\left[A_{F Y}, A_{\mu}\right] t V, X\right)=\frac{1}{4}(c-1)[g(F X, F Y) g(\mu, V)-g(F X, \mu) g(F Y, V)]
$$

the equation above becomes our result (2.3).
Since the mean curvature vector of M is parallel, we see that, by the Codazzi equation (1.11),

$$
\begin{equation*}
\sum\left(\nabla_{i} A\right)_{\mu} e_{i}=0 \tag{2.4}
\end{equation*}
$$

where ∇_{i} denotes the covariant differentiation in the direction of e_{i}.
Lemma 2.3. The restricted laplacian for A_{μ} is given by

$$
\begin{align*}
\left(\nabla^{2} A\right)_{\mu} X & =\sum\left(R\left(e_{i}, X\right) A\right)_{\mu} e_{i}+\frac{1}{4}(c-1) \tag{2.5}\\
\times & {\left[-A_{F X} t \mu-t B(t \mu, X)+3 P A_{\mu} P X+g(t \mu, X) t \operatorname{Tr} B\right.} \\
- & 2\left(\operatorname{Tr} A_{F X}\right) t \mu-g(X, t \mu) \sum A_{a} t e_{a}-2 \sum g\left(A_{a} t e_{a}, X\right) t \mu \\
- & (n-1) g(t \mu, X) \xi-(2 n+1) \eta(X) t \mu]
\end{align*}
$$

Proof. From (1.11) and (2.4) we have

$$
\begin{aligned}
\left(\nabla^{2} A\right)_{\mu} X= & \sum\left(\nabla_{i} \nabla_{i} A\right)_{\mu} X \\
= & \sum\left(R\left(e_{i}, X\right) A\right)_{\mu} e_{i} \\
& +\frac{1}{4}(c-1) \sum\left[g\left(\left(\nabla_{i} F\right) e_{i}, \mu\right) P X+g\left(F e_{i}, \mu\right)\left(\nabla_{i} P\right) X\right. \\
& -g\left(\left(\nabla_{i} F\right) X, \mu\right) P e_{i}-g(F X, \mu)\left(\nabla_{i} P\right) e_{i} \\
& \left.+2 g\left(\left(\nabla_{i} P\right) e_{i}, X\right) t \mu+2 g\left(P e_{i}, X\right)\left(\nabla_{i} t\right) \mu\right]
\end{aligned}
$$

Using (1.2)-(1.5) and Lemma 2.1, we find (2.5).
From (2.5) we have

$$
\begin{align*}
g\left(\left(\nabla^{2} A\right)_{\mu}, A_{\mu}\right)= & \sum g\left(\left(\nabla_{i} \nabla_{i} A\right)_{\mu} e_{j}, A_{\mu} e_{j}\right) \tag{2.6}\\
= & \sum g\left(\left(R\left(e_{i}, e_{j}\right) A\right)_{\mu} e_{i}, A_{\mu} e_{j}\right) \\
& +\frac{3}{4}(c-1)\left[\operatorname{Tr}\left(A_{\mu} P\right)^{2}-\sum g\left(A_{\mu} t \mu, A_{a} t e_{a}\right)\right. \\
& \left.+\sum g\left(A_{\mu} t \mu, t e_{a}\right) \operatorname{Tr} A_{a}+n\right] .
\end{align*}
$$

On the other hand, by the Gauss equation (1.10),

$$
\begin{align*}
& \sum g((\left.\left.R\left(e_{i}, e_{j}\right) A\right)_{\mu} e_{i}, A_{\mu} e_{j}\right)=\frac{1}{4}(c+3)(n+1) \operatorname{Tr} A_{\mu}^{2} \tag{2.7}\\
& \quad-\frac{1}{4}(c-1) \operatorname{Tr} A_{\mu}^{2}-\frac{1}{4}(c+3)\left(\operatorname{Tr} A_{\mu}\right)^{2}-\frac{1}{4}(c-1)(n+1) \\
& \quad+\sum \operatorname{Tr}\left(A_{\mu} A_{a}\right)^{2}-\sum \operatorname{Tr} A_{\mu}^{2} A_{a}^{2}+\sum \operatorname{Tr} A_{a} \operatorname{Tr} A_{\mu}^{2} A_{a} \\
& \quad-\sum\left(\operatorname{Tr} A_{\mu} A_{a}\right)^{2} .
\end{align*}
$$

Lemma 2.4. The curvature tensor R of M satisfies

$$
\begin{equation*}
\sum g\left(\left(R\left(e_{i}, e_{j}\right) A\right)_{\mu} e_{i}, A_{\mu} e_{j}\right)=\frac{1}{16}(c-1)^{2}(n-p) \tag{2.8}
\end{equation*}
$$

Proof. From the Ricci equation (1.12) we have

$$
\begin{equation*}
\sum \operatorname{Tr}\left(A_{\mu} A_{a}\right)^{2}-\sum \operatorname{Tr} A_{\mu}^{2} A_{a}^{2}=-\frac{1}{16}(c-1)^{2}(p-1) . \tag{2.9}
\end{equation*}
$$

On the other hand, (2.3) implies

$$
\begin{aligned}
\sum \operatorname{Tr} A_{a} \operatorname{Tr} A_{\mu}^{2} A_{a}= & \frac{1}{4}(c+3)\left(\operatorname{Tr} A_{\mu}\right)^{2}+\sum \operatorname{Tr} A_{a} \operatorname{Tr} A_{\mu} A_{b} g\left(A_{\mu} t e_{a}, t e_{b}\right) \\
& -\frac{1}{4}(c-1) \sum g\left(A_{\mu} t \mu, t e_{a}\right) \operatorname{Tr} A_{a} \\
\sum\left(\operatorname{Tr} A_{\mu} A_{a}\right)^{2}= & \frac{1}{4}(c+3)(n+1) A_{\mu}^{2}-\frac{1}{2}(c-1) A_{\mu}^{2} \\
& +\sum \operatorname{Tr} A_{a} \operatorname{Tr} A_{\mu} A_{b} g\left(A_{\mu} t e_{a}, t e_{b}\right) .
\end{aligned}
$$

Hence

$$
\begin{align*}
& \sum \operatorname{Tr} A_{a} \operatorname{Tr} A_{\mu}^{2} A_{a}-\sum\left(\operatorname{Tr} A_{\mu} A_{a}\right)^{2} \tag{2.10}\\
& =\quad-\frac{1}{4}(c+3)(n+1) A_{\mu}^{2}+\frac{1}{2}(c-1) A_{\mu}^{2} \\
& \quad+\frac{1}{4}(c+3)\left(\operatorname{Tr} A_{\mu}\right)^{2}-\frac{1}{4}(c-1) \sum g\left(A_{\mu} t \mu, t e_{a}\right) \operatorname{Tr} A_{a} .
\end{align*}
$$

Substituting (2.9) and (2.10) into (2.7), we find

$$
\begin{equation*}
=\frac{1}{4}(c-1)\left[\operatorname{Tr} A_{\mu}^{2}-\sum g\left(A_{\mu} t \mu, t e_{a}\right) \operatorname{Tr} A_{a}-(n+1)-\frac{1}{4}(c-1)(p-1)\right] . \tag{2.11}
\end{equation*}
$$

Since, by (2.3),

$$
\begin{equation*}
\operatorname{Tr} A_{\mu}^{2}=\frac{1}{4}(c-1)(n-1)+(n+1)+\sum g\left(A_{\mu} t \mu, t e_{a}\right) \operatorname{Tr} A_{a} \tag{2.12}
\end{equation*}
$$

equation (2.11) becomes (2.8).
Lemma 2.5. For the second fundamental form A_{μ} we have

$$
\begin{equation*}
g\left(\left(\nabla^{2} A\right)_{\mu}, A_{\mu}\right)=-\frac{1}{8}(c-1)^{2}(n-p) \tag{2.13}
\end{equation*}
$$

Proof. First of all,

$$
\begin{equation*}
\operatorname{Tr}\left(A_{\mu} P\right)^{2}=-\operatorname{Tr} A_{\mu}^{2}+1+\sum g\left(A_{\mu} t e_{a}, A_{\mu} t e_{a}\right) . \tag{2.14}
\end{equation*}
$$

Furthermore, (2.3) implies

$$
\begin{equation*}
\sum g\left(A_{\mu} t e_{a}, A_{\mu} t e_{a}\right)=\frac{1}{4}(c-1)(p-1)+\sum g\left(A_{\mu} t \mu, A_{a} t e_{a}\right) \tag{2.15}
\end{equation*}
$$

From (2.12), (2.13) and (2.15) we obtain

$$
\begin{array}{r}
\operatorname{Tr}\left(A_{\mu} P\right)^{2}-\sum g\left(A_{\mu} t \mu, A_{a} t e_{a}\right)+\sum g\left(A_{\mu} t \mu, t e_{a}\right) \operatorname{Tr} A_{a}+n \tag{2.16}\\
=-\frac{1}{4}(c-1)(n-p)
\end{array}
$$

Substituting (2.8) and (2.16) into (2.6) yields (2.13).
3. Theorems. Let M be an $(n+1)$-dimensional contact $C R$-submanifold of a Sasakian space form $\widetilde{M}^{2 m+1}(c)$ with nonvanishing parallel mean curvature vector. We suppose that $\nabla f=0$ and $P A=A P$.

First of all, we prove that $\Delta \operatorname{Tr} A_{\mu}^{2}=0$. We take an orthonormal basis $\left\{A_{a}\right\}$ such that $e_{n+2}=\mu$ and $\operatorname{Tr} A_{a}=0, a=n+3, \ldots, 2 m+1$. Then (2.12) becomes

$$
\operatorname{Tr} A_{\mu}^{2}=\frac{1}{4}(c-1)(n-1)+(n+1)+g\left(A_{\mu} t \mu, t \mu\right) \operatorname{Tr} A_{\mu} .
$$

Hence
(3.1) $\Delta \operatorname{Tr} A_{\mu}^{2}=\sum \nabla_{i} \nabla_{i} \operatorname{Tr} A_{\mu}^{2}=\sum g\left(\left(\nabla^{2} A\right)_{\mu} t \mu, t \mu\right) \operatorname{Tr} A_{\mu}$

$$
+2 \sum g\left(\left(\nabla_{i} A\right)_{\mu} t \mu,\left(\nabla_{i} t\right) \mu\right) \operatorname{Tr} A_{\mu} .
$$

On the other hand, (2.5) implies

$$
\begin{align*}
g\left(\left(\nabla^{2} A\right)_{\mu} t \mu, t \mu\right)=\sum g(& \left.\left(R\left(e_{i}, t \mu\right) A\right)_{\mu} e_{i}, t \mu\right) \tag{3.2}\\
& +\frac{3}{4}(c-1)\left[\operatorname{Tr} A_{\mu}-\sum g\left(A_{\mu} t e_{a}, t e_{a}\right)\right]
\end{align*}
$$

From (1.5) and (1.11) we also have

$$
\begin{align*}
\sum g\left(\left(\nabla_{i} A\right)_{\mu} t \mu,\left(\nabla_{i} t\right) \mu\right) & \operatorname{Tr} A_{\mu} \tag{3.3}\\
= & -\frac{1}{4}(c-1)\left[\operatorname{Tr} A_{\mu}-\sum g\left(A_{\mu} t e_{a}, t e_{a}\right)\right]
\end{align*}
$$

Using the Gauss equation, we see that

$$
\begin{aligned}
&\left.\sum g\left(\left(R e_{i}, t \mu\right) A\right)_{\mu} e_{i}, t \mu\right) \\
&= \sum g\left(R\left(e_{i}, t \mu\right) A_{\mu} e_{i}, t \mu\right)-\sum g\left(R\left(e_{i}, t \mu\right) e_{i}, A_{\mu} t \mu\right) \\
&= \frac{1}{4}(c+3)(n+1) g\left(A_{\mu} t \mu, t \mu\right)-\frac{1}{4}(c-1) g\left(A_{\mu} t \mu, t \mu\right) \\
& \quad-\frac{1}{4}(c+3) \operatorname{Tr} A_{\mu}+\sum g\left(A_{a} t \mu,\left[A_{\mu}, A_{a}\right] t \mu\right) \\
& \quad-\sum g\left(A_{a} t \mu, t \mu\right) \operatorname{Tr} A_{\mu} A_{a}+g\left(A_{\mu} t \mu, A_{\mu} t \mu\right) \operatorname{Tr} A_{\mu} .
\end{aligned}
$$

By the Ricci equation (1.12) and the equation

$$
\begin{aligned}
\operatorname{Tr} A_{\mu} A_{a}= & \frac{1}{4}(c+3)(n+1) g\left(\mu, e_{a}\right)-\frac{1}{2}(c-1) g\left(\mu, e_{a}\right) \\
& +g\left(A_{\mu} t e_{a}, t \mu\right) \operatorname{Tr} A_{\mu}
\end{aligned}
$$

we find
(3.4) $\quad \sum g\left(\left(R\left(e_{i}, t \mu\right) A\right)_{\mu} e_{i}, t \mu\right)=\frac{1}{4}(c-1)\left[g\left(A_{\mu} t e_{a}, t e_{a}\right)-\operatorname{Tr} A_{\mu}\right]$.

From (3.1)-(3.4) we have the following
Lemma 3.1. $\Delta \operatorname{Tr} A_{\mu}^{2}=0$.
We next prove
Theorem 3.1. Let M be an $(n+1)$-dimensional contact $C R$-submanifold of a Sasakian space form $\widetilde{M}^{2 m+1}(c)$ with nonvanishing parallel mean curvature vector. If the f-structure f in the normal bundle is parallel, and if
$P A=A P$, then

$$
\left|(\nabla A)_{\mu}\right|^{2}=\frac{1}{8}(c-1)^{2}(n-p) .
$$

Proof. Generally,

$$
\frac{1}{2} \Delta \operatorname{Tr} A_{\mu}^{2}=g\left(\left(\nabla^{2} A\right)_{\mu}, A_{\mu}\right)+\left|(\nabla A)_{\mu}\right|^{2} .
$$

Thus our assertion follows by Lemmas 2.5 and 3.1.
Let us put

$$
T(X, Y)=\left(\nabla_{X} A\right)_{\mu} Y+\frac{1}{4}(c-1)[g(F Y, \mu) P X-g(P X, Y) t \mu]
$$

Then, by the Codazzi equation (1.11),

$$
|T|^{2}=\left|(\nabla A)_{\mu}\right|^{2}-\frac{1}{8}(c-1)^{2}(n-p) \geq 0
$$

Therefore, T vanishes identically if and only if

$$
\left|(\nabla A)_{\mu}\right|^{2}=\frac{1}{8}(c-1)^{2}(n-p)
$$

Corollary 3.1. Under the same assumptions as in Theorem 3.1,

$$
\begin{equation*}
\left(\nabla_{X} A\right)_{\mu} Y=-\frac{1}{4}(c-1)[g(F Y, \mu) P X-g(P X, Y) t \mu] \tag{3.5}
\end{equation*}
$$

for any vector fields X and Y tangent to M.
Theorem 3.2. Let M be an $(n+1)$-dimensional generic submanifold of a Sasakian space form $\widetilde{M}^{2 m+1}(c)$ with nonvanishing parallel mean curvature vector. If $P A=A P$, then

$$
\left|(\nabla A)_{\mu}\right|^{2}=\frac{1}{8}(c-1)^{2}(n-p),
$$

or equivalently

$$
\left(\nabla_{X} A\right)_{\mu} Y=-\frac{1}{4}(c-1)[g(F Y, \mu) P X-g(P X, Y) t \mu]
$$

for any vector fields X and Y tangent to M.
Theorems 3.1 and 3.2 are generalizations of some theorems in [1] and [2].
Theorem 3.3. Let M be an ($n+1$)-dimensional contact CR-submanifold of a Sasakian space form $\widetilde{M}^{2 m+1}(c)$ with nonvanishing parallel mean curvature vector. If the f-structure f in the normal bundle is parallel, and if $P A=A P$, then each eigenvalue of A_{μ} is constant.

Proof. We suppose that $A_{\mu} X=\lambda X$. Then $A_{\mu} P X=P A_{\mu} X=\lambda P X$. Using (3.5), we also have

$$
(Y \lambda) g(X, X)=\frac{1}{2}(c-1) g(P Y, X) g(t \mu, X) .
$$

Replacing X by $P X$, we obtain $(Y \lambda) g(P X, P X)=0$. If $P X=0$, then $(Y \lambda) g(X, X)=0$ and hence $Y \lambda=0$. If $P X \neq 0$, we also have $Y \lambda=0$. Consequently, λ is constant.

Theorem 3.4. Let M be an $(n+1)$-dimensional generic submanifold of a Sasakian space form $\widetilde{M}^{2 m+1}(c)$ with nonvanishing parallel mean curvature vector. If $P A=A P$, then each eigenvalue of A_{μ} is constant.

Theorem 3.5. Let M be an $(n+1)$-dimensional complete and simply connected contact CR-submanifold with nonvanishing parallel mean curvature vector and with parallel f-structure f in the normal bundle in a unit sphere $S^{2 m+1}$. If $P A=A P$, then M is a product of Riemannian manifolds, $M_{1} \times \ldots \times M_{s}$, where s is the number of the distinct eigenvalues of A_{μ}, and the mean curvature vector of M is an umbilical section of $M_{t}(t=1, \ldots, s)$.

Proof. From Theorems 3.1 and 3.3 we see that the smooth distribution $T_{t}(t=1, \ldots, s)$ which consists of all eigenspaces associated with the eigenvalues of A_{μ} can be defined and is parallel. M is assumed to be simply connected and complete, and therefore our assertion follows from the de Rham decomposition theorem.

Theorem 3.6. Let M be an $(n+1)$-dimensional complete and simply connected generic submanifold with nonvanishing parallel mean curvature vector in a unit sphere $S^{2 m+1}$. If $P A=A P$, then M is a product of Riemannian manifolds, $M_{1} \times \ldots \times M_{s}$, where s is the number of the distinct eigenvalues of A_{μ}, and the mean curvature vector of M is an umbilical section of $M_{t}(t=1, \ldots, s)$.

Theorem 3.7. Let M be an ($n+1$)-dimensional contact $C R$-submanifold of a Sasakian space form $\widetilde{M}^{2 m+1}(c)$ with nonvanishing parallel mean curvature vector and parallel f-structure f in the normal bundle. If $P A=A P$, and if the sectional curvature of M is nonpositive, then the second fundamental form in the direction of the mean curvature vector is parallel. Moreover, either $c=1$, or $P=0$ and M is anti-invariant in $\widetilde{M}^{2 m+1}(c)$ with respect to φ.

Proof. We take an orthonormal basis e_{1}, \ldots, e_{n+1} such that $A_{\mu} e_{i}=$ $\lambda_{i} e_{i}(i=1, \ldots, n+1)$. We denote by $K_{i j}$ the sectional curvature of M spanned by e_{i} and e_{j}. Then

$$
\sum g\left(\left(R\left(e_{i}, e_{j}\right) A\right)_{\mu} e_{i}, A_{\mu} e_{j}\right)=\frac{1}{4} \sum\left(\lambda_{i}-\lambda_{j}\right)^{2} K_{i j}
$$

Substituting this into (2.8), we obtain

$$
\sum\left(\lambda_{i}-\lambda_{j}\right)^{2} K_{i j}=\frac{1}{8}(c-1)^{2}(n-p) \geq 0
$$

Thus, if $K_{i j} \leq 0$, then $(c-1)^{2}(n-p)=0$, and hence $(\nabla A)_{\mu}=0$ by Theorem 3.1. Moreover, we have either $c=1$ or $n=p$. If $n=p$, then $P=0$ and M is an anti-invariant submanifold of $\widetilde{M}^{2 m+1}(c)$ tangent to the structure vector field ξ.

ThEOREM 3.8. Let M be an $(n+1)$-dimensional generic submanifold of a Sasakian space form $\widetilde{M}^{2 m+1}(c)$ with nonvanishing parallel mean curvature vector. If $P A=A P$, and if the sectional curvature of M is nonpositive, then the second fundamental form in the direction of the mean curvature vector is parallel. Moreover, either $c=1$, or $P=0$ and M is anti-invariant in $\widetilde{M^{2 m+1}}(c)$ with respect to φ.

REFERENCES

[1] U-H. Ki, M. Kameda and S. Yamaguchi, Compact totally real submanifolds with parallel mean curvature vector field in a Sasakian space form, TRU Math. 23 (1987), 1-15.
[2] U-H. Ki and J. S. Pak, On totally real submanifolds with parallel mean curvature vector of a Sasakian space form, Bull. Korean Math. Soc. 28 (1991), 55-64.
[3] E. Pak, U-H. Ki, J. S. Pak and Y. H. Kim, Generic submanifolds with normal f-structure of an odd-dimensional sphere (I), J. Korean Math. Soc. 20 (1983), 141161.
[4] K. Yano, On a structure defined by a tensor field f of type $(1,1)$ satisfying $f^{3}+f=0$, Tensor (N.S.) 14 (1963), 99-109.
[5] K. Yano and M. Kon, Generic submanifolds of Sasakian manifolds, Kodai Math. J. 3 (1980), 163-196.
[6] -, -, CR Submanifolds of Kaehlerian and Sasakian Manifolds, Birkhäuser, Boston 1983.
[7] -, -, Structures on Manifolds, World Sci., 1984.
[8] -, 一, On contact CR submanifolds, J. Korean Math. Soc. 26 (1989), 231-262.
DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS KYUNGPOOK UNIVERSITY HIROSAKI UNIVERSITY
TAEGU 702-701, KOREA HIROSAKI 036, JAPAN

