COLLOQUIUM MATHEMATICUM

VOL. LXIV

1993

ON NORMAL CR-SUBMANIFOLDS OF S-MANIFOLDS

BҮ

JOSÉ L. CABRERIZO, LUIS M. FERNÁNDEZ AND MANUEL FERNÁNDEZ (SEVILLA)

0. Introduction. Many authors have studied the geometry of submanifolds of Kaehlerian and Sasakian manifolds. On the other hand, David E. Blair has initiated the study of *S*-manifolds, which reduce, in particular cases, to Sasakian manifolds ([1, 2]).

I. Mihai ([8]) and L. Ornea ([9]) have investigated CR-submanifolds of S-manifolds. The purpose of the present paper is to study a special kind of such submanifolds, namely the normal CR-submanifolds.

In Sections 1 and 2, we review basic formulas and definitions for submanifolds in Riemannian manifolds and in S-manifolds, respectively, which we shall use later. In Section 3, we introduce normal CR-submanifolds of S-manifolds and we study some properties of their geometry. Finally, in Section 4, we consider those submanifolds in the case of the ambient S-manifold being an S-space form.

1. Preliminaries. Let \mathcal{N} be a Riemannian manifold of dimension nand \mathcal{M} an m-dimensional submanifold of \mathcal{N} . Let g be the metric tensor field on \mathcal{N} as well as the induced metric on \mathcal{M} . We denote by $\overline{\nabla}$ the covariant differentiation in \mathcal{N} and by ∇ the covariant differentiation in \mathcal{M} determined by the induced metric. Let $T(\mathcal{N})$ (resp. $T(\mathcal{M})$) be the Lie algebra of vector fields in \mathcal{N} (resp. in \mathcal{M}) and $T(\mathcal{M})^{\perp}$ the set of vector fields normal to \mathcal{M} .

The Gauss–Weingarten formulas are given by

(1.1)
$$\nabla_X Y = \nabla_X Y + \sigma(X, Y), \overline{\nabla}_X V = -A_V X + D_X V, \quad X, Y \in T(\mathcal{M}), \ V \in T(\mathcal{M})^{\perp},$$

where D is the connection in the normal bundle, σ is the second fundamental form of \mathcal{M} and A_V the Weingarten endomorphism associated with V. Then

¹⁹⁹¹ Mathematics Subject Classification: 53C40, 53C25.

Key words and phrases: S-manifolds, S-space forms, normal CR-submanifolds.

The authors are partially supported by the project PAYCIT (Junta de Andalucía, Spain 1990).

 A_V and σ are related by

(1.2)
$$g(A_V X, Y) = g(\sigma(X, Y), V).$$

We denote by \overline{R} and R the curvature tensor fields associated with $\overline{\nabla}$ and ∇ , respectively. The Gauss equation is given by

(1.3)
$$\overline{R}(X,Y,Z,W) = R(X,Y,Z,W) + g(\sigma(X,Z),\sigma(Y,W)) - g(\sigma(X,W),\sigma(Y,Z)), \quad X,Y,Z,W \in T(\mathcal{M}).$$

Moreover, we have the following Codazzi equation:

(1.4)
$$\overline{R}(X,Y,Z,V) = g((\nabla'_X \sigma)(Y,Z),V) - g((\nabla'_Y \sigma)(X,Z),V)$$

for any $X, Y, Z \in T(\mathcal{M})$ and $V \in T(\mathcal{M})^{\perp}$, where $\nabla' \sigma$ is the covariant derivative of the second fundamental form given by

(1.5)
$$(\nabla'_X \sigma)(Y, Z) = D_X \sigma(Y, Z) - \sigma(\nabla_X Y, Z) - \sigma(Y, \nabla_X Z)$$

for any $X, Y, Z \in T(\mathcal{M})$. Finally, the submanifold \mathcal{M} is said to be *totally* geodesic in \mathcal{N} if its second fundamental form is identically zero, and it is said to be *minimal* if $H \equiv 0$, where H is the mean curvature vector, defined by $H = (1/m) \operatorname{trace}(\sigma)$.

2. CR-submanifolds of S-manifolds. Let (\mathcal{N}, g) be a Riemannian manifold with dim $(\mathcal{N}) = 2n + s$. It is said to be an S-manifold if there exist on \mathcal{N} an f-structure f ([10]) of rank 2n and s global vector fields ξ_1, \ldots, ξ_s (structure vector fields) such that ([1]):

(i) If η_1, \ldots, η_s are the dual 1-forms of ξ_1, \ldots, ξ_s , then

(2.1)
$$\begin{aligned} f\xi_{\alpha} &= 0, \quad \eta_{\alpha} \circ f = 0, \quad f^2 = -I + \sum \xi_{\alpha} \otimes \eta_{\alpha}, \\ g(X,Y) &= g(fX, fY) + \varPhi(X,Y), \end{aligned}$$

for any $X, Y \in T(\mathcal{N}), \alpha = 1, ..., s$, where $\Phi(X, Y) = \sum \eta_{\alpha}(X)\eta_{\alpha}(Y)$. (ii) The *f*-structure *f* is *normal*, that is,

$$[f,f]+2\sum\xi_{\alpha}\otimes d\eta_{\alpha}=0\,,$$

where [f, f] is the Nijenhuis torsion of f.

(iii) $\eta_1 \wedge \ldots \wedge \eta_s \wedge (d\eta_\alpha)^n \neq 0$ and $d\eta_1 = \ldots = d\eta_s = F$, for any α , where F is the fundamental 2-form defined by $F(X,Y) = g(X,fY), X, Y \in T(\mathcal{N})$.

In the case s = 1, an S-manifold is a Sasakian manifold. For $s \ge 2$, examples of S-manifolds are given in [1, 2, 3, 6]. Thus, the bundle space of a principal toroidal bundle over a Kaehler manifold with certain conditions is an S-manifold. In this way, a generalization of the Hopf fibration $\overline{\pi}$: $S^{2n+1} \to \mathbb{PC}^n$ is introduced in [1] as a canonical example of an S-manifold playing the role of the complex projective space in Kaehler geometry and the odd-dimensional sphere in Sasakian geometry. This space is given by (see [1, 2] for more details):

$$H^{2n+s} = \{ (x_1, \dots, x_s) \in S^{2n+1} \times \dots \times S^{2n+1} : \overline{\pi}(x_1) = \dots = \overline{\pi}(x_s) \} \,.$$

For the Riemannian connection $\overline{\nabla}$ of g on an S-manifold \mathcal{N} , the following formulas were also proved in [1]:

(2.2)
$$\overline{\nabla}_X \xi_\alpha = -fX, \quad X \in T(\mathcal{N}), \ \alpha = 1, \dots, s,$$

(2.3)
$$(\overline{\nabla}_X f)Y = \sum \{g(fX, fY)\xi_\alpha + \eta_\alpha(Y)f^2X\}, \quad X, Y \in T(\mathcal{N}).$$

Let \mathcal{L} denote the distribution determined by $-f^2$ and \mathcal{M} the complementary distribution. \mathcal{M} is determined by $f^2 + I$ and spanned by ξ_1, \ldots, ξ_s . If $X \in \mathcal{L}$, then $\eta_{\alpha}(X) = 0$ for any α , and if $X \in \mathcal{M}$, then fX = 0.

A plane section π on \mathcal{N} is called an *invariant* f-section if it is determined by a vector $X \in \mathcal{L}(x), x \in \mathcal{N}$, such that $\{X, fX\}$ is an orthonormal pair spanning the section. The sectional curvature of π is called an f-sectional curvature. If \mathcal{N} is an S-manifold whose invariant f-sectional curvature is a constant k, then its curvature tensor has the form ([7])

$$(2.4) \quad \overline{R}(X,Y,Z,W) = \sum_{\alpha,\beta} \{g(fX,fW)\eta_{\alpha}(Y)\eta_{\beta}(Z) \\ -g(fX,fZ)\eta_{\alpha}(Y)\eta_{\beta}(W) + g(fY,fZ)\eta_{\alpha}(X)\eta_{\beta}(W) \\ -g(fY,fW)\eta_{\alpha}(X)\eta_{\beta}(Z)\} \\ + \frac{1}{4}(k+3s)\{g(fX,fW)g(fY,fZ) - g(fX,fZ)g(fY,fW)\} \\ + \frac{1}{4}(k-s)\{F(X,W)F(Y,Z) - F(X,Z)F(Y,W) \\ - 2F(X,Y)F(Z,W)\}, \quad X,Y,Z,W \in T(\mathcal{N}),$$

and thus, the S-manifold is denoted by $\mathcal{N}(k)$ and it is said to be an S-space form. For example, the Euclidean space E^{2n+s} is an S-space form with f-sectional curvature -3s ([6]) and H^{2n+s} is an S-space form with f-sectional curvature 4-3s ([1]).

Now, let \mathcal{M} be an *m*-dimensional submanifold immersed in \mathcal{N} . \mathcal{M} is said to be an *invariant submanifold* if $\xi_{\alpha} \in T(\mathcal{M})$ for any α and $fX \in T(\mathcal{M})$ for any $X \in T(\mathcal{M})$. On the other hand, it is said to be an *anti-invariant* submanifold if $fX \in T(\mathcal{M})^{\perp}$ for any $X \in T(\mathcal{M})$.

Given any vector field $V \in T(\mathcal{M})^{\perp}$, we write fV = tV + nV, where tV (resp. nV) is the tangential component (resp. normal component) of fV. Then t is a tangent-bundle valued 1-form on the normal bundle of \mathcal{M} and n is an endomorphism of the normal bundle of \mathcal{M} . Moreover, if n does not vanish, it is an f-structure.

Now, assume that the structure vector fields ξ_1, \ldots, ξ_s are tangent to \mathcal{M} (and so, dim $(\mathcal{M}) \geq s$). Then \mathcal{M} is called a *CR-submanifold* of \mathcal{N} if there

exist two differentiable distributions \mathcal{D} and \mathcal{D}^{\perp} on \mathcal{M} satisfying:

(i) $T(\mathcal{M}) = \mathcal{D} \oplus \mathcal{D}^{\perp} \oplus \mathcal{M}$, where $\mathcal{D}, \mathcal{D}^{\perp}$ and \mathcal{M} are mutually orthogonal to each other.

(ii) The distribution \mathcal{D} is invariant under f, that is, $f\mathcal{D}_x = \mathcal{D}_x$ for any $x \in \mathcal{M}$.

(iii) The distribution \mathcal{D}^{\perp} is anti-invariant under f, that is, $f\mathcal{D}_x^{\perp} \subseteq T_x(\mathcal{M})^{\perp}$ for any $x \in \mathcal{M}$.

We denote by 2p and q the real dimensions of \mathcal{D}_x and \mathcal{D}_x^{\perp} respectively, for any $x \in \mathcal{M}$. Then, if p = 0 we have an anti-invariant submanifold tangent to ξ_1, \ldots, ξ_s , and if q = 0 we have an invariant submanifold. The CR-submanifold is called a *generic submanifold* if q = n - p, that is, if given $V \in T(\mathcal{M})^{\perp}$, there exists $Z \in \mathcal{D}^{\perp}$ such that V = fZ.

As an example, it is easy to prove that each hypersurface of \mathcal{N} which is tangent to ξ_1, \ldots, ξ_s inherits the structure of CR-submanifold of \mathcal{N} .

A CR-submanifold of an S-manifold is said to be $(\mathcal{D}, \mathcal{D}^{\perp})$ -geodesic if $\sigma(X, Z) = 0$ for any $X \in \mathcal{D}, Z \in \mathcal{D}^{\perp}$, and it is said to be \mathcal{D}^{\perp} -geodesic if $\sigma(Y, Z) = 0$ for any $Y, Z \in \mathcal{D}^{\perp}$.

Now, denote by P and Q the projection morphisms of $T(\mathcal{M})$ on \mathcal{D} and \mathcal{D}^{\perp} , respectively. Then, for any $X \in T(\mathcal{M})$, we have $X = PX + QX + \sum \eta_{\alpha}(X)\xi_{\alpha}$. Define the tensor field v of type (1, 1) on \mathcal{M} by vX = fPX, and the non-null normal-bundle valued 1-form u on \mathcal{M} by uX = fQX. Then it is easy to show that:

$$(2.5) u \circ v = 0,$$

(2.6) $\eta_{\alpha} \circ u = \eta_{\alpha} \circ v = 0 \quad \text{for any } \alpha \,,$

(2.7)
$$vX = 0$$
 if and only if $X \in \mathcal{D}^{\perp} \oplus \mathcal{M}$,

(2.8)
$$uX = 0$$
 if and only if $X \in \mathcal{D} \oplus \mathcal{M}$.

Moreover, a direct computation gives

$$\begin{split} g(X,Y) &= g(vX,vY) + g(uX,uY) + \varPhi(X,Y)\,, \\ F(X,Y) &= g(X,vY), \quad F(X,Y) = F(vX,vY)\,, \end{split}$$

for any $X, Y \in T(\mathcal{M})$.

For later use, we recall some lemmas:

LEMMA 2.1 ([5]). Let \mathcal{M} be a CR-submanifold of an S-manifold \mathcal{N} . Then:

(2.9) $\nabla_X \xi_\alpha = -vX \,,$

(2.10)
$$\sigma(X,\xi_{\alpha}) = -uX,$$

for any $X \in T(\mathcal{M}), V \in T(\mathcal{M})^{\perp}$ and $\alpha \in \{1, \ldots, s\}$.

S-MANIFOLDS

LEMMA 2.2 ([5]). Let \mathcal{M} be a CR-submanifold of an S-manifold N. If $X, Y \in T(\mathcal{M})$, then:

(2.12)
$$P\nabla_X vY - PA_{uY}X = v\nabla_X Y - \sum \eta_\alpha(Y)PX,$$

(2.13)
$$Q\nabla_X vY - QA_{uY}X = t\sigma(X,Y) - \sum \eta_\alpha(Y)QX,$$

(2.14)
$$\sigma(X, vY) + D_X uY = u\nabla_X Y + n\sigma(X, Y),$$

(2.15)
$$g(fX, fY) = \eta_{\alpha}(\nabla_X vY - A_{uY}X)$$

From Lemma 2.2 we obtain

(2.16)
$$(\nabla_X v)Y = A_{uY}X + t\sigma(X,Y) - \sum \{\eta_\alpha(Y)f^2X + g(fX,fY)\xi_\alpha\},$$

(2.17)
$$(\nabla_X u)Y = n\sigma(X,Y) - \sigma(X,vY),$$

for any $X, Y \in T(\mathcal{M})$.

3. Normal CR-submanifolds of an S-manifold. In this section, let \mathcal{M} be a CR-submanifold of an S-manifold \mathcal{N} . We say that \mathcal{M} is a normal CR-submanifold of \mathcal{N} if

(3.1)
$$N_v(X,Y) = 2tdu(X,Y) - 2\sum F(X,Y)\xi_c$$

for any $X, Y \in T(\mathcal{M})$, where N_v denotes the Nijenhuis torsion of v. Notice that (3.1) is equivalent to

(3.2)
$$(\nabla_{vX}v)Y - (\nabla_{vY}v)X + v((\nabla_{Y}v)X - (\nabla_{X}v)Y)$$
$$= t((\nabla_{X}u)Y - (\nabla_{Y}u)X) - 2\sum F(X,Y)\xi_{\alpha}$$

THEOREM 3.1. A CR-submanifold \mathcal{M} of an S-manifold \mathcal{N} is normal if and only if

for any $X \in \mathcal{D}$ and any $Y \in \mathcal{D}^{\perp}$.

Proof. If we define the tensor field

$$S(X,Y) = (\nabla_{vX}v)Y - (\nabla_{vY}v)X + v((\nabla_{Y}v)X - (\nabla_{X}v)Y) - t((\nabla_{X}u)Y - (\nabla_{Y}u)X) + 2\sum F(X,Y)\xi_{\alpha}, \quad X,Y \in T(\mathcal{M}),$$

then \mathcal{M} is normal if and only if S is identically zero. A direct expansion, by using (2.16) and (2.17), gives

 $(3.4) \quad S(X,Y) = A_{uY}vX - vA_{uY}X - A_{uX}vY + vA_{uX}Y, \quad X,Y \in T(\mathcal{M}).$

Now, if \mathcal{M} is a normal CR-submanifold of \mathcal{N} , (3.3) follows from (3.4) since uX = 0 for any $X \in \mathcal{D}$.

Conversely, if (3.3) holds, we shall prove that S vanishes by using the decomposition $T(\mathcal{M}) = \mathcal{D} \oplus \mathcal{D}^{\perp} \oplus \mathcal{M}$. First, since uX = 0 for any $X \in \mathcal{D}$ and

 $v\xi_{\alpha} = 0 = u\xi_{\alpha}$ for any α , we observe from (3.3) and (3.4) that S(X, Y) = 0 for any $X \in \mathcal{D}$ and any $Y \in T(\mathcal{M})$.

Moreover, if $Y \in \mathcal{D}^{\perp}$, from (2.11) we have $A_{uY}\xi_{\alpha} \in \mathcal{D}^{\perp}$, and so $vA_{uY}\xi_{\alpha} = 0$ for any α . Consequently, $S(X,\xi_{\alpha}) = 0$ for any α and any $X \in T(\mathcal{M})$.

Finally, if $Y, Z \in \mathcal{D}^{\perp}$, (3.4) becomes

$$S(X,Y) = v(A_{fX}Y - A_{fY}X),$$

since vX = vY = 0 and uX = fX, uY = fY. But, from (1.1), (1.2) and (2.3), we easily show that $A_{fX}Y = A_{fY}X$.

COROLLARY 3.2. A CR-submanifold \mathcal{M} of an S-manifold \mathcal{N} is normal if and only if

(3.5)
$$g(\sigma(X, vY) + \sigma(Y, vX), fZ) = 0,$$

(3.6)
$$g(\sigma(X,Z), fW) = 0,$$

for any $X, Y \in \mathcal{D}$ and any $Z, W \in \mathcal{D}^{\perp}$.

Proof. Since v is skew-symmetric, from (3.3) we see that \mathcal{M} is normal if and only if

(3.7)
$$g(\sigma(X, vY), uZ) = -g(\sigma(Y, vX), uZ)$$

for any $X \in T(\mathcal{M}), Y \in \mathcal{D}, Z \in \mathcal{D}^{\perp}$.

Now, if \mathcal{M} is normal, from (3.7) we get (3.5) taking $X \in \mathcal{D}$ and (3.6) taking $X \in \mathcal{D}^{\perp}$. Conversely, if (3.5) and (3.6) are satisfied, we observe that (3.7) is satisfied if $X \in \mathcal{D}$ and if $X \in \mathcal{D}^{\perp}$. Finally, if $X \in \mathcal{M}$, we have vX = 0 and, by using (2.5) and (2.10), $\sigma(X, vY) = 0$ for any $Y \in \mathcal{D}$. So, (3.7) holds for any $X \in T(\mathcal{M})$.

COROLLARY 3.3. Each normal generic submanifold of an S-manifold is $(\mathcal{D}, \mathcal{D}^{\perp})$ -geodesic.

LEMMA 3.4. Let \mathcal{M} be a normal CR-submanifold of an S-manifold \mathcal{N} . Then the following assertions are satisfied:

(3.8)
$$\sigma(fX,Z) = f\sigma(X,Z),$$

(3.9)
$$t\sigma(fX, fX) = t\sigma(X, X),$$

for any $X \in \mathcal{D}$ and any $Z \in \mathcal{D}^{\perp}$.

Proof. (3.8) follows easily from (1.1), (2.3) and (3.6). Now, from (3.5) we get (3.9). Finally, from (3.6) we have $g(A_{fZ}X,Y) = 0$ for any $Y \in \mathcal{D}^{\perp}$, and from (2.10) we have $\eta_{\alpha}(A_{fZ}X) = 0$ for any α . Consequently, (3.10) holds.

In [5], CR-products of S-manifolds are defined as CR-submanifolds such that the distribution $\mathcal{D} \oplus \mathcal{M}$ is integrable and locally they are Riemannian

products $\mathcal{M}_1 \times \mathcal{M}_2$, where \mathcal{M}_1 (resp. \mathcal{M}_2) is a leaf of $\mathcal{D} \oplus \mathcal{M}$ (resp. \mathcal{D}^{\perp}).
Moreover, from Theorem 3.1 and Proposition 3.2 in [5], we deduce that a
CR-submanifold \mathcal{M} of an S-manifold \mathcal{N} is a CR-product if and only if one
of the following assertions is satisfied:

S-MANIFOLDS

(3.12) $g(\sigma(X,Y), fZ) = 0, \quad X \in \mathcal{D}, \ Y \in T(\mathcal{M}), \ Z \in \mathcal{D}^{\perp},$

(3.13) $\nabla_Y X \in \mathcal{D} \oplus \mathcal{M}, \quad X \in \mathcal{D}, \ Y \in T(\mathcal{M}).$

Then, from (3.6), we can prove the following:

PROPOSITION 3.5. A CR-product in an S-manifold is a normal CR-submanifold.

THEOREM 3.6. Let \mathcal{M} be a normal CR-submanifold of an S-manifold \mathcal{N} . Then \mathcal{M} is a CR-product if and only if $\mathcal{D} \oplus \mathcal{M}$ is integrable.

Proof. We recall that $\mathcal{D} \oplus \mathcal{M}$ is integrable if and only if

(3.14)
$$\sigma(X, fY) = \sigma(fX, Y)$$

for any $X, Y \in \mathcal{D}$ ([8]).

Now, the necessary condition is obvious, by definition. Conversely, we prove (3.12). Let $X \in \mathcal{D}$. If $Y \in \mathcal{D}^{\perp}$, then (3.12) is (3.6). On the other hand, if $Y \in \mathcal{M}$, from (2.8) and (2.10) we get $\sigma(X, Y) = 0$. Finally, if $Y \in \mathcal{D}$, from (3.5) and (3.14), (3.12) holds.

To finish this section, we recall that a submanifold \mathcal{M} of an S-manifold \mathcal{N} is said to be *totally f-umbilical* ([9]) if there exists a normal vector field V such that

(3.15)
$$\sigma(X,Y) = g(fX,fY)V + \sum \{\eta_{\alpha}(Y)\sigma(X,\xi_{\alpha}) + \eta_{\alpha}(X)\sigma(Y,\xi_{\alpha})\}$$

for any $X, Y \in T(\mathcal{M})$. These submanifolds have been studied in [4]. We can prove the following:

PROPOSITION 3.7. A totally f-umbilical CR-submanifold of an S-manifold is a normal CR-submanifold.

Proof. From (3.15) we easily get (3.5) and (3.6).

4. Normal CR-submanifolds of S-space forms. Let $\mathcal{N}(k)$ be an S-space form and let \mathcal{M} be a CR-submanifold of $\mathcal{N}(k)$. Then, by using (2.4), the Codazzi equation (1.4) gives

(4.1)
$$(\nabla'_X \sigma)(Y,Z) - (\nabla'_Y \sigma)(X,Z) = ((k-s)/4)\{g(X,vZ)uY - g(Y,vZ)uX + 2g(X,vY)uZ\},$$

for any $X, Y, Z \in T(\mathcal{M})$. Now, we have:

PROPOSITION 4.1. If \mathcal{M} is a normal CR-submanifold of $\mathcal{N}(k)$, then

(4.2)
$$\overline{R}(X, fX, Z, fZ) = 2s - 2\|A_{fZ}X\|^2 - 2\|\sigma(X, Z)\|^2 + 2g(t\sigma(Z, Z), t\sigma(X, X))$$

for any unit vector fields $X \in \mathcal{D}$ and $Z \in \mathcal{D}^{\perp}$.

Proof. By using (1.4) and (1.5), we have

$$(4.3) \quad \overline{R}(X, fX, Z, fZ) = g(D_X \sigma(fX, Z) - D_{fX} \sigma(X, Z), fZ) -g(\sigma([X, fX], Z), fZ) + g(\sigma(X, \nabla_{fX} Z) - \sigma(fX, \nabla_X Z), fZ).$$

Now, from (1.1), (2.3), (3.6) and (3.8), a direct expansion gives

(4.4)
$$g(D_X \sigma(fX, Z) - D_{fX} \sigma(X, Z), fZ) = -2 \|\sigma(X, Z)\|^2.$$

On the other hand, by using (3.6) again,

(4.5)
$$g(\sigma([X, fX], Z), fZ) = g(\sigma(Q[X, fX], Z), fZ) + \sum g(\sigma(\eta_{\alpha}([X, fX])\xi_{\alpha}, Z), fZ).$$

But, from (2.2) and since X and Z are unit vector fields, we see that $\eta_{\alpha}([X, fX]) = 2$ for any α . Moreover, from (2.13), we obtain $Q[X, fX] = t\sigma(X, X) + t\sigma(fX, fX)$. Then, taking into account (2.10) and (3.9), (4.5) becomes

$$(4.6) \qquad g(\sigma([X, fX], Z), fZ) = 2g(\sigma(t\sigma(X, X), Z), fZ) - 2s$$

However, since $Z \in \mathcal{D}^{\perp}$ and by using (1.2) and (2.13), it is easy to show that $g(\sigma(t\sigma(X,X),Z), fZ) = -g(t\sigma(X,X), t\sigma(Z,Z))$. Substituting this in (4.6), we have

$$(4.7) \qquad g(\sigma([X, fX], Z), fZ) = -2s - 2g(t\sigma(X, X), t\sigma(Z, Z)).$$

Finally, since $\eta_{\alpha}(\nabla_{fX}Z) = \eta_{\alpha}(\nabla_{X}Z) = 0$ for any α , from (2.12), (3.5) and (3.6) we get

(4.8)
$$g(\sigma(X, \nabla_{fX}Z) - \sigma(fX, \nabla_{X}Z), fZ) = g(\sigma(X, P\nabla_{fX}Z + fP\nabla_{X}Z), fZ) = g(A_{fZ}X, P\nabla_{fX}Z - PA_{fZ}X).$$

But, by using (2.12) and (4.3), it easy to check that $P\nabla_{fX}Z = -PA_{fZ}X$. Consequently and taking into account (3.10), (4.8) gives

(4.9)
$$g(\sigma(X, \nabla_{fX}Z) - \sigma(fX, \nabla_XZ), fZ) = -2g(A_{fZ}X, PA_{fZ}X)$$
$$= -2\|A_{fZ}X\|^2.$$

Then, substituting (4.4), (4.7) and (4.9) in (4.3), we complete the proof.

PROPOSITION 4.2. Let \mathcal{M} be a normal CR-submanifold of an S-space form $\mathcal{N}(k)$. Then

(4.10)
$$\|\sigma(X,Z)\|^2 + \|A_{fZ}X\|^2 - g(t\sigma(X,X),t\sigma(Z,Z)) = (k+3s)/4$$

for any unit vector fields $X \in \mathcal{D}$ and $Z \in \mathcal{D}^{\perp}$.

Proof. From (2.4), we have $\overline{R}(X, fX, Z, fZ) = -(k-s)/2$. Then, from (4.2), the proof is complete.

COROLLARY 4.3. If \mathcal{M} is a normal \mathcal{D}^{\perp} -geodesic CR-submanifold of an S-space form $\mathcal{N}(k)$, then $k \geq -3s$.

PROPOSITION 4.4. If \mathcal{M} is a normal CR-submanifold of an S-space form $\mathcal{N}(k)$ such that the distribution $\mathcal{D} \oplus \mathcal{M}$ is integrable, then $k \geq -3s$ and \mathcal{M} is a CR-product.

Proof. From Theorem 3.6, \mathcal{M} is a CR-product. Now, from (3.12), we have $g(\sigma(X,Y), fZ) = 0$ for any $X, Y \in \mathcal{D}$. Then, if $X \in \mathcal{D}$ is a unit vector field, $t\sigma(X,X) = 0$ and, by using (4.10), $k \geq -3s$.

For the (2n + s)-dimensional euclidean S-space form $E^{2n+s}(-3s)$ (see [6]), we can prove:

THEOREM 4.5. If \mathcal{M} is a normal $(\mathcal{D}, \mathcal{D}^{\perp})$ -geodesic and \mathcal{D}^{\perp} -geodesic CRsubmanifold of $E^{2n+s}(-3s)$, then \mathcal{M} is a CR-product.

Proof. From (4.10), we have $A_{fZ}X = 0$ for any $X \in \mathcal{D}$ and $Z \in \mathcal{D}^{\perp}$. From (3.11), \mathcal{M} is a CR-product.

COROLLARY 4.6. Every normal \mathbb{D}^{\perp} -geodesic generic submanifold of $E^{2n+s}(-3s)$ is a CR-product.

Finally, consider the (2n + s)-dimensional S-space form $H^{2n+s}(4-3s)$ (see [1]). Let \mathcal{M} be a CR-submanifold of $H^{2n+s}(4-3s)$. Denote by ν the complementary distribution of $f\mathcal{D}^{\perp}$ in $T(\mathcal{M})^{\perp}$. Then $f\nu \subseteq \nu$. Let $\{E_1, \ldots, E_{2p}\}, \{F_1, \ldots, F_q\}, \{N_1, \ldots, N_r, fN_1, \ldots, fN_r\}$ be local fields of orthonormal frames on $\mathcal{D}, \mathcal{D}^{\perp}$ and ν , respectively, where 2r is the real dimension of ν . For later use, we shall prove:

LEMMA 4.7. If \mathcal{M} is a CR-product in $H^{2n+s}(4-3s)$, then

(4.11)
$$\|\sigma(X,Z)\| = 1$$

for any unit vector fields $X \in \mathcal{D}$ and $Z \in \mathcal{D}^{\perp}$.

Proof. We observe that \mathcal{M} is a normal CR-submanifold due to Proposition 3.5, and so (4.10) holds with (k+3s)/4 = 1. Moreover, from (3.11), we have $A_{fZ}X = 0$ and, from (3.12), $t\sigma(X, X) = 0$.

LEMMA 4.8. Let \mathcal{M} be a CR-product in $H^{2n+s}(4-3s)$. Then the vector fields $\sigma(E_i, F_a)$, $i = 1, \ldots, 2p$, $a = 1, \ldots, q$, are 2pq orthonormal vector fields on ν .

Proof. From (4.11) and by linearity, we get

$$g(\sigma(E_i, Z), \sigma(E_j, Z)) = 0$$

for any i, j = 1, ..., 2p, $i \neq j$ and any unit vector field $Z \in \mathcal{D}^{\perp}$. Now, from (3.6), if q = 1, the proof is complete. On the other hand, if $q \geq 2$, by linearity again, we have

$$g(\sigma(E_i, F_a), \sigma(E_j, F_b)) + g(\sigma(E_i, F_b), \sigma(E_j, F_a)) = 0$$

for any $i, j = 1, ..., 2p, i \neq j, a, b = 1, ..., q, a \neq b$. Next, by using (3.13) and the Bianchi identity, we obtain R(X, Y, Z, W) = 0 for any $X, Y \in \mathcal{D}$, $Z, W \in \mathcal{D}^{\perp}$. But, if $i \neq j$ and $a \neq b$, (2.4) gives $\overline{R}(E_i, E_j, F_a, F_b) = 0$. Then, from the Gauss equation (1.3), we get

$$g(\sigma(E_i, F_a), \sigma(E_i, F_b)) - g(\sigma(E_i, F_b), \sigma(E_i, F_a)) = 0$$

for any $i, j = 1, ..., 2p, i \neq j, a, b = 1, ..., q, a \neq b$, and this completes the proof. \blacksquare

Now, we shall study the normal CR-submanifolds of $H^{2n+s}(4-3s)$:

THEOREM 4.9. Let \mathcal{M} be a normal CR-submanifold of $H^{2n+s}(4-3s)$ such that the distribution $\mathcal{D} \oplus \mathcal{M}$ is integrable. Then:

(a) \mathcal{M} is a CR-product $\mathcal{M}_1 \times \mathcal{M}_2$.

(b) $n \ge pq + p + q$.

(c) If n = pq + p + q, then \mathcal{M}_1 is an invariant totally geodesic submanifold immersed in $H^{2n+s}(4-3s)$.

 $(\mathbf{d}) \ \|\sigma\|^2 \geq 2q(2p+s).$

(e) If $\|\sigma\|^2 = 2q(2p+s)$, then \mathcal{M}_1 is an S-space form of constant f-sectional curvature 4-3s and \mathcal{M}_2 has constant curvature 1.

(f) If \mathcal{M} is a minimal submanifold, then

$$\varrho \le 4p(p+1) + 2p(q+s) + q(q-1),$$

where ρ denotes the scalar curvature and equality holds if and only if $\|\sigma\|^2 = 2q(2p+s)$.

Proof. (a) follows directly from Proposition 4.4. Now, from Lemma 4.8, $\dim(\nu) = 2(n-p) - 2q \ge 2pq$. So, (b) holds.

Next, suppose that n = pq + p + q. If $X, Y, Z \in \mathcal{D}$ and $W \in \mathcal{D}^{\perp}$, from (2.4), $\overline{R}(X, Y, Z, W) = 0$ and, by using a similar proof to that of Lemma 4.8, $\overline{R}(X, Y, Z, W) = 0$. So, the Gauss equation gives

(4.12)
$$g(\sigma(X,W),\sigma(Y,Z)) - g(\sigma(X,Z),\sigma(Y,W)) = 0$$

for any $X, Y, Z \in \mathcal{D}$ and any $W \in \mathcal{D}^{\perp}$. Since from Proposition 3.2 of [5], $\sigma(fX, Z) = f\sigma(X, Z)$, if we put Y = fX, we have, by using (3.8), $g(\sigma(fX, W), \sigma(X, Z)) = 0$. Now, if we put Z = fY, then $g(\sigma(X, Y), \sigma(X, W)) = 0$ for any $X, Y \in \mathcal{D}$ and $W \in \mathcal{D}^{\perp}$. Thus, by linearity, we get $g(\sigma(X, W), \sigma(Y, Z)) + g(\sigma(X, Z), \sigma(Y, W)) = 0$ for any $X, Y, Z \in \mathcal{D}$ and any $W \in \mathcal{D}^{\perp}$ and so, from (4.12),

(4.13)
$$g(\sigma(X,W),\sigma(Y,Z)) = 0, \quad X,Y,Z \in \mathcal{D}, \ W \in \mathcal{D}^{\perp}$$

Since now dim(ν) = 2pq, (4.13) implies that $\sigma(X, Y) = 0$ for any $X, Y \in \mathcal{D}$. Consequently, (c) holds from Theorem 2.4(ii) of [5].

Assertions (d) and (e) follow from Theorem 4.2 of [5]. Finally, if \mathcal{M} is a minimal normal CR-submanifold of $H^{2n+s}(4-3s)$, then a straightforward computation gives

$$\varrho = 4p(p+1) + 2s(p+q) + q(q-1) + 6pq - \|\sigma\|^2$$

Then, by using (d), the proof is complete. \blacksquare

THEOREM 4.10. Let \mathcal{M} be a normal, $(\mathcal{D}, \mathcal{D}^{\perp})$ -geodesic and \mathcal{D}^{\perp} -geodesic CR-submanifold of $H^{2n+s}(4-3s)$. Then:

- (a) $||A_{fZ}X|| = 1$ for any unit vector fields $X \in \mathcal{D}$ and $Z \in \mathcal{D}^{\perp}$,
- (b) $\|\sigma\|^2 \ge 2q(p+s)$ and equality holds if and only if $\sigma(\mathcal{D}, \mathcal{D}) \in f\mathcal{D}^{\perp}$.

Proof. (a) follows inmediately from (4.10). Now, consider the above local fields of orthonormal frames for \mathcal{D} , \mathcal{D}^{\perp} and ν . Since $\sigma(\mathcal{D}, \mathcal{D}^{\perp}) = \sigma(\mathcal{D}^{\perp}, \mathcal{D}^{\perp}) = 0$, a direct computation gives

$$\|\sigma\|^2 = 2qs + \sum_{i,j=1}^{2p} \|\sigma(E_i, E_j)\|^2.$$

But

(4.14)
$$\|\sigma(E_i, E_j)\|^2 = \sum_{a=1}^q g(A_{fF_a}E_i, E_j)^2 + \sum_{l=1}^r \{g(A_{N_l}E_i, E_j)^2 + g(A_{fN_l}E_i, E_j)^2\}.$$

On the other hand, since $\sigma(\mathcal{D}, \mathcal{D}^{\perp}) = 0$, we see that $A_{fF_a}E_i$, $A_{N_l}E_i$, $A_{fN_l}E_i \in \mathcal{D}$ for any $i = 1, \ldots, 2p$, $a = 1, \ldots, q$ and $l = 1, \ldots, r$. So, from (a), we get

$$\sum_{i,j=1}^{2p} \left[\sum_{a=1}^{q} g(A_{fF_a} E_i, E_j)^2 + \sum_{l=1}^{r} \{ g(A_{N_l} E_i, E_j)^2 + g(A_{fN_l} E_i, E_j)^2 \} \right]$$

$$=\sum_{i=1}^{2p} \left[\sum_{a=1}^{q} \|A_{fF_a} E_i\|^2 + \sum_{l=1}^{r} \{\|A_{N_l} E_i\|^2 + \|A_{fN_l} E_i\|^2\}\right] \ge 2pq$$

Consequently, $\|\sigma\|^2 \ge 2q(p+s)$ and, from (4.14), equality holds if and only if $\sigma(\mathcal{D}, \mathcal{D}) \in f\mathcal{D}^{\perp}$.

Finally, from (3.6), (4.10) and (4.14), we can prove:

COROLLARY 4.11. Let \mathcal{M} be a normal, generic and \mathcal{D}^{\perp} -geodesic CRsubmanifold of $H^{2n+s}(4-3s)$. Then:

- (a) $||A_{fZ}X|| = 1$ for any unit vector fields $X \in \mathcal{D}$ and $Z \in \mathcal{D}^{\perp}$, (b) $||\sigma||^2 = 2q(p+s)$.

REFERENCES

- [1] D. E. Blair, Geometry of manifolds with structural group $U(n) \times O(s)$, J. Differential Geom. 4 (1970), 155-167.
- [2]-, On a generalization of the Hopf fibration, Ann. Stiint. Univ. "Al. I. Cuza" Iaşi 17 (1) (1971), 171-177.
- [3] D. E. Blair, G. D. Ludden and K. Yano, Differential geometric structures on principal toroidal bundles, Trans. Amer. Math. Soc. 181 (1973), 175-184.
- [4]J. L. Cabrerizo, L. M. Fernández and M. Fernández, A classification of totally f-umbilical submanifolds of an S-manifold, Soochow J. Math. 18 (2) (1992), 211-221.
- L. M. Fernández, CR-products of S-manifolds, Portugal. Mat. 47 (2) (1990), [5]167 - 181.
- I. Hasegawa, Y. Okuyama and T. Abe, On p-th Sasakian manifolds, J. Hokkaido [6]Univ. Ed. Sect. II A 37 (1) (1986), 1-16.
- [7]M. Kobayashi and S. Tsuchiya, Invariant submanifolds of an f-manifold with complemented frames, Kodai Math. Sem. Rep. 24 (1972), 430-450.
- [8] I. Mihai, CR-subvarietăți ale unei f-varietăți cu repere complementare, Stud. Cerc. Mat. 35 (2) (1983), 127–136.
- L. Ornea, Subvarietăți Cauchy-Riemann generice în S-varietăți, ibid. 36 (5) [9] (1984), 435-443.
- K. Yano, On a structure defined by a tensor field f of type (1,1) satisfying $f^3+f=0$, [10]Tensor 14 (1963), 99–109.

DPTO. ALGEBRA, COMPUTACIÓN, GEOMETRÍA Y TOPOLOGÍA FACULTAD DE MATEMÁTICAS UNIVERSIDAD DE SEVILLA APDO. CORREOS 1160 41080 SEVILLA, SPAIN

Reçu par la Rédaction le 2.12.1991