COLLOQUIUM MATHEMATICUM

A CHARACTERIZATION OF MODULAR LATTICES

BY
J. D U DEK (WROCŁAW)

1. Introduction. A binary algebra $(L,+, \cdot)$ is said to be a lattice if it satisfies the following identities:
1) $x+x=x, \quad x \cdot x=x$,
2) $x+y=y+x, \quad x \cdot y=y \cdot x$,
3) $(x+y)+z=x+(y+z), \quad(x \cdot y) \cdot z=x \cdot(y \cdot z)$,
4) $(x+y) \cdot y=y \quad x \cdot y+y=y$.
(In the sequel we shall write $x y$ instead of $x \cdot y$.) A lattice $(L,+, \cdot)$ is modular if the identity $x(x y+z)=x y+x z$ holds in $(L,+, \cdot)$.

The main purpose of this paper is to prove the following:
ThEOREM 1.1. Let $(L,+, \cdot)$ be a commutative binary algebra in which the following identities hold: $(x+y) y=y, x+x=x$. Then $(L,+, \cdot)$ is a nondistributive modular lattice if and only if $p_{3}(L,+, \cdot)=19$.

Recall that $p_{n}(A)$ denotes the number of all essentially n-ary polynomials over A, i.e., polynomials depending on all their variables. For this and all other undefined concepts used here we refer to [10] (see also [9]).

In his survey of equational logic, Taylor ([13], p. 41) poses a general problem of whether the numbers $p_{n}(A)$ characterize (to some extent and perhaps in special circumstances) the algebra A. Our result can be treated as a contribution to this problem.

An algebra (A, F) is called idempotent (symmetric) if every $f \in F$ is idempotent (symmetric). A symmetric binary algebra is called commutative. At the Klagenfurt Conference on Universal Algebra (June, 1982) we announced the following (see also [3]).

Theorem 1.2. Let $(B,+, \cdot)$ be a bisemilattice. Then $(B,+, \cdot)$ is a nondistributive modular lattice if and only if $p_{3}(B,+, \cdot)=19$.

The proof of this theorem appeared in [5] (cf. [11]). At the same conference during the Problem Session we stated the following:

Conjecture 1.3. Let $(A,+, \cdot)$ be a commutative idempotent binary algebra with different operations + and \cdot. Then $(A,+, \cdot)$ is a nondistributive modular lattice if and only if $p_{3}(A,+, \cdot)=19$.

So, Theorem 1.1 can also be treated as a step towards the proof of this conjecture.

An algebra $\left(A,\left\{f_{t}\right\}_{i \in T}\right)$ is said to be proper if the mapping $t \rightarrow f_{t}$ is one-to-one and every nonnullary f_{t} depends on all its variables. Let $f=f\left(x_{1}, \ldots, x_{n}\right)$ be a function on a set A. Then we denote by $G(f)$ the symmetry group of f, i.e., the set of all permutations $\sigma \in S_{n}$ (where S_{n} denotes the symmetry group of n letters) such that $f=f^{\sigma}$, where $f^{\sigma}\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{\sigma 1}, \ldots, x_{\sigma n}\right)$ for all $x_{1}, \ldots, x_{n} \in A$ (see [10]). A function $f=f\left(x_{1}, \ldots, x_{n}\right)$ is called symmetric if $f=f^{\sigma}$ for all $\sigma \in S_{n}$, and idempotent if $f(x, \ldots, x)=x$ for all $x \in A$.

Recall that a bisemilattice (see Theorem 1.2) is a commutative idempotent binary algebra $(B,+, \cdot)$ such that both + and \cdot are associative, i.e., both reducts $(B,+)$ and (B, \cdot) are semilattices.

To prove Theorem 1.1 we need several lemmas.
2. Binary idempotent algebras. Let $(A,+, \cdot)$ be a proper idempotent binary algebra such that $(A,+)$ is commutative. Let

$$
\begin{array}{ll}
s(x, y, z)=(x+y)+z, & \widehat{s}(x, y, z)=(x y) z \\
f(x, y, z)=(x+y) z, & \widehat{f}(x, y, z)=x y+z
\end{array}
$$

and if additionally (A, \circ) is a proper noncommutative idempotent groupoid, then let also

$$
q_{1}(x, y, z)=(x+y) \circ z, \quad q_{2}(x, y, z)=z \circ(x+y)
$$

Similarly to [6] we get
Lemma 2.1. If $(A,+, \cdot)$ is a proper idempotent binary algebra such that $(A,+)$ is commutative, then $s, \widehat{s}, f, \widehat{f}$ are essentially ternary and pairwise distinct. If, additionally, (A, \circ) is a proper noncommutative groupoid, then q_{1}, q_{2} are essentially ternary and the polynomials $s, \widehat{s}, f, \widehat{f}, q_{1}, q_{2}$ are pairwise distinct.

Lemma 2.2 (cf. [7]). If $(A,+, \cdot)$ is a proper commutative idempotent binary algebra satisfying $(x+y) z=(x+z) y$, then $(A,+, \cdot)$ is polynomially infinite, i.e., $p_{n}(A,+, \cdot)$ is infinite for all $n \geq 2$. (The dual version of this lemma is also true.)

Lemma 2.3. If an algebra A contains 3 distinct commutative idempotent binary operations, then $p_{3}(A) \geq 21$.

Proof. Examining the symmetry groups of the polynomials $(x+y)+z$, $(x y) z,(x \circ y) \circ z,(x+y) z, x y+z,(x+y) \circ z,(x \circ y)+z,(x y) \circ z$ and $(x \circ y) z$ and using Lemmas 2.1 and 2.2 we get our assertion.

Lemma 2.4. If $(A,+, \cdot)$ is a proper commutative idempotent binary algebra such that either $(A,+)$ or (A, \circ) is cancellative, then $(A,+, \cdot)$ contains at least three essentially binary commutative idempotent polynomials.

Proof. Assume that $(A,+)$ is cancellative. Then the polynomials $x+y$, $x y,(x+y)+(x y)$ are essentially binary and pairwise distinct, because e.g. if $x+y=(x+y)+x y$, then $x+y=(x+y)+(x+y)=(x+y)+x y$ gives $x+y=x y$.

As a corollary from Theorem 1 of [1] and the last two lemmas we get
Lemma 2.5. If $(A,+, \cdot)$ is a proper commutative idempotent binary algebra such that $p_{3}(A,+, \cdot)=19$, then both polynomials $x+2 y$ and $x y^{2}$ are essentially binary.

Here $x y^{k}$ denotes (... $x y$) $\ldots y$)y (y appearing k times), and we use $x+k y$ in the additive case, respectively.

Recall that a commutative idempotent groupoid (G, \cdot) satisfying $x y=$ $x y^{2}$ is called a near-semilattice (cf. [4]).

A groupoid (G, \cdot) is distributive if it satisfies $(x y) z=(x z)(y z)$ and $z(x y)=(z x)(z y)$.

A groupoid (G, \cdot) is medial if it satisfies the medial law: $(x y)(u v)=$ $(x u)(y v)$.

Lemma 2.6. (cf. [2]). Let $(A,+)$ be a commutative idempotent groupoid. Then the following are equivalent:
(i) $(A,+)$ is a semilattice.
(ii) The polynomial $d(x, y, z)=(x+z)+(y+z)$ is symmetric.
(iii) $(A,+)$ is a distributive (medial) groupoid satisfying $x+2 y=y+2 x$.

Lemma 2.7. If $(A,+, \cdot)$ is a proper idempotent binary algebra such that $(A,+)$ is commutative and $(x+y) z=(x+z) y$, then the polynomial $x \circ y=$ $x+2 y$ is essentially binary and noncommutative. Moreover, there exist such algebras with (A, \circ) noncommutative.

Proof. First we give an example. Let (A, \oplus) be an abelian group of exponent 5. We put $x+y=3 x \oplus 3 y$ and $x y=4 x \oplus 2 y$. Then $(A,+, \cdot)$ is the required algebra (note that this algebra satisfies $x \circ y=x y$ and is not polynomially infinite, comp. with Lemma 2.2).

Assume now that $(x+y) z=(x+z) y$. Then $x+y=(x+y)(x+y)=$ $((x+y)+y) x=(x \circ y) x$, thus $x \circ y$ is essentially binary. Assume that $x \circ y$ is commutative. If in addition \cdot is commutative, then $x+y=(x \circ y) x=$ $(y \circ x) x=((y+x)+x) x=x(x+y)=(x+y) x=x y$, a contradiction. If \cdot
is noncommutative, then $x y=(x+x) y=(y+x) x=((x+y)+(x+y)) x=$ $((y+x)+x)(x+y)=(y \circ x)(x+y)=(x \circ y)(y+x)=y x$, a contradiction. The proof is complete.

Lemma 2.8. If $(A,+)$ is a nonassociative commutative idempotent groupoid, $x \circ y=x+2 y$ and $(A,+, \circ)$ satisfies $(x+y) \circ z=(x+z) \circ y$, then the polynomial $x \circ y+z$ is essentially ternary and its symmetry group is trivial.

Proof. Since $(A,+)$ is proper we infer, using $(x+y) \circ z=(x+z) \circ y$, that (A, \circ) is also proper. Further, $x+y \neq x \circ y$ and therefore $(A,+, \circ)$ is a proper algebra. By Lemma 2.1, $x \circ y+z$ is essentially ternary. Lemma 2.7 proves that $x \circ y$ is noncommutative (here we put $x \circ y=x y$) and hence $x \circ y+z \neq y \circ x+z$.

Assume now that $(x+y) \circ z$ is symmetric. We show that the group $G(x \circ y+z)$ is trivial. If $x \circ y+z=y \circ z+x$, then $x+y=x \circ y+y$ and hence $x \circ y=x+2 y=(x+y) \circ y+y=y \circ x+y=x \circ y+y=x+y$. Thus $x \circ y=x+y$, which contradicts Lemma 2.7.

Let now $x \circ y+z=z \circ y+x$. Then $x+y=x \circ x+y=y \circ x+x$. Putting here $x+y$ for y we get $y \circ x=y+2 x=(x+y) \circ x+x=x \circ y+x$ and hence $x \circ y+x=y+2 x$. This implies $y+2(y+x)=(x+y) \circ y+$ $(x+y)=y \circ x+(x+y)=(x+y) \circ x+y=x \circ y+y=x+y$. Thus $x+y=y+2(y+x)=(x+2 y)+(x+y)$. This gives $y \circ x=(x+y) \circ y=$ $((x+2 y)+(x+y)) \circ y=(x+2 y) \circ(x+2 y)=x+2 y=x \circ y$ and therefore $x \circ y=y \circ x$, a contradiction.

If $x \circ y+z=x \circ z+y$, then $x+y=x \circ y+x$ and hence $x \circ y=$ $(x+y) \circ x=(x \circ y+x) \circ x=x \circ(x \circ y)$. Thus $x \circ y+y=x \circ(x \circ y)+y=$ $x \circ y+x \circ y=x \circ y$. Putting $x+y$ for x in $x \circ y=x \circ y+y$ we get $y \circ x=(x+y) \circ y=(x+y) \circ y+y=y \circ x+y=y \circ y+x=x+y$, which is again impossible.

Note that the dual version of the preceding lemma is also true, i.e., we have

Lemma 2.9. If $(A,+)$ is a nonassociative commutative idempotent groupoid such that $(A,+, \circ)$, where $x \circ y=x+2 y$, satisfies $z \circ(x+y)=$ $y \circ(x+z)$, then the polynomial $x \circ y+z$ is essentially ternary and has a trivial symmetry group.

Lemma 2.10. If $(A,+)$ is a nonassociative commutative idempotent groupoid, and we put $x \circ y=x+2 y$, then the polynomials $(x+y) \circ z$ and $z \circ(x+y)$ cannot be simultaneously symmetric.

Proof. If both $(x+y) \circ z$ and $z \circ(x+y)$ are symmetric, then $x \circ y=$ $(x+x) \circ y=(y+x) \circ x=(y+x) \circ(x+x)=x \circ((y+x)+x)=x \circ(y \circ x)$. Thus $x \circ y=x \circ(y \circ x)$, and we obtain $y \circ x=x \circ(x+y)=x \circ((x+y) \circ x)=x \circ(x \circ y)$,
so $x+y=(x+y) \circ(x+y)=x \circ((x+y)+y)=x \circ(x \circ y)=y \circ x$ and we see that $x \circ y$ is commutative, thus contradicting Lemma 2.7.

Lemma 2.11. If $(A,+, \cdot)$ is a proper commutative idempotent binary algebra such that $x \circ y=x+2 y$ is essentially binary, noncommutative and $p_{3}(A,+, \cdot)<21$, then the polynomials $(x+y) \circ z, z \circ(x+y),(x y) \circ z$ and $z \circ(x y)$ are essentially ternary and pairwise distinct.

Proof. The first fact follows from Lemma 2.1. Lemma 2.3 implies that $(x+y)+(x y) \in\{x+y, x y\}$. Assume e.g. that $z \circ(x+y)=z \circ(x y)$. Then $x+y=(x+y) \circ(x y)=(x+y)+(x y)+(x y)$ and $x y=x y \circ(x+y)=$ $(x y+(x+y))+(x+y)$. Since $(x+y)+(x y)$ is either $x+y$ or $x y$ we deduce that $x+y=x y$, a contradiction.

Lemma 2.12. If $(A,+, \cdot)$ is a proper commutative idempotent binary algebra such that $x \circ y=x+2 y$ is essentially binary and noncommutative, then $p_{3}(A,+, \cdot)>19$.

Proof. Assume that $p_{3}(A,+, \cdot) \leq 19$ and consider the ternary polynomials $s=(x+y)+z, \widehat{s}=(x y) z, f=(x+y) z, \widehat{f}=x y+z, q_{1}=(x+y) \circ z$, $q_{2}=z \circ(x+y), q_{1}^{\prime}=(x y) \circ z, q_{2}^{\prime}=z \circ(x y)$ and $q=x \circ y+z$. By Lemma 2.1 they are all essentially ternary. By the assumption we deduce that + is nonassociative.

If $(x+y) \circ z$ is symmetric, then $\operatorname{card} G(q)=1$ by Lemma 2.8. Using Lemma 2.10 we see that $\operatorname{card} G\left(q_{2}\right)=2$. If f or \widehat{f} is symmetric, then Lemma 2.2 shows that $p_{3}(A,+, \cdot)$ is infinite. Thus we may assume that $\operatorname{card} G(f)=\operatorname{card} G(\widehat{f})=2$. Considering the polynomials $s, f, \widehat{f}, q_{2}, q, q_{1}$, \widehat{s} and their symmetry groups we get

$$
\begin{aligned}
p_{3}(A,+, \cdot) \geq & \frac{6}{\operatorname{card} G(s)}+\frac{6}{\operatorname{card} G(f)}+\frac{6}{\operatorname{card} G(\widehat{f})} \\
& +\frac{6}{\operatorname{card} G\left(q_{2}\right)}+\frac{6}{\operatorname{card} G(q)}+\frac{6}{\operatorname{card} G\left(q_{1}\right)}+\frac{6}{\operatorname{card} G(\widehat{s})} \\
\geq & 3+3+3+3+6+1+1=20
\end{aligned}
$$

a contradiction.
Assume now that neither q_{1} nor q_{2} is symmetric and consider s, f, \widehat{f}, $q_{1}, q_{2}, q_{1}^{\prime}$ and q_{2}^{\prime}. If • is nonassociative, then using Lemma 2.11 we obtain

$$
\begin{aligned}
p_{3}(A,+, \cdot) \geq & \frac{6}{\operatorname{card} G(s)}+\frac{6}{\operatorname{card} G(\widehat{s})}+\frac{6}{\operatorname{card} G(f)} \\
& +\frac{6}{\operatorname{card} G(\widehat{f})}+\frac{6}{\operatorname{card} G\left(q_{1}\right)}+\frac{6}{\operatorname{card} G\left(q_{1}^{\prime}\right)}+\frac{6}{\operatorname{card} G\left(q_{2}^{\prime}\right)} \\
\geq & 3+3+3+3+3+3+1+1=20,
\end{aligned}
$$

a contradiction.

If \cdot is associative, then q_{1}^{\prime} and q_{2}^{\prime} are not symmetric. In fact, if e.g. q_{1}^{\prime} is symmetric then $x y=x y \circ x y=((x y) y) \circ x=x y \circ x=x \circ y$, a contradiction. As above, we get $p_{3}(A,+, \cdot) \geq 3+1+3+3+3+3+3+3=22$, which is impossible. The proof is complete.

Recall that a binary algebra $(A,+, \cdot)$ is called a bi-near-semilattice if both groupoids $(A,+)$ and (A, \cdot) are near-semilattices. Further, two algebras with the same underlying sets and the same sets of polynomials are called polynomially equivalent.

Lemma 2.13. If $(A,+, \cdot)$ is a proper commutative idempotent binary algebra satisfying $p_{3}(A,+, \cdot)=19$, then $(A,+, \cdot)$ is either a bi-near-semilattice, or it is polynomially equivalent to a commutative idempotent groupoid (A, \bullet) with $p_{2}(A, \bullet)=2$. Moreover, in the second case $(A,+, \cdot)$ satisfies only regular identities.

Proof. Let $(A,+, \cdot)$ be as in the assumptions. Lemma 2.5 shows that $x \circ y=x+2 y$ is essentially binary, and so is $x y^{2}$.

Assume that $x \circ y=y \circ x$. If $x \circ y \neq x+y$, then Lemma 2.3 yields $x \circ y=x y$. Using now Theorem 4 of [1] and again Lemma 2.3 we deduce that $(A,+, \cdot)$ is polynomially equivalent to the commutative idempotent groupoid $(A,+)$ with $p_{2}(A,+)=2$.

Applying Lemma 2.12 (and its dual version) we deduce that $x+2 y$ and $x y^{2}$ are commutative (and clearly essentially binary). Assume now that $(A,+, \cdot)$ is not polynomially equivalent to a groupoid. Then $x+2 y=x+y$ and $x y=x y$ and therefore $(A,+, \cdot)$ is a bi-near-semilattice.

Note that if $(A,+, \cdot)$ is polynomially equivalent to a commutative groupoid with $p_{2}=2$, then the results of [4] show that $(A,+, \cdot)$ contains a subgroupoid isomorphic to $N_{2}=(\{1,2,3,4\}$, , $)$, where

$$
x \square y= \begin{cases}x & \text { if } x=y, \\ 1+\max (x, y) & \text { if } x, y \leq 3 \text { and } x \neq y, \\ 4 & \text { otherwise } .\end{cases}
$$

It is easy to see that N_{2} satisfies only regular identities (cf. [4, 12]). The proof is complete.

Since the identity $(x+y) y=y$ in Theorem 1.1 is nonregular we see that according to the last lemma we consider in the sequel bi-near-semilattices with one absorption law.
3. Bi-near-semilattices with one absorption law. In this section we deal with bi-near-semilattices satisfying the identity $(x+y) y=y$. First we recall the following.

Theorem 3.1 (Theorem 6 of $[6])$. Let $(L,+, \cdot)$ be a commutative idempotent binary algebra satisfying $(x+y) y=y$. Then the following conditions are equivalent:
(i) $(L,+, \cdot)$ is a distributive lattice.
(ii) $(L,+, \cdot)$ satisfies $(x+y) z=x z+y z$.
(iii) $(L,+, \cdot)$ satisfies $x y+z=(x+z)(y+z)$.

Note that the idempotency of \cdot follows from the idempotency of + and the absorption law $(x+y) y=y$.

Let now $(A,+, \cdot)$ be a proper bi-near-semilattice satisfying $(x+y) y=y$. Consider the following ternary polynomials over $(A,+, \cdot)$:

$$
\begin{array}{rlrl}
s & =s(x, y, z) & =(x+y)+z, & \\
d & =d(x, y, z) & =(x+z)+(y+z), & \\
d & \widehat{d}(x, y, z)=(x y) z \\
f & =f(x, y, z) & =(x+y) z, & \\
m & =m(x, y, z) & =x z+y z, & \\
\hline f & =\widehat{f}(x, y, z)=x y+z \\
& & \widehat{m}=\widehat{m}(x, y, z)=(x+z)(y+z) .
\end{array}
$$

LEMMA 3.2. If $(A,+, \cdot)$ is a proper commutative idempotent binary algebra then the polynomials $s, \widehat{s}, d, \widehat{d}, f, \widehat{f}, m$ and \widehat{m} are essentially ternary.

Proof. Standard, see e.g. [9].
We also have
Lemma 3.3. Under the same assumptions, the polynomials s, \widehat{s}, f and \widehat{f} are pairwise distinct.

LEMMA 3.4. Under the same assumptions, $m \neq \widehat{m}, m$ is different from s and d, and m is different from \widehat{s} and \widehat{d}.

Lemma 3.5. Under the same assumptions, either the symmetry groups of f and \widehat{f} are two-element, or the algebra $(A,+, \cdot)$ is polynomially infinite.

This follows from Lemma 2.2.
Lemma 3.6. If $(A,+, \cdot)$ is a proper commutative idempotent binary algebra satisfying $(x+y) y=y$, then the symmetry groups of m and \widehat{m} are two-element, i.e., the polynomials admit only trivial permutations of their variables.

Proof. Assume that $(x+z)(y+z)=(x+z)(y+x)$. Then $x+y=$ $(x+y)(y+x)=(x+y) y=y$, a contradiction. If $x z+y z$ is symmetric, then $x z+y z=x z+y x$ and hence $x y=x y+y$. This gives $(x y) y=y$, which is impossible.

Lemma 3.7. If $(A,+, \cdot)$ is a bi-near-semilattice satisfying $(x+y) y=y$ such that both + and \cdot are nonassociative, then $p_{3}(A,+, \cdot) \geq 24$.

Proof. By Lemma 3.2 the polynomials $s, \widehat{s}, d, \widehat{d}, f, \widehat{f}, m, \widehat{m}$ are essentially ternary. Since $(A,+, \cdot)$ is not a lattice, Theorem 3.1 shows that $m \neq f$ and $\widehat{m} \neq \widehat{f}$. Using Lemma 2.6 we infer that $s \neq d, \widehat{s} \neq \widehat{d}$. Further, it is routine to prove that all the above polynomials are pairwise distinct.

Since + and \cdot are nonassociative, Lemma 2.6 shows that $\operatorname{card} G(s)=$ $\operatorname{card} G(\widehat{s})=\operatorname{card} G(d)=\operatorname{card} G(\widehat{d})=2$. By Lemma 3.6, $\operatorname{card} G(m)=$ $\operatorname{card} G(\widehat{m})=2$. According to Lemma 3.5 we may assume that $\operatorname{card} G(f)=$ $\operatorname{card} G(\widehat{f})=2$. This proves that $p_{3}(A,+, \cdot) \geq 24$, as required.

Lemma 3.8. If $(A,+, \cdot)$ is a bi-near-semilattice satisfying $(x+y) y=y$ with + associative and \cdot nonassociative (or vice versa), then $p_{3}(A,+, \cdot) \geq 20$.

Proof. Consider the ternary polynomials $s=x+y+z, \widehat{s}=(x y) z$, $\widehat{d}=(x z)(y z), f=(x+y) z, \widehat{f}=x y+z, m=x z+y z$ and $\widehat{m}=(x+z)(y+z)$. In addition, consider the essentially ternary polynomial $g=g(x, y, z)=$ $x y+y z+z x$. It is clear that $\operatorname{card} G(s)=\operatorname{card} G(g)=6$. If $s=g$, then $x y+y=x+y$ and hence $x+y=(x+y)+y=(x+y) y+y=y+y=y$. By Lemma 3.2 all these ternary polynomials are essentially ternary. Applying Lemmas $3.2-3.6$ and Lemma 2.6 as in the preceding proof, and examining the symmetry groups of $s, \widehat{s}, \widehat{d}, f, \widehat{f}, m, \widehat{m}$ and g, we obtain

$$
p_{3}(A,+, \cdot) \geq 1+3+3+3+3+3+3+1=20
$$

(here Theorem 3.1 has also been used). The proof is complete.
4. Proof of Theorem 1.1. Recall that our aim is to prove that a (nontrivial) commutative idempotent binary algebra $(L,+, \cdot)$ satisfying ($x+$ $y) y=y$ is a nondistributive modular lattice if and only if $p_{3}(L,+, \cdot)=19$.

First, if $(L,+, \cdot)$ is a modular nondistributive lattice, then $p_{3}(L,+, \cdot)=$ 19 (see e.g. Theorem 1.2). Assume now that $p_{3}(L,+, \cdot)=19$ and $(L,+, \cdot)$ is a commutative idempotent binary algebra satisfying $(x+y) y=y$. Lemma 2.13 shows that $(L,+, \cdot)$ is a bi-near-semilattice since it satisfies a nonregular identity $(x+y) y=y$. If this bi-near-semilattice is a bisemilattice, then the assertion follows from Theorem 1.2; otherwise, it follows from Lemmas 3.7 and 3.8. The proof is complete.

REFERENCES

[1] J. Dudek, On binary polynomials in idempotent commutative groupoids, Fund. Math. 120 (1984), 187-191.
[2] —, Varieties of idempotent commutative groupoids, ibid., 193-204.
[3] -, A polynomial characterization of some idempotent algebras, Acta Sci. Math. (Szeged) 50 (1985), 39-49.
[4] -, On the minimal extension of sequences, Algebra Universalis 23 (1986), 308-312.
[5] J. Dudek, A polynomial characterization of nondistributive modular lattices, Colloq. Math. 55 (1988), 195-212.
[6] -, Characterizations of distributive lattices, to appear.
[7] J. Dudek and A. Kisielewicz, On finite models of regular identities, Notre Dame J. Formal Logic 30 (2) (1989), 624-628.
[8] G. Grätzer, Compositions of functions, in: Proc. Conference on Universal Algebra (Kingston, 1969), Queen's Univ., Kingston, Ont., 1970, 1-106.
[9] -, Universal Algebra, 2nd ed., Springer, New York 1979.
[10] G. Grätzer and J. Płonka, On the number of polynomials of an idempotent algebra I, Pacific J. Math. 32 (1970), 697-709.
[11] J. Luo, Characterizations of distributive bisemilattices and modular lattices, Acta Sci. Natur. Univ. Intramongolicae 18 (4) (1987), 623-633.
[12] J. Płonka, On equational classes of abstract algebras defined by regular equations, Fund. Math. 64 (1969), 241-247.
[13] W. Taylor, Equational logic, Houston J. Math. 5 (1979), Survey, 1-83.

MATHEMATICAL INSTITUTE
UNIVERSITY OF WROCŁAW
PL. GRUNWALDZKI 2
50-384 WROCEAW, POLAND

