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JOSÉ L. CABRER IZO, LUIS M. FERN ÁNDEZ AND
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0. Introduction. Many authors have studied the geometry of sub-
manifolds of Kaehlerian and Sasakian manifolds. On the other hand, David
E. Blair has initiated the study of S-manifolds, which reduce, in particular
cases, to Sasakian manifolds ([1, 2]).

I. Mihai ([8]) and L. Ornea ([9]) have investigated CR-submanifolds of
S-manifolds. The purpose of the present paper is to study a special kind of
such submanifolds, namely the normal CR-submanifolds.

In Sections 1 and 2, we review basic formulas and definitions for sub-
manifolds in Riemannian manifolds and in S-manifolds, respectively, which
we shall use later. In Section 3, we introduce normal CR-submanifolds of
S-manifolds and we study some properties of their geometry. Finally, in Sec-
tion 4, we consider those submanifolds in the case of the ambient S-manifold
being an S-space form.

1. Preliminaries. Let N be a Riemannian manifold of dimension n
andM an m-dimensional submanifold of N . Let g be the metric tensor field
on N as well as the induced metric on M. We denote by ∇ the covariant
differentiation in N and by ∇ the covariant differentiation in M determined
by the induced metric. Let T (N ) (resp. T (M)) be the Lie algebra of vector
fields in N (resp. in M) and T (M)⊥ the set of vector fields normal to M.

The Gauss–Weingarten formulas are given by

(1.1)
∇XY = ∇XY + σ(X, Y ) ,

∇XV = −AV X + DXV, X, Y ∈ T (M), V ∈ T (M)⊥ ,

where D is the connection in the normal bundle, σ is the second fundamental
form of M and AV the Weingarten endomorphism associated with V . Then
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AV and σ are related by

(1.2) g(AV X, Y ) = g(σ(X, Y ), V ) .

We denote by R and R the curvature tensor fields associated with ∇ and
∇, respectively. The Gauss equation is given by

R(X, Y, Z,W ) = R(X, Y, Z,W ) + g(σ(X, Z), σ(Y, W ))(1.3)
− g(σ(X, W ), σ(Y, Z)), X, Y, Z,W ∈ T (M) .

Moreover, we have the following Codazzi equation:

(1.4) R(X, Y, Z, V ) = g((∇′
Xσ)(Y, Z), V )− g((∇′

Y σ)(X, Z), V )

for any X, Y, Z ∈ T (M) and V ∈ T (M)⊥, where ∇′σ is the covariant
derivative of the second fundamental form given by

(1.5) (∇′
Xσ)(Y, Z) = DXσ(Y, Z)− σ(∇XY, Z)− σ(Y,∇XZ)

for any X, Y, Z ∈ T (M). Finally, the submanifold M is said to be totally
geodesic in N if its second fundamental form is identically zero, and it is
said to be minimal if H ≡ 0, where H is the mean curvature vector, defined
by H = (1/m) trace (σ).

2. CR-submanifolds of S-manifolds. Let (N , g) be a Riemannian
manifold with dim(N ) = 2n+ s. It is said to be an S-manifold if there exist
on N an f -structure f ([10]) of rank 2n and s global vector fields ξ1, . . . , ξs

(structure vector fields) such that ([1]):

(i) If η1, . . . , ηs are the dual 1-forms of ξ1, . . . , ξs, then

(2.1)
fξα = 0, ηα ◦ f = 0, f2 = −I +

∑
ξα ⊗ ηα ,

g(X, Y ) = g(fX, fY ) + Φ(X, Y ) ,

for any X, Y ∈ T (N ), α = 1, . . . , s, where Φ(X, Y ) =
∑

ηα(X)ηα(Y ).
(ii) The f -structure f is normal , that is,

[f, f ] + 2
∑

ξα ⊗ dηα = 0 ,

where [f, f ] is the Nijenhuis torsion of f .
(iii) η1∧ . . .∧ηs∧ (dηα)n 6= 0 and dη1 = . . . = dηs = F , for any α, where

F is the fundamental 2-form defined by F (X, Y ) = g(X, fY ), X, Y ∈ T (N ).

In the case s = 1, an S-manifold is a Sasakian manifold. For s ≥ 2,
examples of S-manifolds are given in [1, 2, 3, 6]. Thus, the bundle space of
a principal toroidal bundle over a Kaehler manifold with certain conditions
is an S-manifold. In this way, a generalization of the Hopf fibration π :
S2n+1 → PCn is introduced in [1] as a canonical example of an S-manifold
playing the role of the complex projective space in Kaehler geometry and
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the odd-dimensional sphere in Sasakian geometry. This space is given by
(see [1, 2] for more details):

H2n+s = {(x1, . . . , xs) ∈ S2n+1 × . . .× S2n+1 : π(x1) = . . . = π(xs)} .

For the Riemannian connection∇ of g on an S-manifold N , the following
formulas were also proved in [1]:

∇Xξα = −fX, X ∈ T (N ), α = 1, . . . , s ,(2.2)

(∇Xf)Y =
∑
{g(fX, fY )ξα + ηα(Y )f2X}, X, Y ∈ T (N ) .(2.3)

Let L denote the distribution determined by −f2 and M the comple-
mentary distribution. M is determined by f2 + I and spanned by ξ1, . . . , ξs.
If X ∈ L, then ηα(X) = 0 for any α, and if X ∈ M, then fX = 0.

A plane section π on N is called an invariant f-section if it is determined
by a vector X ∈ L(x), x ∈ N , such that {X, fX} is an orthonormal pair
spanning the section. The sectional curvature of π is called an f -sectional
curvature. If N is an S-manifold whose invariant f -sectional curvature is a
constant k, then its curvature tensor has the form ([7])

(2.4) R(X, Y, Z,W ) =
∑
α,β

{g(fX, fW )ηα(Y )ηβ(Z)

− g(fX, fZ)ηα(Y )ηβ(W ) + g(fY, fZ)ηα(X)ηβ(W )

− g(fY, fW )ηα(X)ηβ(Z)}

+ 1
4 (k + 3s){g(fX, fW )g(fY, fZ)− g(fX, fZ)g(fY, fW )}

+ 1
4 (k − s){F (X, W )F (Y, Z)− F (X, Z)F (Y, W )

− 2F (X, Y )F (Z,W )}, X, Y, Z,W ∈ T (N ) ,

and thus, the S-manifold is denoted by N (k) and it is said to be an S-space
form. For example, the Euclidean space E2n+s is an S-space form with f -
sectional curvature −3s ([6]) and H2n+s is an S-space form with f -sectional
curvature 4− 3s ([1]).

Now, letM be an m-dimensional submanifold immersed in N . M is said
to be an invariant submanifold if ξα ∈ T (M) for any α and fX ∈ T (M)
for any X ∈ T (M). On the other hand, it is said to be an anti-invariant
submanifold if fX ∈ T (M)⊥ for any X ∈ T (M).

Given any vector field V ∈ T (M)⊥, we write fV = tV + nV , where tV
(resp. nV ) is the tangential component (resp. normal component) of fV .
Then t is a tangent-bundle valued 1-form on the normal bundle of M and
n is an endomorphism of the normal bundle of M. Moreover, if n does not
vanish, it is an f -structure.

Now, assume that the structure vector fields ξ1, . . . , ξs are tangent to M
(and so, dim(M) ≥ s). Then M is called a CR-submanifold of N if there
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exist two differentiable distributions D and D⊥ on M satisfying:

(i) T (M) = D⊕D⊥⊕M, where D, D⊥ and M are mutually orthogonal
to each other.

(ii) The distribution D is invariant under f , that is, fDx = Dx for any
x ∈M.

(iii) The distribution D⊥ is anti-invariant under f , that is, fD⊥
x ⊆

Tx(M)⊥ for any x ∈M.

We denote by 2p and q the real dimensions of Dx and D⊥
x respectively,

for any x ∈ M. Then, if p = 0 we have an anti-invariant submanifold
tangent to ξ1, . . . , ξs, and if q = 0 we have an invariant submanifold. The
CR-submanifold is called a generic submanifold if q = n−p, that is, if given
V ∈ T (M)⊥, there exists Z ∈ D⊥ such that V = fZ.

As an example, it is easy to prove that each hypersurface of N which is
tangent to ξ1, . . . , ξs inherits the structure of CR-submanifold of N .

A CR-submanifold of an S-manifold is said to be (D,D⊥)-geodesic if
σ(X, Z) = 0 for any X ∈ D, Z ∈ D⊥, and it is said to be D⊥-geodesic if
σ(Y, Z) = 0 for any Y, Z ∈ D⊥.

Now, denote by P and Q the projection morphisms of T (M) on D and
D⊥, respectively. Then, for any X ∈ T (M), we have X = PX + QX +∑

ηα(X)ξα. Define the tensor field v of type (1, 1) on M by vX = fPX,
and the non-null normal-bundle valued 1-form u on M by uX = fQX.
Then it is easy to show that:

u ◦ v = 0 ,(2.5)
ηα ◦ u = ηα ◦ v = 0 for any α ,(2.6)

vX = 0 if and only if X ∈ D⊥ ⊕M ,(2.7)
uX = 0 if and only if X ∈ D⊕M .(2.8)

Moreover, a direct computation gives

g(X, Y ) = g(vX, vY ) + g(uX, uY ) + Φ(X, Y ) ,

F (X, Y ) = g(X, vY ), F (X, Y ) = F (vX, vY ) ,

for any X, Y ∈ T (M).

For later use, we recall some lemmas:

Lemma 2.1 ([5]). Let M be a CR-submanifold of an S-manifold N .
Then:

∇Xξα = −vX ,(2.9)
σ(X, ξα) = −uX ,(2.10)

AV ξα ∈ D⊥ ,(2.11)

for any X ∈ T (M), V ∈ T (M)⊥ and α ∈ {1, . . . , s}.
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Lemma 2.2 ([5]). Let M be a CR-submanifold of an S-manifold N . If
X, Y ∈ T (M), then:

P∇XvY − PAuY X = v∇XY −
∑

ηα(Y )PX ,(2.12)

Q∇XvY −QAuY X = tσ(X, Y )−
∑

ηα(Y )QX ,(2.13)

σ(X, vY ) + DXuY = u∇XY + nσ(X, Y ) ,(2.14)
g(fX, fY ) = ηα(∇XvY −AuY X) .(2.15)

From Lemma 2.2 we obtain

(∇Xv)Y = AuY X + tσ(X, Y )−
∑
{ηα(Y )f2X + g(fX, fY )ξα} ,(2.16)

(∇Xu)Y = nσ(X, Y )− σ(X, vY ) ,(2.17)

for any X, Y ∈ T (M).

3. Normal CR-submanifolds of an S-manifold. In this section, let
M be a CR-submanifold of an S-manifold N . We say that M is a normal
CR-submanifold of N if

(3.1) Nv(X, Y ) = 2tdu(X, Y )− 2
∑

F (X, Y )ξα

for any X, Y ∈ T (M), where Nv denotes the Nijenhuis torsion of v. Notice
that (3.1) is equivalent to

(3.2) (∇vXv)Y − (∇vY v)X + v((∇Y v)X − (∇Xv)Y )

= t((∇Xu)Y − (∇Y u)X)− 2
∑

F (X, Y )ξα .

Theorem 3.1. A CR-submanifold M of an S-manifold N is normal if
and only if

(3.3) AuY vX = vAuY X

for any X ∈ D and any Y ∈ D⊥.

P r o o f. If we define the tensor field

S(X, Y ) = (∇vXv)Y − (∇vY v)X + v((∇Y v)X − (∇Xv)Y )

− t((∇Xu)Y − (∇Y u)X) + 2
∑

F (X, Y )ξα, X, Y ∈ T (M) ,

then M is normal if and only if S is identically zero. A direct expansion,
by using (2.16) and (2.17), gives

(3.4) S(X, Y ) = AuY vX − vAuY X −AuXvY + vAuXY, X, Y ∈ T (M) .

Now, if M is a normal CR-submanifold of N , (3.3) follows from (3.4)
since uX = 0 for any X ∈ D.

Conversely, if (3.3) holds, we shall prove that S vanishes by using the
decomposition T (M) = D⊕D⊥⊕M. First, since uX = 0 for any X ∈ D and
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vξα = 0 = uξα for any α, we observe from (3.3) and (3.4) that S(X, Y ) = 0
for any X ∈ D and any Y ∈ T (M).

Moreover, if Y ∈ D⊥, from (2.11) we have AuY ξα ∈ D⊥, and so vAuY ξα

= 0 for any α. Consequently, S(X, ξα) = 0 for any α and any X ∈ T (M).
Finally, if Y, Z ∈ D⊥, (3.4) becomes

S(X, Y ) = v(AfXY −AfY X) ,

since vX = vY = 0 and uX = fX, uY = fY . But, from (1.1), (1.2) and
(2.3), we easily show that AfXY = AfY X.

Corollary 3.2. A CR-submanifold M of an S-manifold N is normal
if and only if

g(σ(X, vY ) + σ(Y, vX), fZ) = 0 ,(3.5)
g(σ(X, Z), fW ) = 0 ,(3.6)

for any X, Y ∈ D and any Z,W ∈ D⊥.

P r o o f. Since v is skew-symmetric, from (3.3) we see that M is normal
if and only if

(3.7) g(σ(X, vY ), uZ) = −g(σ(Y, vX), uZ)

for any X ∈ T (M), Y ∈ D, Z ∈ D⊥.
Now, if M is normal, from (3.7) we get (3.5) taking X ∈ D and (3.6)

taking X ∈ D⊥. Conversely, if (3.5) and (3.6) are satisfied, we observe that
(3.7) is satisfied if X ∈ D and if X ∈ D⊥. Finally, if X ∈ M, we have
vX = 0 and, by using (2.5) and (2.10), σ(X, vY ) = 0 for any Y ∈ D. So,
(3.7) holds for any X ∈ T (M).

Corollary 3.3. Each normal generic submanifold of an S-manifold is
(D,D⊥)-geodesic.

Lemma 3.4. Let M be a normal CR-submanifold of an S-manifold N .
Then the following assertions are satisfied :

σ(fX,Z) = fσ(X, Z) ,(3.8)
tσ(fX, fX) = tσ(X, X) ,(3.9)

AfZX ∈ D ,(3.10)

for any X ∈ D and any Z ∈ D⊥.

P r o o f. (3.8) follows easily from (1.1), (2.3) and (3.6). Now, from (3.5)
we get (3.9). Finally, from (3.6) we have g(AfZX, Y ) = 0 for any Y ∈ D⊥,
and from (2.10) we have ηα(AfZX) = 0 for any α. Consequently, (3.10)
holds.

In [5], CR-products of S-manifolds are defined as CR-submanifolds such
that the distribution D ⊕M is integrable and locally they are Riemannian
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products M1 ×M2, where M1 (resp. M2) is a leaf of D ⊕M (resp. D⊥).
Moreover, from Theorem 3.1 and Proposition 3.2 in [5], we deduce that a
CR-submanifold M of an S-manifold N is a CR-product if and only if one
of the following assertions is satisfied:

AfD⊥fD = 0 ,(3.11)

g(σ(X, Y ), fZ) = 0, X ∈ D, Y ∈ T (M), Z ∈ D⊥ ,(3.12)
∇Y X ∈ D⊕M, X ∈ D, Y ∈ T (M) .(3.13)

Then, from (3.6), we can prove the following:

Proposition 3.5. A CR-product in an S-manifold is a normal CR-
submanifold.

Theorem 3.6. Let M be a normal CR-submanifold of an S-manifold N .
Then M is a CR-product if and only if D⊕M is integrable.

P r o o f. We recall that D⊕M is integrable if and only if

(3.14) σ(X, fY ) = σ(fX, Y )

for any X, Y ∈ D ([8]).
Now, the necessary condition is obvious, by definition. Conversely, we

prove (3.12). Let X ∈ D. If Y ∈ D⊥, then (3.12) is (3.6). On the other
hand, if Y ∈ M, from (2.8) and (2.10) we get σ(X, Y ) = 0. Finally, if Y ∈ D,
from (3.5) and (3.14), (3.12) holds.

To finish this section, we recall that a submanifold M of an S-manifold
N is said to be totally f-umbilical ([9]) if there exists a normal vector field
V such that

(3.15) σ(X, Y ) = g(fX, fY )V +
∑
{ηα(Y )σ(X, ξα) + ηα(X)σ(Y, ξα)}

for any X, Y ∈ T (M). These submanifolds have been studied in [4]. We
can prove the following:

Proposition 3.7. A totally f-umbilical CR-submanifold of an S-mani-
fold is a normal CR-submanifold.

P r o o f. From (3.15) we easily get (3.5) and (3.6).

4. Normal CR-submanifolds of S-space forms. Let N (k) be an
S-space form and let M be a CR-submanifold of N (k). Then, by using
(2.4), the Codazzi equation (1.4) gives

(∇′
Xσ)(Y, Z)− (∇′

Y σ)(X, Z) = ((k − s)/4){g(X, vZ)uY(4.1)
− g(Y, vZ)uX + 2g(X, vY )uZ} ,

for any X, Y, Z ∈ T (M). Now, we have:
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Proposition 4.1. If M is a normal CR-submanifold of N (k), then

R(X, fX, Z, fZ) = 2s− 2‖AfZX‖2 − 2‖σ(X, Z)‖2(4.2)
+ 2g(tσ(Z,Z), tσ(X, X))

for any unit vector fields X ∈ D and Z ∈ D⊥.

P r o o f. By using (1.4) and (1.5), we have

(4.3) R(X, fX, Z, fZ) = g(DXσ(fX,Z)−DfXσ(X, Z), fZ)
−g(σ([X, fX], Z), fZ) + g(σ(X,∇fXZ)− σ(fX,∇XZ), fZ) .

Now, from (1.1), (2.3), (3.6) and (3.8), a direct expansion gives

(4.4) g(DXσ(fX,Z)−DfXσ(X, Z), fZ) = −2‖σ(X, Z)‖2 .

On the other hand, by using (3.6) again,

g(σ([X, fX], Z), fZ) = g(σ(Q[X, fX], Z), fZ)(4.5)

+
∑

g(σ(ηα([X, fX])ξα, Z), fZ) .

But, from (2.2) and since X and Z are unit vector fields, we see that
ηα([X, fX]) = 2 for any α. Moreover, from (2.13), we obtain Q[X, fX] =
tσ(X, X) + tσ(fX, fX). Then, taking into account (2.10) and (3.9), (4.5)
becomes

(4.6) g(σ([X, fX], Z), fZ) = 2g(σ(tσ(X, X), Z), fZ)− 2s .

However, since Z ∈ D⊥ and by using (1.2) and (2.13), it is easy to show
that g(σ(tσ(X, X), Z), fZ) = −g(tσ(X, X), tσ(Z,Z)). Substituting this in
(4.6), we have

(4.7) g(σ([X, fX], Z), fZ) = −2s− 2g(tσ(X, X), tσ(Z,Z)) .

Finally, since ηα(∇fXZ) = ηα(∇XZ) = 0 for any α, from (2.12), (3.5)
and (3.6) we get

(4.8) g(σ(X,∇fXZ)− σ(fX,∇XZ), fZ)

= g(σ(X, P∇fXZ + fP∇XZ), fZ)

= g(AfZX, P∇fXZ − PAfZX) .

But, by using (2.12) and (4.3), it easy to check that P∇fXZ =
−PAfZX. Consequently and taking into account (3.10), (4.8) gives

g(σ(X,∇fXZ)− σ(fX,∇XZ), fZ) = −2g(AfZX, PAfZX)(4.9)
= −2‖AfZX‖2 .

Then, substituting (4.4), (4.7) and (4.9) in (4.3), we complete the proof.



S-MANIFOLDS 211

Proposition 4.2. Let M be a normal CR-submanifold of an S-space
form N (k). Then

(4.10) ‖σ(X, Z)‖2 + ‖AfZX‖2 − g(tσ(X, X), tσ(Z,Z)) = (k + 3s)/4

for any unit vector fields X ∈ D and Z ∈ D⊥.

P r o o f. From (2.4), we have R(X, fX, Z, fZ) = −(k−s)/2. Then, from
(4.2), the proof is complete.

Corollary 4.3. If M is a normal D⊥-geodesic CR-submanifold of an
S-space form N (k), then k ≥ −3s.

Proposition 4.4. If M is a normal CR-submanifold of an S-space form
N (k) such that the distribution D⊕M is integrable, then k ≥ −3s and M
is a CR-product.

P r o o f. From Theorem 3.6, M is a CR-product. Now, from (3.12), we
have g(σ(X, Y ), fZ) = 0 for any X, Y ∈ D. Then, if X ∈ D is a unit vector
field, tσ(X, X) = 0 and, by using (4.10), k ≥ −3s.

For the (2n + s)-dimensional euclidean S-space form E2n+s(−3s) (see
[6]), we can prove:

Theorem 4.5. If M is a normal (D,D⊥)-geodesic and D⊥-geodesic CR-
submanifold of E2n+s(−3s), then M is a CR-product.

P r o o f. From (4.10), we have AfZX = 0 for any X ∈ D and Z ∈ D⊥.
From (3.11), M is a CR-product.

Corollary 4.6. Every normal D⊥-geodesic generic submanifold of
E2n+s(−3s) is a CR-product.

Finally, consider the (2n + s)-dimensional S-space form H2n+s(4 − 3s)
(see [1]). Let M be a CR-submanifold of H2n+s(4 − 3s). Denote by ν
the complementary distribution of fD⊥ in T (M)⊥. Then fν ⊆ ν. Let
{E1, . . . , E2p}, {F1, . . . , Fq}, {N1, . . . , Nr, fN1, . . . , fNr} be local fields of
orthonormal frames on D, D⊥ and ν, respectively, where 2r is the real
dimension of ν. For later use, we shall prove:

Lemma 4.7. If M is a CR-product in H2n+s(4− 3s), then

(4.11) ‖σ(X, Z)‖ = 1

for any unit vector fields X ∈ D and Z ∈ D⊥.

P r o o f. We observe that M is a normal CR-submanifold due to Propo-
sition 3.5, and so (4.10) holds with (k + 3s)/4 = 1. Moreover, from (3.11),
we have AfZX = 0 and, from (3.12), tσ(X, X) = 0.
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Lemma 4.8. Let M be a CR-product in H2n+s(4− 3s). Then the vector
fields σ(Ei, Fa), i = 1, . . . , 2p, a = 1, . . . , q, are 2pq orthonormal vector fields
on ν.

P r o o f. From (4.11) and by linearity, we get

g(σ(Ei, Z), σ(Ej , Z)) = 0

for any i, j = 1, . . . , 2p, i 6= j and any unit vector field Z ∈ D⊥. Now,
from (3.6), if q = 1, the proof is complete. On the other hand, if q ≥ 2, by
linearity again, we have

g(σ(Ei, Fa), σ(Ej , Fb)) + g(σ(Ei, Fb), σ(Ej , Fa)) = 0

for any i, j = 1, . . . , 2p, i 6= j, a, b = 1, . . . , q, a 6= b. Next, by using (3.13)
and the Bianchi identity, we obtain R(X, Y, Z,W ) = 0 for any X, Y ∈ D,
Z,W ∈ D⊥. But, if i 6= j and a 6= b, (2.4) gives R(Ei, Ej , Fa, Fb) = 0.
Then, from the Gauss equation (1.3), we get

g(σ(Ei, Fa), σ(Ej , Fb))− g(σ(Ei, Fb), σ(Ej , Fa)) = 0

for any i, j = 1, . . . , 2p, i 6= j, a, b = 1, . . . , q, a 6= b, and this completes the
proof.

Now, we shall study the normal CR-submanifolds of H2n+s(4− 3s):

Theorem 4.9. Let M be a normal CR-submanifold of H2n+s(4 − 3s)
such that the distribution D⊕M is integrable. Then:

(a) M is a CR-product M1 ×M2.
(b) n ≥ pq + p + q.
(c) If n = pq+p+q, then M1 is an invariant totally geodesic submanifold

immersed in H2n+s(4− 3s).
(d) ‖σ‖2 ≥ 2q(2p + s).
(e) If ‖σ‖2 = 2q(2p + s), then M1 is an S-space form of constant f-

sectional curvature 4− 3s and M2 has constant curvature 1.
(f) If M is a minimal submanifold , then

% ≤ 4p(p + 1) + 2p(q + s) + q(q − 1) ,

where % denotes the scalar curvature and equality holds if and only if ‖σ‖2 =
2q(2p + s).

P r o o f. (a) follows directly from Proposition 4.4. Now, from Lemma 4.8,
dim(ν) = 2(n− p)− 2q ≥ 2pq. So, (b) holds.

Next, suppose that n = pq + p + q. If X, Y, Z ∈ D and W ∈ D⊥, from
(2.4), R(X, Y, Z,W ) = 0 and, by using a similar proof to that of Lemma 4.8,
R(X, Y, Z,W ) = 0. So, the Gauss equation gives

(4.12) g(σ(X, W ), σ(Y, Z))− g(σ(X, Z), σ(Y, W )) = 0
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for any X, Y, Z ∈ D and any W ∈ D⊥. Since from Proposition 3.2 of
[5], σ(fX,Z) = fσ(X, Z), if we put Y = fX, we have, by using (3.8),
g(σ(fX,W ), σ(X, Z)) = 0. Now, if we put Z = fY , then g(σ(X, Y ),
σ(X, W )) = 0 for any X, Y ∈ D and W ∈ D⊥. Thus, by linearity, we
get g(σ(X, W ), σ(Y, Z)) + g(σ(X, Z), σ(Y, W )) = 0 for any X, Y, Z ∈ D and
any W ∈ D⊥ and so, from (4.12),

(4.13) g(σ(X, W ), σ(Y, Z)) = 0, X, Y, Z ∈ D, W ∈ D⊥ .

Since now dim(ν) = 2pq, (4.13) implies that σ(X, Y ) = 0 for any X, Y ∈ D.
Consequently, (c) holds from Theorem 2.4(ii) of [5].

Assertions (d) and (e) follow from Theorem 4.2 of [5]. Finally, if M is a
minimal normal CR-submanifold of H2n+s(4 − 3s), then a straightforward
computation gives

% = 4p(p + 1) + 2s(p + q) + q(q − 1) + 6pq − ‖σ‖2 .

Then, by using (d), the proof is complete.

Theorem 4.10. Let M be a normal , (D,D⊥)-geodesic and D⊥-geodesic
CR-submanifold of H2n+s(4− 3s). Then:

(a) ‖AfZX‖ = 1 for any unit vector fields X ∈ D and Z ∈ D⊥,
(b) ‖σ‖2 ≥ 2q(p + s) and equality holds if and only if σ(D,D) ∈ fD⊥.

P r o o f. (a) follows inmediately from (4.10). Now, consider the above
local fields of orthonormal frames for D, D⊥ and ν. Since σ(D,D⊥) =
σ(D⊥,D⊥) = 0, a direct computation gives

‖σ‖2 = 2qs +
2p∑

i,j=1

‖σ(Ei, Ej)‖2 .

But

‖σ(Ei, Ej)‖2 =
q∑

a=1

g(AfFaEi, Ej)2(4.14)

+
r∑

l=1

{g(ANl
Ei, Ej)2 + g(AfNl

Ei, Ej)2} .

On the other hand, since σ(D,D⊥) = 0, we see that AfFaEi, ANl
Ei,

AfNl
Ei ∈ D for any i = 1, . . . , 2p, a = 1, . . . , q and l = 1, . . . , r. So, from

(a), we get
2p∑

i,j=1

[ q∑
a=1

g(AfFaEi, Ej)2 +
r∑

l=1

{g(ANl
Ei, Ej)2 + g(AfNl

Ei, Ej)2}
]
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=
2p∑

i=1

[ q∑
a=1

‖AfFaEi‖2 +
r∑

l=1

{‖ANl
Ei‖2 + ‖AfNl

Ei‖2}
]
≥ 2pq .

Consequently, ‖σ‖2 ≥ 2q(p + s) and, from (4.14), equality holds if and
only if σ(D,D) ∈ fD⊥.

Finally, from (3.6), (4.10) and (4.14), we can prove:

Corollary 4.11. Let M be a normal , generic and D⊥-geodesic CR-
submanifold of H2n+s(4− 3s). Then:

(a) ‖AfZX‖ = 1 for any unit vector fields X ∈ D and Z ∈ D⊥,
(b) ‖σ‖2 = 2q(p + s).
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f-umbilical submanifolds of an S-manifold , Soochow J. Math. 18 (2) (1992), 211–
221.
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