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CONTACT CR-SUBMANIFOLDS WITH PARALLEL
MEAN CURVATURE VECTOR OF A SASAKIAN SPACE FORM

BY

U-HANG KI (TAEGU) AND MASAHIRO KON (HIROSAKI)

Introduction. The purpose of this paper is to study contact CR-sub-
manifolds with nonvanishing parallel mean curvature vector immersed in a
Sasakian space form.

In §1 we state general formulas on contact CR-submanifolds of a Sasakian
manifold, especially those of a Sasakian space form. §2 is devoted to the
study of contact CR-submanifolds with nonvanishing parallel mean curva-
ture vector and parallel f -structure in the normal bundle immersed in a
Sasakian space form. Moreover, we suppose that the second fundamental
form of a contact CR-submanifold commutes with the f -structure in the
tangent bundle, and compute the restricted Laplacian for the second funda-
mental form in the direction of the mean curvature vector. As applications
of this, in §3, we prove our main theorems.

1. Preliminaries. Let M̃ be a (2m+1)-dimensional Sasakian manifold
with structure tensors (ϕ, ξ, η, g). The structure tensors of M̃ satisfy

ϕ2X = −X + η(X)ξ , ϕξ = 0 , η(ξ) = 1 , η(ϕX) = 0 ,

g(ϕX,ϕY ) = g(X, Y )− η(X)η(Y ) , η(X) = g(X, ξ)

for any vector fields X and Y on M̃ . We denote by ∇̃ the operator of
covariant differentiation with respect to the metric g on M̃ . We then have

∇̃Xξ = ϕX , (∇̃Xϕ)Y = −g(X, Y )ξ + η(Y )X = R̃(X, ξ)Y ,

R̃ denoting the Riemannian curvature tensor of M̃ .
Let M be an (n + 1)-dimensional submanifold of M̃ . Throughout this

paper, we assume that the submanifold M of M̃ is tangent to the structure
vector field ξ.

We denote by the same g the Riemannian metric tensor field induced
on M from that of M̃ . The operator of covariant differentiation with respect
to the induced connection on M will be denoted by ∇. Then the Gauss and
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Weingarten formulas are given respectively by

∇̃XY = ∇XY + B(X, Y ) and ∇̃XV = −AV X + DXV

for any vector fields X and Y tangent to M and any vector field V normal
to M , where D denotes the operator of covariant differentiation with respect
to the linear connection induced in the normal bundle T (M)⊥ of M . A and
B appearing here are both called the second fundamental forms of M and
are related by

g(B(X, Y ), V ) = g(AV X, Y ) .

The second fundamental form AV in the direction of the normal vector V
can be considered as a symmetric (n + 1, n + 1)-matrix.

The covariant derivative ∇XA of A is defined to be

(∇XA)V Y = ∇X(AV Y )−ADXV Y −AV∇XY .

If (∇XA)V Y = 0 for any vector fields X and Y tangent to M , then the
second fundamental form of M is said to be parallel in the direction of V .
If the second fundamental form is parallel in any direction, it is said to be
parallel.

The mean curvature vector ν of M is defined to be ν = (TrB)/(n + 1),
where TrB denotes the trace of B. If ν = 0, then M is said to be minimal .
If the second fundamental form A vanishes identically, then M is said to
be totally geodesic. A vector field V normal to M is said to be parallel if
DXV = 0 for any vector field X tangent to M . A parallel normal vector
field V (6= 0) is called an isoperimetric section if TrAV is constant, and is
called a minimal section if TrAV is zero.

For any vector field X tangent to M , we put

ϕX = PX + FX ,

where PX is the tangential part and FX the normal part of ϕX. Then P
is an endomorphism of the tangent bundle T (M) and F is a normal bundle
valued 1-form on the tangent bundle T (M). Similarly, for any vector field
V normal to M , we put

ϕV = tV + fV ,

where tV is the tangential part and fV the normal part of ϕV . We then
have

g(PX, Y ) + g(X, PY ) = 0 , g(fV, U) + g(V, fU)− 0 ,

g(FX, V ) + g(X, tV ) = 0 .

Moreover,

P 2 = −I − tF + η ⊗ ξ , FP + fF = 0 ,

P t + tf = 0 , f2 = −I − Ft .
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We define the covariant derivatives of P , F , t and f by

(∇XP )Y = ∇X(PY )− P∇XY ,

(∇Xt)V = ∇X(tV )− tDXV ,

(∇XF )Y = DX(FY )− F∇XY ,

(∇Xf)V = DX(fV )− fDXV ,

respectively.
For any vector field X tangent to M , we have

∇̃Xξ = ϕX = ∇Xξ + B(X, ξ) ,

and hence

(1.1) ∇Xξ = PX ,

(1.2) AV ξ = −tV , B(X, ξ) = FX .

Furthermore,

(∇XP )Y = AFY X+tB(X, Y )− g(X, Y )ξ + η(Y )X ,(1.3)
(∇XF )Y = −B(X, PY ) + fB(X, Y ) ,(1.4)
(∇Xt)V = AfV X − PAV X ,(1.5)
(∇Xf)V = −FAV X −B(X, tV ) .(1.6)

A submanifold M of a Sasakian manifold M̃ tangent to the structure
vector field ξ is called a contact CR-submanifold of M̃ if there exists a dif-
ferentiable distribution H : x → Hx ⊂ Tx(M) on M satisfying the following
conditions (see [6]–[8]):

(1) H is invariant with respect to ϕ, i.e. ϕHx⊂Hx for each x in M , and
(2) the complementary orthogonal distribution H⊥ : x → H⊥

x ⊂ Tx(M)
is anti-invariant with respect to ϕ, i.e. ϕH⊥

x ⊂ Tx(M)⊥ for each x in M .

For a contact CR-submanifold M , the structure vector field ξ satisfies
ξ ∈ H or ξ ∈ H⊥.

We put dim H = h, dim H⊥ = p and codim M = 2m− n = q. If p = 0,
then a contact CR-submanifold M is called an invariant submanifold of M̃ ,
and if h = 0, then M is called an anti-invariant submanifold of M̃ tangent
to ξ. If p = q and ξ ∈ H, then a contact CR-submanifold M is called a
generic submanifold of M̃ (see [2], [3], [5]).

In the following, we suppose that M is a contact CR-submanifold of a
Sasakian manifold M̃ . Then

(1.7) FP = 0 , fF = 0 , tf = 0 , P t = 0 ,

(1.8) P 3 + P = 0 , f3 + f = 0 .

The equations in (1.8) show that P is an f -structure in M and f is an
f -structure in the normal bundle of M (see [4]). From (1.3) we obtain

(1.9) AFXY −AFY X = η(Y )X − η(X)Y for X, Y ∈ H⊥ .
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We denote by M̃2m+1(c) a (2m + 1)-dimensional Sasakian space form of
constant ϕ-sectional curvature c. Then the Gauss and Codazzi equations of
M are respectively

(1.10) R(X, Y )Z = 1
4 (c + 3)[g(Y, Z)X − g(X, Z)Y ]

+ 1
4 (c− 1)[η(X)η(Z)Y − η(Y )η(Z)X + g(X, Z)η(Y )ξ

− g(Y, Z)η(X)ξ + g(PY,Z)PX − g(PX, Z)PY + 2g(X, PY )PZ]

+ AB(Y,Z)X −AB(X,Z)Y ,

where R is the Riemannian curvature tensor of M , and

g((∇XA)V Y, Z)− g((∇Y A)V X, Z)(1.11)
= g((∇XB)(Y, Z), V )− g((∇Y B)(X, Z), V )
= 1

4 (c− 1)[g(PY,Z)g(FX, V )− g(PX, Z)g(FY, V )
+ 2g(X, PY )g(FZ, V )] .

We define the curvature tensor R⊥ of the normal bundle of M by

R⊥(X, Y )V = DXDY V −DY DXV −D[X,Y ]V .

Then we have the Ricci equation

(1.12) g(R⊥(X, Y )V,U) + g([AU , AV ]X, Y )
= 1

4 (c− 1)[g(FY, V )g(FX, U)− g(FX, V )g(FY, U)

+ 2g(X, PY )g(fV, U)] .

2. Parallel mean curvature vector. In this section we prepare some
lemmas for later use.

Let M be an (n+1)-dimensional contact CR-submanifold of a (2m+1)-
dimensional Sasakian manifold M̃ . We have the following decomposition of
the tangent space Tx(M) at each point x in M :

Tx(M) = Hx(M) + {ξ}+ Nx(M) ,

where Hx(M) = ϕHx(M) and Nx(M) is the orthogonal complement of
Hx(M) + {ξ} in Tx(M). Then ϕNx(M) = FNx(M) ⊂ Tx(M)⊥. Similarly,

Tx(M)⊥ = FNx(M) + Nx(M)⊥ ,

where Nx(M)⊥ is the orthogonal complement of FNx(M) in Tx(M)⊥. Then
ϕNx(M)⊥ = fNx(M)⊥ = Nx(M)⊥.

We take an orthonormal basis e1, . . . , e2m+1 of M̃ such that, when re-
stricted to M , e1, . . . , en+1 are tangent to M . Then e1, . . . , en+1 form an
orthonormal basis of M . We can choose them so that e1, . . . , ep form an
orthonormal basis of Nx(M) and ep+1, . . . , en form an orthonormal ba-
sis of Hx(M) and en+1 = ξ. Moreover, we can take en+2, . . . , e2m+1 of
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an orthonormal basis of Tx(M)⊥ such that en+2, . . . , en+1+p form an or-
thonormal basis of FNx(M) and en+2+p, . . . , e2m+1 form an orthonormal
basis of Nx(M)⊥. In case of need, we can take en+2, . . . , en+1+p such that
en+2 = Fe1, . . . , en+1+p = Fep. Unless otherwise stated, we use the con-
vention that the ranges of indices are respectively:

i, j, k = 1, . . . , n + 1; x, y, z = 1, . . . , p; a, b, c = n + 2, . . . , 2m + 1 .

Lemma 2.1. Let M be a contact CR-submanifold of a Sasakian mani-
fold M̃ . If the f-structure f in the normal bundle of M is parallel , i.e.
∇f = 0, then

(2.1) AU tV = AV tU

for any vector fields U and V normal to M , and the mean curvature vector
ν satisfies

(2.2) fν = 0 .

P r o o f. From (1.6) we have

g(AV tU,X) = g(B(X, tV ), U) = g(AU tV,X) .

This gives (2.1). Since fF = 0, (1.4) implies

0 = −fB(X, PY ) + f2B(X, Y ) .

Hence we obtain f2
∑

B(ei, ei) = 0. From this and the equation f3 +f = 0,
we get (2.2).

From (2.2) we see that the mean curvature vector ν of M is in FNx(M).
In the following, we suppose that M is an (n + 1)-dimensional contact

CR-submanifold of a Sasakian space form M̃2m+1(c) with nonvanishing par-
allel mean curvature vector ν and parallel f -structure f in the normal bundle
of M . Furthermore, we assume that the second fundamental form A and the
f -structure P on M commute, PA = AP , which means that PAV = AV P
for any vector field V normal to M . In this case, the contact CR-structure
P induced on M is normal (see [3]).

We put µ = ν/|ν|. Then µ is a nonvanishing parallel unit normal vector
with fµ = 0, i.e. µ is an isoperimetric section in the normal bundle of M . We
notice that (∇XA)µY = (∇XAµ)Y for any vector fields X and Y tangent
to M .

Lemma 2.2. The second fundamental forms of M satisfy

(2.3) g(AµX, AV Y ) = 1
4 (c + 3)g(X, Y )g(µ, V )

− 1
4 (c− 1)[g(FX, µ)g(FY, V ) + η(X)η(Y )g(µ, V )]

+
∑

g(AµtV, tea)g(AaX, Y ) ,

where Aa denotes the second fundamental form in the direction of ea.
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P r o o f. By the assumption PA = AP , we have g(AµPX, tV ) = 0 for
any vector field X tangent to M and any vector field V normal to M . We
then have

g((∇Y A)µPX, tV ) + g(Aµ(∇Y P )X, tV ) + g(AµPX, (∇Y t)V ) = 0 ,

and hence

g((∇PY A)µPX, tV ) + g(X, PY )g(µ, V ) +
∑

g(AµtV, tea)g(AaX, PY )

+ g(AµPX, AV Y ) + g(AµPX, AfV PY ) = 0 .

Using the Codazzi equation (1.11) and the Ricci equation (1.12) gives
1
4 (c + 3)g(PX, Y )g(µ, V ) +

∑
g(AµtV, tea)g(AaX, PY )

+ g(AµPX, AV Y ) = 0 .

Hence

g(AµPX, AV PY ) = 1
4 (c + 3)g(PX, PY )g(µ, V )

+
∑

g(AµtV, tea)g(AaX, P 2Y ) .

On the other hand,

g(AµPX, AV PY ) = g(AµX, AV Y ) + g(AµX, AFY tV ) + η(Y )g(AµX, tV ) ,

−
∑

g(AµtV, tea)g(AaX, P 2Y )

=
∑

g(AµtV, tea)g(AaX, Y ) + g(AµtV,AFY X)

− g(AµtV, ξ)g(ξ,AFY X) + η(Y )g(AµtV,X)
− η(Y )g(AµtV, ξ)g(ξ,X)

=
∑

g(AµtV, tea)g(AaX, Y ) + g(AµtV,AFY X)

+ g(FX, FY )g(µ, V ) + η(X)g(µ, V ) + η(Y )g(AµX, tV ) .

From the above equations, we find

g(AµX, AV Y ) =
∑

g(AµtV, tea)g(AaX, Y )

+ 1
4 (c− 1)g(PX, PY )g(µ, V ) + g(X, Y )g(µ, V )

+ g([AFY , Aµ]tV,X) .

Since, by the Ricci equation (1.12),

g([AFY , Aµ]tV,X) = 1
4 (c− 1)[g(FX, FY )g(µ, V )− g(FX, µ)g(FY, V )] ,

the equation above becomes our result (2.3).

Since the mean curvature vector of M is parallel, we see that, by the
Codazzi equation (1.11),

(2.4)
∑

(∇iA)µei = 0 ,
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where ∇i denotes the covariant differentiation in the direction of ei.

Lemma 2.3. The restricted laplacian for Aµ is given by

(2.5) (∇2A)µX =
∑

(R(ei, X)A)µei + 1
4 (c− 1)

×
[
−AFXtµ− tB(tµ,X) + 3PAµPX + g(tµ,X)t TrB

− 2(TrAFX)tµ− g(X, tµ)
∑

Aatea − 2
∑

g(Aatea, X)tµ

− (n− 1)g(tµ,X)ξ − (2n + 1)η(X)tµ
]
.

P r o o f. From (1.11) and (2.4) we have

(∇2A)µX =
∑

(∇i∇iA)µX

=
∑

(R(ei, X)A)µei

+ 1
4 (c− 1)

∑
[g((∇iF )ei, µ)PX + g(Fei, µ)(∇iP )X

− g((∇iF )X, µ)Pei − g(FX, µ)(∇iP )ei

+ 2g((∇iP )ei, X)tµ + 2g(Pei, X)(∇it)µ] .

Using (1.2)–(1.5) and Lemma 2.1, we find (2.5).

From (2.5) we have

g((∇2A)µ, Aµ) =
∑

g((∇i∇iA)µej , Aµej)(2.6)

=
∑

g((R(ei, ej)A)µei, Aµej)

+ 3
4 (c− 1)

[
Tr(AµP )2 −

∑
g(Aµtµ,Aatea)

+
∑

g(Aµtµ, tea) Tr Aa + n
]
.

On the other hand, by the Gauss equation (1.10),∑
g((R(ei, ej)A)µei, Aµej) = 1

4 (c + 3)(n + 1) Tr A2
µ(2.7)

− 1
4 (c− 1) Tr A2

µ − 1
4 (c + 3)(TrAµ)2 − 1

4 (c− 1)(n + 1)

+
∑

Tr(AµAa)2 −
∑

TrA2
µA2

a +
∑

TrAa TrA2
µAa

−
∑

(TrAµAa)2 .

Lemma 2.4. The curvature tensor R of M satisfies

(2.8)
∑

g((R(ei, ej)A)µei, Aµej) = 1
16 (c− 1)2(n− p) .

P r o o f. From the Ricci equation (1.12) we have

(2.9)
∑

Tr(AµAa)2 −
∑

TrA2
µA2

a = − 1
16 (c− 1)2(p− 1) .
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On the other hand, (2.3) implies∑
TrAa TrA2

µAa = 1
4 (c + 3)(TrAµ)2 +

∑
TrAa TrAµAbg(Aµtea, teb)

− 1
4 (c− 1)

∑
g(Aµtµ, tea) Tr Aa ,∑

(TrAµAa)2 = 1
4 (c + 3)(n + 1)A2

µ − 1
2 (c− 1)A2

µ

+
∑

TrAa TrAµAbg(Aµtea, teb) .

Hence ∑
TrAa TrA2

µAa −
∑

(TrAµAa)2(2.10)

= − 1
4 (c + 3)(n + 1)A2

µ + 1
2 (c− 1)A2

µ

+ 1
4 (c + 3)(TrAµ)2 − 1

4 (c− 1)
∑

g(Aµtµ, tea) Tr Aa .

Substituting (2.9) and (2.10) into (2.7), we find

(2.11)
∑

g((R(ei, ej)A)µei, Aµej)

= 1
4 (c− 1)

[
TrA2

µ −
∑

g(Aµtµ, tea) Tr Aa − (n + 1)− 1
4 (c− 1)(p− 1)

]
.

Since, by (2.3),

(2.12) TrA2
µ = 1

4 (c− 1)(n− 1) + (n + 1) +
∑

g(Aµtµ, tea) Tr Aa ,

equation (2.11) becomes (2.8).

Lemma 2.5. For the second fundamental form Aµ we have

(2.13) g((∇2A)µ, Aµ) = − 1
8 (c− 1)2(n− p) .

P r o o f. First of all,

(2.14) Tr(AµP )2 = −TrA2
µ + 1 +

∑
g(Aµtea, Aµtea) .

Furthermore, (2.3) implies

(2.15)
∑

g(Aµtea, Aµtea) = 1
4 (c− 1)(p− 1) +

∑
g(Aµtµ,Aatea) .

From (2.12), (2.13) and (2.15) we obtain

(2.16) Tr(AµP )2 −
∑

g(Aµtµ,Aatea) +
∑

g(Aµtµ, tea) Tr Aa + n

= − 1
4 (c− 1)(n− p) .

Substituting (2.8) and (2.16) into (2.6) yields (2.13).

3. Theorems. Let M be an (n+1)-dimensional contact CR-submanifold
of a Sasakian space form M̃2m+1(c) with nonvanishing parallel mean curva-
ture vector. We suppose that ∇f = 0 and PA = AP .
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First of all, we prove that ∆ TrA2
µ = 0. We take an orthonormal basis

{Aa} such that en+2 = µ and TrAa = 0, a = n+3, . . . , 2m+1. Then (2.12)
becomes

TrA2
µ = 1

4 (c− 1)(n− 1) + (n + 1) + g(Aµtµ, tµ) Tr Aµ .

Hence

∆ TrA2
µ =

∑
∇i∇i TrA2

µ =
∑

g((∇2A)µtµ, tµ) Tr Aµ(3.1)

+ 2
∑

g((∇iA)µtµ, (∇it)µ) Tr Aµ .

On the other hand, (2.5) implies

(3.2) g((∇2A)µtµ, tµ) =
∑

g((R(ei, tµ)A)µei, tµ)

+ 3
4 (c− 1)

[
TrAµ −

∑
g(Aµtea, tea)

]
.

From (1.5) and (1.11) we also have

(3.3)
∑

g((∇iA)µtµ, (∇it)µ) Tr Aµ

= − 1
4 (c− 1)

[
TrAµ −

∑
g(Aµtea, tea)

]
.

Using the Gauss equation, we see that∑
g((Rei, tµ)A)µei, tµ)

=
∑

g(R(ei, tµ)Aµei, tµ)−
∑

g(R(ei, tµ)ei, Aµtµ)

= 1
4 (c + 3)(n + 1)g(Aµtµ, tµ)− 1

4 (c− 1)g(Aµtµ, tµ)

− 1
4 (c + 3) Tr Aµ +

∑
g(Aatµ, [Aµ, Aa]tµ)

−
∑

g(Aatµ, tµ) Tr AµAa + g(Aµtµ,Aµtµ) Tr Aµ .

By the Ricci equation (1.12) and the equation

TrAµAa = 1
4 (c + 3)(n + 1)g(µ, ea)− 1

2 (c− 1)g(µ, ea)
+ g(Aµtea, tµ) Tr Aµ ,

we find

(3.4)
∑

g((R(ei, tµ)A)µei, tµ) = 1
4 (c− 1)[g(Aµtea, tea)− TrAµ] .

From (3.1)–(3.4) we have the following

Lemma 3.1. ∆ TrA2
µ = 0.

We next prove

Theorem 3.1. Let M be an (n+1)-dimensional contact CR-submanifold
of a Sasakian space form M̃2m+1(c) with nonvanishing parallel mean cur-
vature vector. If the f-structure f in the normal bundle is parallel , and if
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PA = AP , then
|(∇A)µ|2 = 1

8 (c− 1)2(n− p) .

P r o o f. Generally,
1
2∆ TrA2

µ = g((∇2A)µ, Aµ) + |(∇A)µ|2 .

Thus our assertion follows by Lemmas 2.5 and 3.1.

Let us put

T (X, Y ) = (∇XA)µY + 1
4 (c− 1)[g(FY, µ)PX − g(PX, Y )tµ] .

Then, by the Codazzi equation (1.11),

|T |2 = |(∇A)µ|2 − 1
8 (c− 1)2(n− p) ≥ 0 .

Therefore, T vanishes identically if and only if

|(∇A)µ|2 = 1
8 (c− 1)2(n− p) .

Corollary 3.1. Under the same assumptions as in Theorem 3.1,

(3.5) (∇XA)µY = − 1
4 (c− 1)[g(FY, µ)PX − g(PX, Y )tµ]

for any vector fields X and Y tangent to M .

Theorem 3.2. Let M be an (n + 1)-dimensional generic submanifold of
a Sasakian space form M̃2m+1(c) with nonvanishing parallel mean curvature
vector. If PA = AP , then

|(∇A)µ|2 = 1
8 (c− 1)2(n− p) ,

or equivalently

(∇XA)µY = − 1
4 (c− 1)[g(FY, µ)PX − g(PX, Y )tµ]

for any vector fields X and Y tangent to M .

Theorems 3.1 and 3.2 are generalizations of some theorems in [1] and [2].

Theorem 3.3. Let M be an (n+1)-dimensional contact CR-submanifold
of a Sasakian space form M̃2m+1(c) with nonvanishing parallel mean cur-
vature vector. If the f-structure f in the normal bundle is parallel , and if
PA = AP , then each eigenvalue of Aµ is constant.

P r o o f. We suppose that AµX = λX. Then AµPX = PAµX = λPX.
Using (3.5), we also have

(Y λ)g(X, X) = 1
2 (c− 1)g(PY,X)g(tµ,X) .

Replacing X by PX, we obtain (Y λ)g(PX, PX) = 0. If PX = 0, then
(Y λ)g(X, X) = 0 and hence Y λ = 0. If PX 6= 0, we also have Y λ = 0.
Consequently, λ is constant.
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Theorem 3.4. Let M be an (n + 1)-dimensional generic submanifold of
a Sasakian space form M̃2m+1(c) with nonvanishing parallel mean curvature
vector. If PA = AP , then each eigenvalue of Aµ is constant.

Theorem 3.5. Let M be an (n + 1)-dimensional complete and simply
connected contact CR-submanifold with nonvanishing parallel mean curva-
ture vector and with parallel f-structure f in the normal bundle in a unit
sphere S2m+1. If PA = AP , then M is a product of Riemannian manifolds,
M1× . . .×Ms, where s is the number of the distinct eigenvalues of Aµ, and
the mean curvature vector of M is an umbilical section of Mt (t = 1, . . . , s).

P r o o f. From Theorems 3.1 and 3.3 we see that the smooth distribu-
tion Tt (t = 1, . . . , s) which consists of all eigenspaces associated with the
eigenvalues of Aµ can be defined and is parallel. M is assumed to be simply
connected and complete, and therefore our assertion follows from the de
Rham decomposition theorem.

Theorem 3.6. Let M be an (n + 1)-dimensional complete and simply
connected generic submanifold with nonvanishing parallel mean curvature
vector in a unit sphere S2m+1. If PA = AP , then M is a product of Rie-
mannian manifolds, M1 × . . . × Ms, where s is the number of the distinct
eigenvalues of Aµ, and the mean curvature vector of M is an umbilical
section of Mt (t = 1, . . . , s).

Theorem 3.7. Let M be an (n+1)-dimensional contact CR-submanifold
of a Sasakian space form M̃2m+1(c) with nonvanishing parallel mean curva-
ture vector and parallel f-structure f in the normal bundle. If PA = AP ,
and if the sectional curvature of M is nonpositive, then the second funda-
mental form in the direction of the mean curvature vector is parallel. More-
over , either c = 1, or P = 0 and M is anti-invariant in M̃2m+1(c) with
respect to ϕ.

P r o o f. We take an orthonormal basis e1, . . . , en+1 such that Aµei =
λiei (i = 1, . . . , n + 1). We denote by Kij the sectional curvature of M
spanned by ei and ej . Then∑

g((R(ei, ej)A)µei, Aµej) = 1
4

∑
(λi − λj)2Kij .

Substituting this into (2.8), we obtain∑
(λi − λj)2Kij = 1

8 (c− 1)2(n− p) ≥ 0 .

Thus, if Kij ≤ 0, then (c − 1)2(n − p) = 0, and hence (∇A)µ = 0 by
Theorem 3.1. Moreover, we have either c = 1 or n = p. If n = p, then
P = 0 and M is an anti-invariant submanifold of M̃2m+1(c) tangent to the
structure vector field ξ.
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Theorem 3.8. Let M be an (n + 1)-dimensional generic submanifold of
a Sasakian space form M̃2m+1(c) with nonvanishing parallel mean curvature
vector. If PA = AP , and if the sectional curvature of M is nonpositive, then
the second fundamental form in the direction of the mean curvature vector
is parallel. Moreover , either c = 1, or P = 0 and M is anti-invariant in
M̃2m+1(c) with respect to ϕ.
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