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ON SEMIGROUPS GENERATED BY
SUBELLIPTIC OPERATORS ON HOMOGENEOUS GROUPS

BY

JACEK D Z I U B A Ń S K I (WROC LAW)

1. Introduction. Let L be a positive Rockland operator on a homo-
geneous group G (cf. e.g. [FS]). Assume that the homogeneous degree of L
is 2r, r > 0. B. Helffer and J. Nourrigat [HN] showed that L is hypoelliptic
and satisfies the following subelliptic estimates: for every left-invariant dif-
ferential operator ∂ of homogeneous degree s and every positive integer N
satisfying 2Nr ≥ s there is a constant C such that

(1.1) ‖∂f‖L2 ≤ C(‖LNf‖L2 + ‖f‖L2) for f ∈ C∞c (G) .

Applying these facts G. B. Folland and E. M. Stein [FS] proved that the
closure L of the essentially selfadjoint operator L is the infinitesimal gener-
ator of the semigroup {Tt}t>0 of linear operators on L2(G) which has the
form

(1.2) Ttf = f ∗ pt, t > 0 ,
where pt belong to the Schwartz space S(G) .

On the other hand, it was proved by A. Hulanicki and the author [DH]
that if a positive Rockland operator L is a sum of even powers of left-
invariant vector fields, then the kernels pt, t > 0, of the semigroup generated
by L have the following exponential decay: for every constant C > 0, every
t > 0, and every left-invariant differential operator ∂ on G

‖(∂pt)eCτ‖L∞ ≤ c(C, t, ∂) <∞ ,

where τ is a Riemannian distance from the unit element.
The purpose of the present paper is an extension of this result to semi-

groups generated by abstract positive Rockland operators. Actually, we
prove the following theorem:
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Theorem (1.3). For every C ≥ 0, the semigroup defined by (1.2) is
holomorphic on L2(eCτ(x) dx) in the right half-plane and the kernels pz,
Re z > 0, satisfy

‖(∂pz)eCτ‖L∞ ≤ c(C, z, ∂) <∞
for every left-invariant differential operator ∂ on G.

It seems likely that this result can be strengthened:

sup
x∈G

|(∂pz(x))ec|x|α | < C(∂, z) <∞

for some α > 1, where | · | is a homogeneous norm on G. If the generator is
as in [DH] and z is real this has been proved by W. Hebisch in [He].

It is worth pointing out that the methods we present here allow one to
obtain the same theorem for the semigroup generated by the convolution
with the distribution ϕPN , where P is the generating functional of a δ-
stable semigroup of symmetric measures on a homogeneous group G with a
smooth Lévy measure, δ ∈ (0, 2), PN = P ∗ P ∗ . . . ∗ P (Ntimes), N > 0,
ϕ ∈ C∞c (G), ϕ ≡ 1 in a neighborhood of the origin. It is easy to check that
the distribution P has the following form:

(1.4) 〈P, f〉 = lim
ε→0

∫
|x|>ε

f(0)− f(x)
|x|Q+δ

Ω(x) dx,

where Ω ∈ C∞(G \ {0}), Ω ≥ 0, Ω 6≡ 0, Ω(x−1) = Ω(x), Ω(δtx) = Ω(x), Q
is the homogeneous dimension of G.

For brevity we concentrate only on semigroups generated by Rockland
operators. The same arguments work for semigroups associated with the
distribution ϕPN .

Our proof is similar in spirit to that presented in [DH]. Since distributions
considered here are not supported by the origin, as was the case in [DH],
we use the Taylor expansion instead of the Leibniz formula. Subelliptic
estimates which have been obtained by B. Helffer and J. Nourrigat [HN]
for Rockland operators, and by P. G lowacki [G] for generators of stable
semigroups of measures play here a decisive role.

Acknowledgements. The author is greatly indebted to Piotr Biler,
Jacques Faraut, Pawe/l G/lowacki and Andrzej Hulanicki for suggesting
the problem and stimulating conversations.

2. Preliminaries. A family of dilations on a nilpotent Lie algebra G is
a one-parameter group {δt}t>0 of automorphisms of G determined by

δtej = tdjej ,

where e1, . . . , en is a linear basis for G, and d1, . . . , dn are positive real
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numbers called the exponents of homogeneity. The smallest dj is assumed
to be 1.

If we regard G as a Lie group with multiplication given by the Campbell–
Hausdorff formula, then the dilations δt are also automorphisms of the group
structure of G, and the nilpotent Lie group G equipped with these dilations
is said to be a homogeneous group.

The homogeneous dimension of G is the number Q defined by

d(δtx) = tQ dx ,

where dx is a right-invariant Haar measure on G.
We choose and fix a homogeneous norm on G, that is, a continuous

nonnegative symmetric function x 7→ |x| which is, moreover, smooth on
G \ {0} and satisfies

|δtx| = t|x|, |x| = 0 if and only if x = 0 .

Let

Xjf(x) =
d

dt

∣∣∣∣
t=0

f(xtej), Yjf(x) =
d

dt

∣∣∣∣
t=0

f(tejx)

be left- and right-invariant basic vector fields. If I = (i1, . . . , in) is a multi-
index, ij ∈ N ∪ {0}, we set

XIf = Xi1
1 . . . Xin

n f, Y If = Y i1
1 . . . Y in

n f, |I| = i1d1 + . . .+ indn ,

‖I‖ = i1 + . . .+ in, I! = i1! . . . in!, xI = xi1
1 . . . xin

n ,

where x = x1e1 + . . . + xnen. The number |I| is called the homogeneous
length of I.

For a real number r ≥ 0 let r be the smallest number such that r > r
and r = |I| for some multi-index I.

For a function f ∈ C∞c (G), r > 0, x ∈ G, define

(2.1) f (x)(y) = f(xy)−
∑
|I|≤r

1
I!
XIf(x)yI , y ∈ G .

Theorem (2.2) (cf. [FS, Theorem 1.37]). For r, a > 0, there are con-
stants C,K such that for every f ∈ C∞(G)

|f (x)(y)| ≤ Cf 〈r〉(x)|y|r̄ for |y| ≤ a ,

where f 〈r〉(x) =
∑

I∈W sup|z|≤K |XIf(xz)|, W = {I : r < |I|, ‖I‖ ≤
[r] + 1} .

We say that a function f on G belongs to the Schwartz space S(G) if for
every M > 0 the norm

sup
|I|<M , x∈G

(1 + |x|)M |XIf(x)|

is finite.
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A distribution U on G is said to be a kernel of order r ∈ R if U coincides
with a C∞ function away from the origin, and satisfies

〈U, f ◦ δt〉 = tr〈U, f〉 for f ∈ C∞c (G), t > 0 .

If U is a kernel of order r then there exists a function ΩU , homogeneous
of degree 0 and smooth away from the origin, and a differential operator ∂
such that

(2.3) 〈U, f〉 = ∂f(0) + lim
ε→0

∫
|x|>ε

ΩU (x)
|x|Q+r

(
f(x)−

∑
|I|<r

1
I!
XIf(0)xI

)
dx ,

for f ∈ C∞c (G) (cf. [G, p. 560]).
A distribution T smooth away from 0, supported in a compact set and

coinciding with a kernel of order r in a neighborhood of 0 will be called a
truncated kernel of order r. Note that if T is a truncated kernel of order r,
then

TI = (−x)IT

is a truncated kernel of order r − |I|.
We say that a kernel U of order r > 0 satisfies the Rockland condition

if for every nontrivial irreducible unitary representation π of G the linear
operator πU is injective on the space of C∞ vectors of π.

If a kernel U of order r > 0 has compact support, i.e. ΩU ≡ 0 (cf. (2.3)],
then U is supported at the origin. Hence

(2.4) U =
∑
|I|=r

aIX
I .

If an operator of the form (2.4) satisfies the Rockland condition, then U is
called the Rockland operator .

A function w on G is submultiplicative if

(i) w is symmetric, Borel and bounded on compact sets,
(ii) w(x) ≥ 1, x ∈ G,
(iii) w(xy) ≤ w(x)w(y) for all x, y ∈ G.

Let d(x, y) be a fixed left-invariant Riemannian metric on G and let

(2.5) τ(x) = d(x, 0) .

For a fixed nonnegative function f0 ∈ C∞c ({x : τ(x) < 1}) such that∫
G
f0(x) dx = 1 define

(2.6) φ(x) = eτ∗f0(x) .

Lemma (2.7). For every submultiplicative function w on G there exist
positive numbers m and C such that

w(x) ≤ Cφm(x) .
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In particular , eτ(x) ≤ Cφm(x) for some C and m.

P r o o f. See e.g. [H, Proposition 1.2 and Lemma 4.2].

Lemma (2.8). For every positive m there exists a constant C such that

φm(x−1) ≤ Cφm(x), φm(xy) ≤ Cφm(x)φm(y) .

Moreover , for every left-invariant differential operator ∂ there is a constant
C = C(∂,m) such that

|∂φm(x)| ≤ Cφm(x) .

P r o o f. Cf. [H].

A subset Γ of G is said to be uniformly discrete if for every function
ϕ ∈ C∞c (G) the function

∑
z∈Γ λzϕ is bounded, where λzϕ(x) = ϕ(zx).

The following lemma is due to B. Helffer and J. Nourrigat (cf. [HN]).

Lemma (2.9). For every homogeneous group G there is a uniformly dis-
crete subset Γ of G and a function ψ ∈ C∞c (G) such that∑

z∈Γ

|ψz(x)|2 = 1, where ψz(x) = λzψ(x) .

Lemma (2.10). For every uniformly discrete subset Γ of G and ε > 0∑
z∈Γ

(1 + |z|)−Q−ε <∞ .

P r o o f. It suffices to show that
∑

z∈Γ, |z|>s |z|−Q−ε <∞ for sufficiently
large s. Let ϕ ∈ C∞c (G), ϕ ≥ 0, ϕ(x) = 1 for |x| < 1. Then∑

z∈Γ, |z|>s

|z|−Q−ε ≤ C
∑

z∈Γ, |z|>s

|z|−Q−ε
∫
ϕz(x) dx

≤ C
∑

z∈Γ, |z|>s

∫
ϕz(x)|x|−Q−ε dx

≤ C
∫

|x|>1

|x|−Q−ε dx <∞ .

Corollary (2.11). If m > 0, then
∫
φ−m(x) dx < ∞, where φ is de-

fined by (2.6). Moreover , if Γ is a uniformly discrete subset of G, then∑
z∈Γ φ

−m(z) <∞.

A semigroup {Tt}t>0 of bounded linear operators on a Banach space X
is said to be holomorphic in the sector ∆δ = {z ∈ C : |Arg z| < δ} if there
exists a family {Tz}z∈∆δ

of bounded linear operators on X such that

(a) Tz = Tt for z = t and ∆δ 3 z 7→ Tz is holomorphic,
(b) Tz1+z2 = Tz1Tz2 for z1, z2 ∈ ∆δ,
(c) limz→0, z∈∆δ−ε

Tzx = x for every ε > 0, x ∈ X .
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The infinitesimal generator A of the semigroup {Tt} is defined by D(A) =
{x ∈ X : limt→0 t

−1(x − Ttx) exists in X}, and for x ∈ D(A), Ax =
limt→0 t

−1(x− Ttx).
Similarly to [DH] the following theorem is the basic tool of the present

paper:

Theorem (2.12). Let H and V be Hilbert spaces equipped with inner
products (·, ·)H, (·, ·)V respectively. Assume that V is a dense subspace of H
such that for a constant C

‖x‖H ≤ C‖x‖V for all x ∈ V .

Let a(u, v) be a bounded sesquilinear form on V. It defines an operator
A : D(A) → H as follows:

D(A) = {u ∈ V : |a(u, v)| ≤ Cu‖v‖H for v ∈ V}, (Au, v)H = a(u, v) .

Assume that for some α, β > 0

(2.13) α‖u‖2
V ≤ Re a(u, u), |Im a(u, u)| ≤ β‖u‖2

V .

Then A is the infinitesimal generator of a strongly continuous semigroup of
operators on H which is holomorphic in the sector ∆δ, δ = arctan(α/β),
and uniformly bounded in every proper subsector of ∆δ.

P r o o f. Cf. [DH] and [P, Theorem 5.2].

3. Subelliptic estimates. Let L be a positive Rockland operator on
G, homogeneous of degree 2r, and let EL̄ be the spectral resolution for L.
Since L is homogeneous and symmetric, the kernels pt of the semigroup
{Tt}t>0 generated by L (cf. (1.2)) are symmetric and satisfy

(3.1) pt(x) = t−Q/(2r)p1(δt−1/(2r)x) .

Let {St}t>0 be the semigroup (subordinate to {Tt}) generated by
√
L, that

is,

(3.2) Stf =
∞∫

0

e−tλ1/2
dEL̄(λ)f =

∞∫
0

e−s

√
πs
f ∗ pt2/(4s) ds .

Obviously

(3.3) Stf = f ∗ qt, where qt =
∞∫

0

e−s

√
πs
pt2/(4s) ds .

It follows from (3.1) and (3.3) that qt ∈ C∞(G) ∩ L1(G), and

(3.4) qt(x) = t−Q/rq1(δt−1/rx) .
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The infinitesimal generator of {St} on C∞c (G) is the convolution with the
distribution U defined by

(3.5) 〈U, f〉 = c−1
∞∫

0

t−3/2
( ∫

G

f(x)pt(x) dx− f(0)
)
dt ,

where c =
∫∞
0
t−3/2(e−t − 1) dt. (3.5) implies that U is a kernel of order r.

Of course

(3.6) 〈U ∗ U, f〉 = Lf(0) .

Note that

(3.7) (Id +
√
L)−1f = f ∗ F ,

where

(3.8) F =
∞∫

0

e−tqt dt ∈ L1(G) .

Proposition (3.9). For every kernel T of order s > 0 and every positive
integer N satisfying Nr ≥ s there is a constant C such that

(3.10) ‖f ∗ T‖L2(G) ≤ C(‖f ∗ UN‖L2(G) + ‖f‖L2(G)) for f ∈ C∞c (G) .

P r o o f. The proof proceeds by induction on the step of G. If G is
abelian, then (3.10) follows by using the Fourier transform. Assume that
(3.10) holds for groups of step < m, and let G be a homogeneous group of
step m. Let V denote the center of G. Let S be a linear complement to V
which is invariant under the action of dilations. Then S can be considered
as a homogeneous group isomorphic to G/V . Denote by σ the canonical
homomorphism from G into S. The operator L̃ defined on C∞c (S) by

L̃f = L(f ◦ σ), f ∈ C∞c (S) ,

is a positive Rockland operator on S. Moreover, the distribution Ũ subor-
dinate to the kernel L̃ satisfies

〈Ũ , f〉 = 〈U, f ◦ σ〉 for f ∈ C∞c (S) .

Let T be a kernel of order s and let N be such that Nr ≥ s. Then T̃ defined
by 〈T̃ , f〉 = 〈T, f ◦ σ〉, f ∈ C∞c (S), is a kernel of order s on S (cf. [G,
(3.26)]) and by our inductive assumption there is a constant C such that

(3.11) ‖f ∗ T̃‖L2(S) ≤ C(‖f ∗ ŨN‖L2(S) + ‖f‖L2(S)) for f ∈ C∞c (S) .

Of course f ∗ ŨN = π0
UN f and f ∗ T̃ = π0

T̆
f , where π0 is the unitary

representation induced from the trivial character on V , 〈T̆ , f〉 = 〈T, f̆〉,
f̆(x) = f(x−1). Hence (3.11) can be written as

(3.12) ‖π0
T̆
f‖L2(S) ≤ C(‖π0

UN f‖L2(S) + ‖f‖L2(S)) .
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It was shown in [G, pp. 568–571] that if U satisfies (3.12) and the kernel of
(Id +U)−1 belongs to L1(G) (cf. (3.7), (3.8)), then there is another constant
C such that

(3.13) ‖πξ

T̆
f‖L2(S) ≤ C(‖πξ

UN f‖L2(S) + ‖f‖L2(S))

for f ∈ C∞c (S), ξ ∈ V ∗ ,

where πξ is the unitary representation of G induced from the character
V 3 v 7→ ei〈ξ,v〉. Decomposing the right regular representation of G into a
direct integral of πξ and using (3.13), we get (3.10).

Let ϕ0 be a smooth symmetric function with compact support such that
ϕ0 = 1 in a neighborhood of the origin. Define the truncated kernel R by

(3.14) R = ϕ0U .

Note that there is a real symmetric function ω ∈ C∞c (G) such that

(3.15) L = R2 + ω in the sense of distributions.

From (3.9) and (2.3), we deduce the following

Corollary (3.16). For every multi-index I with |I| > 0 and every ε > 0
there is a constant Cε such that

(3.17) ‖f ∗RI‖L2(G) ≤ ε‖f ∗R‖L2(G) + Cε‖f‖L2(G) for f ∈ C∞c (G) .

Moreover , if |I| ≥ r, then there is a constant C such that

(3.18) ‖f ∗RI‖L2(G) ≤ C‖f‖L2(G) for f ∈ C∞c (G) .

4. Weighted subelliptic estimates. For a fixed m ≥ 0 put

(4.1) η(x) = φm(x) ,

where φ is defined by (2.6).
Denote by H the Hilbert space L2(G), and by Hη the Hilbert space

L2(G, η dx), that is, f ∈ Hη if and only if

(4.2) ‖f‖2
Hη

= ‖f‖2
η =
∫
G

|f(x)|2η(x) dx <∞ .

Our aim in this section is to prove the following theorem which is a weighted
version of Corollary (3.16).

Theorem (4.3). Let R be a truncated kernel of order r > 0 which satis-
fies (3.17). Then for every multi-index I with |I| > 0 and every ε > 0 there
is a constant Cε such that

(4.4) ‖f ∗RI‖2
η ≤ ε‖f ∗R‖2

η + Cε‖f‖2
η for f ∈ C∞c (G) .

Moreover , if |I| ≥ r, then there is a constant C such that

(4.5) ‖f ∗RI‖2
η ≤ C‖f‖2

η for f ∈ C∞c (G) .
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P r o o f. Our proof consists of four lemmas.
We say that a linear operator B bounded on L2(G) has compact support

if for every a > 0 there is a constant b such that

(Bf)χB(x,a) = B(fχB(x,b))χB(x,a) ,

where B(x, r) = {y : |x−1y| < r} and χB(x,r) is the indicator of the ball
B(x, r).

Lemma (4.6). If B is a bounded compactly supported linear operator on
L2(G), then there is a constant C, which depends on η and the support of
B , such that

‖B‖Hη→Hη ≤ C‖B‖H→H .

P r o o f. Let ψ, Γ be as in Lemma (2.9) and let f ∈ Hη. Using
Lemma (2.8), we get

‖Bf‖2
η

=
∫
G

∑
z∈Γ

|Bf(x)ψz(x)|2η(x) dx ≤ C1

∑
z∈Γ

η(z−1)
∫
G

|Bf(x)ψz(x)|2 dx .

Since B is bounded on L2(G) and compactly supported, there is a constant
a > 0 such that

‖Bf‖2
η ≤ C2

∑
z∈Γ

η(z−1)
∫
G

|B(fχB(z−1,a))(x)ψz(x)|2 dx .

By Lemma (2.8), we obtain

‖Bf‖2
η ≤ C3‖B‖2

H→H

∑
z∈Γ

η(z−1)
∫
G

|f(x)χB(z−1,a)(x)|2 dx

≤ C4‖B‖2
H→H

∑
z∈Γ

∫
G

|f(x)χB(z−1,a)(x)|2η(x)η(x−1z−1) dx

≤ C‖B‖2
H→H‖f‖2

η .

Lemma (4.7). For every truncated kernel T of order 0 there is a constant
C > 0 such that

‖f ∗ T‖L2(G) ≤ C‖f‖L2(G), f ∈ C∞c (G) .

P r o o f. See Goodman [Go].

R e m a r k. Note that (4.5) is now a consequence of (4.7), (4.6), (3.17),
and (2.3).

Lemma (4.8). Let R be a truncated kernel of order r which satisfies
(3.17). Then there is a constant C such that for every multi-index I0 with
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|I0| > 0 and every ε > 0 there is a constant Cε such that for f ∈ C∞c (G)

‖f ∗RI0‖2
η ≤ ε

∑
0≤|I|<r

‖f ∗RI‖2
η + Cε‖f‖2

η + C
∑

0<|J|≤r−|I0|

‖f ∗RI0+J‖2
η .

P r o o f. We need only consider the case when 0 < |I0| < r (cf. the
remark following Lemma (4.7)). Let Γ and ψ be as in Lemma (2.9). Then

‖f ∗RI0‖2
η ≤ C1

∑
z∈Γ

η(z−1)
∫
G

|f ∗RIo(x)ψz(x)|2 dx

≤ C2

∑
z∈Γ

η(z−1)
∫
G

|(fψz) ∗RI0(x)|2 dx

+C2

∑
z∈Γ

η(z−1)
∫
G

∣∣∣∣ ∑
0<|J|≤r

1
J !
XJψz(x)f ∗RI0+J(x) +Hzf(x)

∣∣∣∣2 dx ,
where Hzf(x) = 〈(·)I0R, f(x · )ψ(x)

z (·)〉 (cf. (2.1) for the definition of ψ(x)
z ).

By (3.17), we have

‖f ∗RI0‖2
η ≤ C2

∑
z∈Γ

η(z−1)ε
∫
G

|(fψz) ∗R(x)|2 dx(4.9)

+ C2

∑
z∈Γ

η(z−1)Cε

∫
G

|fψz(x)|2 dx

+ C3

∑
z∈Γ

η(z−1)
∑

0<|J|≤r

∫
G

|XJψz(x)f ∗RI0+J(x)|2 dx

+ C3

∑
z∈Γ

η(z−1)
∫
G

|Hzf(x)|2 dx .

Since Γ is uniformly discrete, the first term on the right-hand side of (4.9)
can be estimated by

C2

∑
z∈Γ

η(z−1)ε
∫
G

∣∣∣∣ψz(x)f∗R(x)+
∑

0<|J|≤r

1
J !
XJψz(x)f∗RJ(x)+H ′

zf(x)
∣∣∣∣2dx

≤ C3ε‖f ∗R‖2
η + C3ε

∑
0<|J|≤r

‖f ∗RJ‖2
η + C3ε

∑
z∈Γ

η(z−1)
∫
G

|H ′
zf(x)|2 dx ,

where H ′
zf(x) = 〈R, f(x ·)ψ(x)

z ( · )〉. By (2.9) the second term on the right-
hand side of (4.9) is estimated by

C3Cε‖f‖2
η .
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Similarly, the third term on the right-hand side of (4.9) is estimated by

C4

∑
0<|J|≤r

‖f ∗RI0+J‖2
η .

By virtue of (4.5), we get

‖f ∗RI0‖2
η

≤ C5ε‖f ∗R‖2
η +

∑
0<|J|≤r

C5ε‖f ∗RJ‖2
η + C5

∑
z∈Γ

∫
G

η(z−1)|H ′
zf(x)|2dx

+ C5Cε‖f‖2
η + C5

∑
0<|J|≤r−|I0|

‖f ∗RI0+J‖2
η

+ C5

∑
z∈Γ

η(z−1)
∫
G

|Hzf(x)|2 dx .

The proof of Lemma (4.8) will be completed if we show∑
z∈Γ

η(z−1)
∫
G

(|H ′
zf(x)|2 + |Hzf(x)|2) dx ≤ C‖f‖2

η .

Note that by Theorem (2.2), ψ(x)
z (y) is a smooth function of x, y. Moreover,

for every constant K > 0 there is a constant a > 0 such that

|ψ(x)
z (y)| ≤ CK |y|r̄ for |y| ≤ K, z ∈ Γ .

ψ(x)
z (y) = 0 for x 6∈ B(z−1, a), |y| ≤ K, z ∈ Γ .

Hence by (2.3) there is a constant C such that

‖Hzf‖L2 ≤ C‖fχB(z−1,a)‖L2 for z ∈ Γ, f ∈ C∞c (G) .

Consequently, by (2.8) and (2.9), we get∑
z∈Γ

η(z−1)
∫
G

|Hzf(x)|2 dx

≤ C
∑
z∈Γ

η(z−1)
∫
G

|f(x)χB(z−1,a)(x)|2 dx ≤ C‖f‖2
η .

We proceed with H ′
z analogously.

Lemma (4.10). Let R be a truncated kernel of order r > 0 which satisfies
(3.17). Then for every multi-index I with 0 < |I| < r and every ε > 0 there
exists a constant Cε such that

(4.11) ‖f ∗RI‖2
η

≤ ε‖f ∗R‖2
η + ε

∑
0<|J|<|I|

‖f ∗RJ‖2
η + Cε‖f‖2

η, f ∈ C∞c (G) .



226 J. DZIUBAŃSKI

P r o o f. Let {k1, . . . , km} = {|I| : 0 < |I| < r}. We can assume that
r > k1 > . . . > km = 1. Let I be such that |I| = k1. By Lemma (4.8)
and (4.5) for every ε > 0 there is Cε such that

‖f ∗RI‖2
η

≤ ε‖f ∗R‖2
η + ε

∑
0<|J|<k1

‖f ∗RJ‖2
η + ε

∑
|J|=k1

‖f ∗RJ‖2
η + Cε‖f‖2

η .

Summing the above inequalities over all I with |I| = k1, we conclude that
for every ε > 0 there exists a constant Cε such that

‖f ∗RI‖2
η ≤ ε‖f ∗R‖2

η + ε
∑

0<|J|<k1

‖f ∗RJ‖2
η + Cε‖f‖2

η

for f ∈ C∞c (G), |I| = k1 .

Assume now that (4.11) holds for |I| = k1, . . . , kj . We show that (4.11)
holds for |I| = kj+1. Let I be such that |I| = kj+1. By virtue of Lemma
(4.8) and (4.5) there is a constant C such that for every ε > 0 there is a
constant Cε such that

‖f ∗RI‖2
η

≤ ε‖f ∗R‖2
η + Cε‖f‖2

η + ε
∑
|J|=k1

‖f ∗RJ‖2
η + . . .+ ε

∑
|J|=kj

‖f ∗RJ‖2
η

+ ε
∑

|J|=kj+1

‖f ∗RJ‖2
η + ε

∑
0<|J|<kj+1

‖f ∗RJ‖2
η

+ C
∑

0<|J|≤r−|I|

‖f ∗RI+J‖2
η

≤ ε‖f ∗R‖2
η + C

∑
|J|=k1

‖f ∗RJ‖2
η + . . .+ C

∑
|J|=kj

‖f ∗RJ‖2
η

+ ε
∑

|J|=kj+1

‖f ∗RJ‖2
η + ε

∑
0<|J|<kj+1

‖f ∗RJ‖2
η + Cε‖f‖2

η .

Applying the inductive assumption for multi-indices J with |J | = k1, we get

‖f ∗RI‖2
η

≤ ε‖f ∗R‖2
η + C

(
ε1‖f ∗R‖2

η + ε1
∑

0<|J|<k1

‖f ∗RJ‖2
η + Cε1‖f‖2

η

)
+ C

∑
|J|=k2

‖f ∗RJ‖2
η + . . .+ C

∑
|J|=kj

‖f ∗RJ‖2
η
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+ ε
∑

|J|=kj+1

‖f ∗RJ‖2
η + ε

∑
0<|J|<kj+1

‖f ∗RJ‖2
η + Cε‖f‖2

η .

If we fix ε and next take ε1 sufficiently small, we obtain

‖f ∗RI‖2
η

≤ 2ε‖f ∗R‖2
η + C2

∑
|J|=k2

‖f ∗RJ‖2
η + . . .+ C2

∑
|J|=kj

‖f ∗RJ‖2
η

+ ε
∑

|J|=kj+1

‖f ∗RJ‖2
η + ε

∑
0<|J|<kj+1

‖f ∗RJ‖2
η + Cε‖f‖2

η .

Proceeding analogously for J with |J | = k2, . . . , kj , we find that for every
ε > 0 there is a constant Cε such that

‖f ∗RI‖2
η ≤ ε‖f ∗R‖2

η +ε
∑

|J|=kj+1

‖f ∗RJ‖2
η +ε

∑
0<|J|<kj+1

‖f ∗RJ‖2
η +Cε‖f‖2

η .

Summing the above inequalities over all I with |I| = kj+1, we conclude that
for every ε > 0 there is a constant Cε such that for every I with |I| = kj+1,

‖f ∗RI‖2
η ≤ ε‖f ∗R‖2

η + ε
∑

0<|J|<kj+1

‖f ∗RJ‖2
η +Cε‖f‖2

η for f ∈ C∞c (G) .

Note that (4.4) is now a consequence of Lemma (4.10).

5. Semigroups on weighted Hilbert spaces. As in the previous
section, for a fixed positive m we write η = φm (cf. (2.6)). Let R be a
truncated kernel of order r which satisfies (3.17). For l > 0 define a Hilbert
space Vη,l as the completion of C∞c (G) in the norm ‖ · ‖Vη,l

, where

(5.1) ‖f‖2
Vη,l

= l‖f‖2
η +

∑
0≤|I|<r

‖f ∗RI‖2
η .

The following proposition has a standard proof.

Proposition (5.2). f ∈ Vη,l if and only if f ∈ Hη and f ∗ RI ∈ Hη

for every I with 0 ≤ |I| < r, where f ∗ RI is understood in the sense of
distributions.

Lemma (5.3). If u ∈ C∞c (G) then

(5.4) (uη) ∗R(x)

= η(x)(f ∗R)(x) +
∑

0<|I|<r

1
I!
XIη(x)(f ∗RI)(x) + η(x)Hf(x) ,

where H is a compactly supported bounded linear operator on L2(G).
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P r o o f. Using the Taylor expansion of η at x (cf. (2.1)) we get (5.4),
where Hf(x) = (η(x))−1〈R̆, f(x · )η(x)(·)〉. Of course by (2.3) and (2.8), H
is compactly supported and bounded on L2(G).

Let us define a sesquilinear form a on Vη,l by

(5.5) a(u, v) =
∫
G

u ∗R(x)((vη) ∗R(x)) dx+ (u ∗ ω, v)η

for u, v ∈ C∞c (G) ,
where ω is the function defined in (3.15).

It is now clear from (5.3), (5.2) and (4.6) that for every l there is a
constant Cl such that

|a(u, v)| ≤ Cl‖u‖Vη,l
‖v‖Vη,l

.

Let Aη be the operator defined by the form a (cf. Section 2 for the
definition) with V = Vη,l, H = Hη. Note that Aη does not depend on l.

In order to prove that Aη is a generator of a holomorphic semigroup of
operators on Hη in the sector ∆π/2, define for λ > 0 a new form aλ by

aλ(u, v) = a(u, v) + λ(u, v)η .

The operator Aη
λ corresponding to aλ is Aη+λ Id . By Lemma (5.3), Theorem

(4.3) and Lemma (2.8), for every ε there are l, λ > 0 such that

(5.7) Re aλ(u, u) ≥ 1
2
‖u‖2

Vη,l
, |Im aλ(u, u)| ≤ ε‖u‖2

Vη,l
.

Theorem (2.12) and (5.7) lead to

Theorem (5.8). For every η with η = φm, the operator Aη is the gener-
ator of a holomorphic semigroup of operators on Hη in the sector ∆π/2.

Proposition (5.9). f ∈ D(Aη) if and only if f ∈ Vη,l and f ∗R2 ∈ Hη,
where f ∗R2 is understood in the sense of distributions.
Corollary (5.10). If m1 ≥ m2 ≥ 0 and η1 = φm1 , η2 = φm2 , then

D(Aη1) ⊂ D(Aη2), Aη1f = Aη2f for f ∈ D(Aη1), T η1
z f = T η2

z f for f ∈ Hη1 ,
where T ηj

z is the holomorphic semigroup generated by Aηj , j = 1, 2.

Proposition (5.11). For every weight η = φm and every positive integer
N the operator (Aη)N is the closure of LN considered in C∞c (G) in Hη

topology.

P r o o f. Since LN is a Rockland operator we can associate with LN a
family of semigroups defined by appropriate forms (cf. (5.5)). So the proof
of Proposition (5.11) will be complete if we show that our assertion holds
for N = 1. For m1>m put η1 =φm1 . Let λ> 0 be such that λ Id+Aη and
λ Id+Aη1 are invertible in Hη and Hη1 respectively. It suffices to prove that

(5.12) (λ Id +L)(C∞c (G)) is dense in Hη .
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Define

S∞η1
= {f ∈ Hη1 : XIf ∈ Hη1} ⊂ S∞η = {f ∈ Hη : XIf ∈ Hη} .

First we show that

(5.13) (λ Id +L)(S∞η ) is dense in Hη .

Let f ∈ C∞c (G). By Corollary (5.10), g = (λ Id +Aη1)−1f = (λ Id +Aη)−1f
∈ Hη1 ⊂ Hη. Moreover, Y Ig = (λ Id +Aη1)−1Y If ∈ Hη1 . Since XI =∑

‖J‖≤‖I‖ wJY
J , where wJ are polynomials (cf. [FS, p. 26]), we see that

XIg ∈ Hη, and consequently g ∈ S∞η . Hence (5.13) is proved.
For f ∈ S∞η put fn(x) = f(x)γn(x) ∈ C∞c (G), where γn(x) = γ(δn−1x),

γ ∈ C∞c (G), γ ≡ 1 in a neighborhood of 0. Clearly, by the Leibniz formula
and the Lebesgue Convergence Theorem

lim
n→∞

(‖f − fn‖η + ‖Lf − Lfn‖η) = 0 ,

which ends the proof of (5.12).

Corollary (5.14). For every z with Re z > 0, and every left-invariant
differential operator ∂ there is a constant Cη,z such that

(5.15) ‖(∂T η
z f)

√
η‖L∞ ≤ Cη,z‖f‖η for f ∈ Hη .

P r o o f. Let f ∈ Hη. Since T η
z is holomorphic, we obtain T η

z f ∈⋂
nD((Aη)n) and ‖(Aη)nT η

z f‖η ≤ C‖f‖η. Using (2.8), (5.11), (1.1), and
Sobolev estimates, we get (5.15).

P r o o f o f T h e o r e m (1.3). For the fact that the semigroup is holomor-
phic on weighted Hilbert spaces in the sector ∆π/2 see Theorem (5.8) and
Lemma (2.7).

By the spectral theorem, Proposition (5.11) and estimates (1.1), for every
left-invariant differential operator ∂ and every z with Re z > 0, there are
constants M, C such that

‖∂Tzf‖L2 ≤ C‖(Id +L)MT2f‖L2(5.16)

≤ C
∥∥∥ ∞∫

0

(1 + λ)Me−zλ dEL̄(λ)f
∥∥∥

L2
≤ C‖f‖L2 ,

where EL̄ is the spectral resolution for L.
Using Sobolev estimates, we have

(5.17) |Tzf(0)| ≤ C‖f‖L2 .

Since Tz commutes with left translations, we deduce from (5.17) that there
is a function pz ∈ L2(G) such that

Tzf = f ∗ pz .



230 J. DZIUBAŃSKI

Note that for t > 0, pt is real and symmetric. By virtue of Corollary (5.14)
the proof of our theorem will be completed if we show that pt ∈ Hη for every
η = φm.

Let Γ and ψ be as in Lemma (2.9). Fix η = φm, η1 = φ2m+2. Note that
pt = pt/2 ∗ pt/2 ∈ L∞(G). Hence there is a constant C0 such that for every
b ∈ Γ

(5.18) ‖ψ2λb−1pt‖η1 ≤ C0 .

By (5.15) we get∣∣∣ ∫ (ψ2
bpt)(x)pt(x) dx

∣∣∣ η(b) = |T η1
t (ψ2

bpt)(0)| η(b)(5.19)

= |T η1
t (ψ2λb−1pt)(b)| η(b)

≤ Cη1,tC0φ
−1(b) .

Now by Lemma (2.8), Corollary (2.11), and (5.19) we obtain∫
|pt(x)|2η(x) dx ≤

∑
b∈Γ

∫
(ptψ

2
b )(x)pt(x)η(x) dx

≤ CC0

∑
b∈Γ

( ∫
(pt · ψ2

b )(x)pt(x) dx
)
η(b)

≤ C
∑
b∈Γ

φ−1(b) <∞ ,

which completes the proof.
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