
COLLOQU IUM MATHEMAT ICUM
VOL. LXIV 1993 FASC. 2

ON VECTOR-VALUED INEQUALITIES FOR SIDON SETS
AND SETS OF INTERPOLATION

BY

N. J. K A L T O N (COLUMBIA, MISSOURI)

Let E be a Sidon subset of the integers and suppose X is a Banach
space. Then Pisier has shown that E-spectral polynomials with values in
X behave like Rademacher sums with respect to Lp-norms. We consider
the situation when X is a quasi-Banach space. For general quasi-Banach
spaces we show that a similar result holds if and only if E is a set of interpo-
lation (I0-set). However, for certain special classes of quasi-Banach spaces
we are able to prove such a result for larger sets. Thus if X is restricted
to be “natural” then the result holds for all Sidon sets. We also consider
spaces with plurisubharmonic norms and introduce the class of analytic
Sidon sets.

1. Introduction. Suppose G is a compact abelian group. We denote
by µG normalized Haar measure on G and by Γ the dual group of G. We
recall that a subset E of Γ is called a Sidon set if there is a constant M
such that for every finitely nonzero map a : E → C we have∑

γ∈E

|a(γ)| ≤ M max
g∈G

∣∣∣∑
γ∈E

a(γ)γ(g)
∣∣∣ .

We define ∆ to be the Cantor group, i.e. ∆ = {±1}N. If t ∈ ∆
we denote by εn(t) the nth coordinate of t. The sequence (εn) is an ex-
ample of a Sidon set. Of course the sequence (εn) is a model for the
Rademacher functions on [0, 1]. Similarly we denote the coordinate maps
on TN by ηn.

Suppose now that G is a compact abelian group. If X is a Banach
space, or more generally a quasi-Banach space with a continuous quasinorm
and φ : G → X is a Borel map we define ‖φ‖p for 0 < p ≤ ∞ to be
the Lp-norm of φ, i.e. ‖φ‖p = (

∫
G
‖φ(g)‖p dµG(g))1/p if 0 < p < ∞ and

‖φ‖∞ = ess supg∈G ‖φ(g)‖.
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It is a theorem of Pisier [12] that if E is a Sidon set then there is a
constant M so that for every subset {γ1, . . . , γn} of E, every x1, . . . , xn

chosen from a Banach space X and every 1 ≤ p ≤ ∞ we have

(∗) M−1
∥∥∥ n∑

k=1

xkεk

∥∥∥
p
≤

∥∥∥ n∑
k=1

xkγk

∥∥∥
p
≤ M

∥∥∥ n∑
k=1

xkεk

∥∥∥
p
.

Thus a Sidon set behaves like the Rademacher sequence for Banach space
valued functions. The result can be similarly stated for (ηn) in place of
(εn). Recently Asmar and Montgomery-Smith [1] have taken Pisier’s ideas
further by establishing distributional inequalities in the same spirit.

It is natural to ask whether Pisier’s inequalities can be extended to ar-
bitrary quasi-Banach spaces. This question was suggested to the author
by Asmar and Montgomery-Smith. For convenience we suppose that every
quasi-Banach space is r-normed for some r < 1, i.e. the quasinorm satisfies
‖x+y‖r ≤ ‖x‖r +‖y‖r for all x, y; an r-norm is necessarily continuous. We
can then ask, for fixed 0 < p ≤ ∞, for which sets E inequality (∗) holds,
if we restrict X to belong to some class of quasi-Banach spaces, for some
constant M = M(E,X).

It turns out Pisier’s results do not in general extend to the non-locally
convex case. In fact, we show that if we fix r < 1 and ask that a set E
satisfies (∗) for some fixed p and every r-normable quasi-Banach space X
then this condition precisely characterizes sets of interpolation as studied in
[2]–[5], [8], [9], [13] and [14]. We recall that E is called a set of interpolation
(set of type (I0)) if it has the property that every f ∈ `∞(E) (the collection
of all bounded complex functions on E) can be extended to a continuous
function on the Bohr compactification bΓ of Γ .

However, in spite of this result, there are specific classes of quasi-Banach
spaces for which (∗) holds for a larger class of sets E. If we restrict X to
be a natural quasi-Banach space then (∗) holds for all Sidon sets E. Here a
quasi-Banach space is called natural if it is linearly isomorphic to a closed
linear subspace of a (complex) quasi-Banach lattice Y which is q-convex for
some q > 0, i.e. such that for a suitable constant C we have∥∥∥( n∑

k=1

|yk|q
)1/q∥∥∥ ≤ C

( n∑
k=1

‖yk‖q
)1/q

for every y1, . . . , yn ∈ Y . Natural quasi-Banach spaces form a fairly broad
class including almost all function spaces which arise in analysis. The reader
is referred to [6] for a discussion of examples. Notice that, of course, the
spaces Lq for q < 1 are natural so that, in particular, (∗) holds for all p and
all Sidon sets E for every 0 < p ≤ ∞. The case p = q here would be a direct
consequence of Fubini’s theorem, but the other cases, including p = ∞, are
less obvious.
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A quasi-Banach lattice X is natural if and only if it is A-convex, i.e.
it has an equivalent plurisubharmonic quasi-norm. Here a quasinorm is
plurisubharmonic if it satisfies

‖x‖ ≤
2π∫

0

‖x + eiθy‖ dθ

2π

for every x, y ∈ X. There are examples of A-convex spaces which are not
natural, namely the Schatten ideals Sp for p < 1 [7]. Of course, it follows
that Sp cannot be embedded in any quasi-Banach lattice which is A-convex
when 0 < p < 1. Thus we may ask for what sets E (∗) holds for every
A-convex space. Here, we are unable to give a precise characterization of
the sets E such that (∗) holds. In fact, we define E to be an analytic Sidon
set if (∗) holds, for p = ∞ (or, equivalently for any other 0 < p < ∞),
for every A-convex quasi-Banach space X. We show that any finite union
of Hadamard sequences in N ⊂ Z is an analytic Sidon set. In particular,
a set such as {3n} ∪ {3n + n} is an analytic Sidon set but not a set of
interpolation. However, we have no example of a Sidon set which is not an
analytic Sidon set.

We would like to thank Nakhlé Asmar, Stephen Montgomery-Smith and
David Grow for their helpful comments on the content of this paper.

2. The results. Suppose G is a compact abelian group and Γ is its
dual group. Let E be a subset of Γ . Suppose X is a quasi-Banach space
and that 0 < p ≤ ∞; then we will say that E has property Cp(X) if there
is a constant M such that for any finite subset {γ1, . . . , γn} of E and any
x1, . . . , xn of X we have (∗), i.e.

M−1
∥∥∥ n∑

k=1

xkεk

∥∥∥
p
≤

∥∥∥ n∑
k=1

xkγk

∥∥∥
p
≤ M

∥∥∥ n∑
k=1

xkεk

∥∥∥
p
.

(Note that in contrast to Pisier’s result (∗), we here assume p fixed.) We
start by observing that E is a Sidon set if and only if E has property C∞(C).
It follows from the results of Pisier [12] that a Sidon set has property Cp(X)
for every Banach space X and for every 0 < p < ∞. See also Asmar and
Montgomery-Smith [1] and Pe lczyński [11].

Note that for any t ∈ ∆ we have ‖
∑

εk(t)xkεk‖p = ‖
∑

xkεk‖p. Now
any real sequence (a1, . . . , an) with max |ak| ≤ 1 can be written in the form
ak =

∑∞
j=1 2−jεk(tj) and it follows quickly by taking real and imaginary

parts that there is a constant C = C(r, p) so that for any complex a1, . . . , an

and any r-normed space X we have∥∥∥ n∑
k=1

akxkεk

∥∥∥
p
≤ C‖a‖∞

∥∥∥ n∑
k=1

xkεk

∥∥∥
p
.
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From this it follows quickly that ‖
∑n

k=1 xkηk‖p is equivalent to
‖

∑n
k=1 xkεk‖p. In particular, we can replace εk by ηk in the definition

of property Cp(X).
We note that if E has property Cp(X) then it is immediate that E has

property Cp(`p(X)) and further that E has property Cp(Y ) for any quasi-
Banach space finitely representable in X (or, of course, in `p(X)).

For a fixed quasi-Banach space X and a fixed subset E of Γ we let PE(X)
denote the space of X-valued E-polynomials, i.e. functions φ : G → X of
the form φ =

∑
γ∈E x(γ)γ where x(γ) is only finitely nonzero. If f ∈ `∞(E)

we define Tf : PE(X) → PE(X) by

Tf

( ∑
x(γ)γ

)
=

∑
f(γ)x(γ)γ .

We then define ‖f‖Mp(E,X) to be the operator norm of Tf on PE(X) for
the Lp-norm (and to be ∞ if this operator is unbounded).

Lemma 1. In order that E has property Cp(X) it is necessary and suffi-
cient that there exists a constant C such that

‖f‖Mp(E,X) ≤ C‖f‖∞ for all f ∈ `∞(E) .

P r o o f. If E has property Cp(X) then it also satisfies (∗) for (ηn) in
place of (εn) for a suitable constant M . Thus if f ∈ `∞(E) and φ ∈ PE(X)
then

‖Tfφ‖p ≤ M2‖f‖∞‖φ‖p .

For the converse direction, we consider the case p < ∞. Suppose {γ1, . . .
. . . , γn} is a finite subset of E. Then for any x1, . . . , xn

C−p
∫

TN

∥∥∥ n∑
k=1

xkηk

∥∥∥p

dµTN = C−p
∫

TN

∫
G

∥∥∥ n∑
k=1

xkηk(s)γk(t)
∥∥∥p

dµTN(s) dµG(t)

≤
∫
G

∥∥∥ n∑
k=1

xkγk

∥∥∥p

dµG

≤ Cp
∫

TN

∫
G

∥∥∥ n∑
k=1

xkηk(s)γk(t)
∥∥∥p

dµTN(s) dµG(t)

≤ Cp
∫

TN

∥∥∥ n∑
k=1

xkηk

∥∥∥p

dµTN .

This estimate together with a similar estimate in the opposite direction gives
the conclusion. The case p = ∞ is similar.

If E is a subset of Γ , N ∈ N and δ > 0 we let AP (E,N, δ) be the set
of f ∈ `∞(E) such that there exist g1, . . . , gN ∈ G (not necessarily distinct)
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and α1, . . . , αN ∈ C with max1≤j≤N |αj | ≤ 1 and∣∣∣f(γ)−
N∑

j=1

αjγ(gj)
∣∣∣ ≤ δ

for γ ∈ E.
The following theorem improves slightly on results of Kahane [5] and

Méla [8]. Perhaps also, our approach is slightly more direct. We write
B`∞(E)

= {f ∈ `∞(E) : ‖f‖∞ ≤ 1}.
Theorem 2. Let G be a compact abelian group and let Γ be its dual

group. Suppose E is a subset of Γ . Then the following conditions on E are
equivalent :

(1) E is a set of interpolation.
(2) There exists an integer N so that B`∞(E) ⊂ AP (E,N, 1/2).
(3) There exists M and 0 < δ < 1 so that if f ∈ B`∞(E) then there exist

complex numbers (cj)∞j=1 with |cj | ≤ Mδj and (gj)∞j=1 in G with

f(γ) =
∞∑

j=1

cjγ(gj)

for γ ∈ E.

P r o o f. (1)⇒(2). It follows from the Stone–Weierstrass theorem that

TE ⊂
∞⋃

m=1

AP (E,m, 1/5) .

Let µ = µTE . Since each AP (E,m, 1/5) ∩ TE is closed it is clear that there
exists m so that µ(AP (E,m, 1/5)∩TE) > 1/2. Thus if f ∈ TE we can find
f1, f2 ∈ AP (E,m, 1/5) ∩ TE so that f = f1f2. Hence f ∈ AP (E,m2, 1/2).
This clearly implies (2) with N = 2m2.

(2)⇒(3). We let δ = 2−1/N and M = 2. Then given f ∈ B`∞(E) we can
find (cj)N

j=1 and (gj)N
j=1 with |cj | ≤ 1 ≤ Mδj and∣∣∣f(γ)−

N∑
j=1

cjγ(gj)
∣∣∣ ≤ 1/2

for γ ∈ E. Let f1(γ) = 2(f(γ)−
∑N

j=1 cjγ(gj)) and iterate the argument.
(3)⇒(1). Obvious.

Theorem 3. Suppose G is a compact abelian group, E is a subset of
the dual group Γ and that 0 < r < 1, 0 < p ≤ ∞. In order that E
satisfies Cp(X) for every r-normable quasi-Banach space X it is necessary
and sufficient that E be a set of interpolation.
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P r o o f. First suppose that E is a set of interpolation so that it satisfies
(3) of Theorem 2. Suppose X is an r-normed quasi-Banach space. Suppose
f ∈ B`∞(E). Then there exist (cj)∞j=1 and (gj)∞j=1 so that |cj | ≤ Mδj and
f(γ) =

∑
cjγ(gj) for γ ∈ E. Now if φ ∈ PE(X) it follows that

Tfφ(h) =
∞∑

j=1

cjφ(gjh)

and so

‖Tfφ‖p ≤ M
( ∞∑

j=1

δjs
)1/s

‖φ‖p

where s = min(p, r). Thus ‖f‖Mp(E,X) ≤ C where C = C(p, r, E) and so
by Lemma 1, E has property Cp(X).

Now, conversely, suppose that 0 < r < 1, 0 < p ≤ ∞ and that E has
property Cp(X) for every r-normable space X. It follows from consideration
of `∞-products that there exists a constant C so that for every r-normed
space X we have ‖f‖Mp(E,X) ≤ C‖f‖∞ for f ∈ `∞(E).

Suppose F is a finite subset of E. We define an r-norm ‖ ‖A on `∞(F ) by
setting ‖f‖A to be the infimum of (

∑
|cj |r)1/r over all (cj)∞j=1 and (gj)∞j=1

such that

f(γ) =
∞∑

j=1

cjγ(gj)

for γ ∈ F . Notice that ‖f1f2‖A ≤ ‖f1‖A‖f2‖A for all f1, f2 ∈ A = `∞(F ).
For γ ∈ F let eγ be defined by eγ(γ) = 1 if γ = χ and 0 otherwise. Then

for f ∈ A, with ‖f‖∞ ≤ 1,( ∫
G

∥∥∥ ∑
γ∈F

f(γ)eγγ
∥∥∥p

A
dµG

)1/p

≤ C
( ∫

G

∥∥∥ ∑
γ∈F

eγγ
∥∥∥p

A
dµG

)1/p

.

But for any g ∈ G, ‖
∑

γ(g)eγ‖A ≤ 1. Define H to be the subset of h ∈ G
such that ‖

∑
γ∈F f(γ)γ(h)eγ‖A ≤ 31/pC. Then µG(H) ≥ 2/3. Thus there

exist h1, h2 ∈ H such that h1h2 = 1 (the identity in G). Hence by the
algebra property of the norm

‖f‖A ≤ 32/pC2

and so if we fix an integer C0 > 32/pC2 we can find cj and gj so that∑
|cj |r ≤ Cr

0 and

f(γ) =
∑

cjγ(gj)

for γ ∈ F . We can suppose |cj | is decreasing and hence that |cj | ≤ C0j
−1/r.
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Choose N0 so that C0

∑∞
j=N0+1 j−1/r ≤ 1/2. Thus∣∣∣f(γ)−

N0∑
j=1

cjγ(gj)
∣∣∣ ≤ 1/2

for γ ∈ F . Since each |cj | ≤ C0 this implies that B`∞(F ) ⊂ AP (F,N, 1/2)
where N = C0N0.

As this holds for every finite set F it follows by an easy compactness
argument that B`∞(E) ⊂ AP (E,N, 1/2) and so by Theorem 2, E is a set of
interpolation.

Theorem 4. Let X be a natural quasi-Banach space and suppose 0 <
p ≤ ∞. Then any Sidon set has property Cp(X).

P r o o f. Suppose E is a Sidon set. Then there is a constant C0 so
that if f ∈ `∞(E) then there exists ν ∈ C(G)∗ such that µ̂(γ) = f(γ) for
γ ∈ E and ‖µ‖ ≤ C0‖f‖∞. We will show the existence of a constant C such
that ‖f‖Mp(E,X) ≤ C‖f‖∞. If no such constant exists then we may find a
sequence En of finite subsets of E such that lim Cn = ∞ where Cn is the
least constant such that ‖f‖Mp(En,X) ≤ Cn‖f‖∞ for all f ∈ `∞(En).

Now the spaces Mp(En, X) are each isometric to a subspace of
`∞(Lp(G, X)) and hence so is Y = c0(Mp(En, X)). In particular, Y is
natural. Notice that Y has a finite-dimensional Schauder decomposition.
We will calculate the Banach envelope Yc of Y . Clearly Yc = c0(Yn) where
Yn is the finite-dimensional space Mp(En, X) equipped with its envelope
norm ‖f‖c.

Suppose f ∈ `∞(En). Then clearly ‖f‖∞ ≤ ‖f‖Mp(E,X) and so ‖f‖∞ ≤
‖f‖c. Conversely, if f ∈ `∞(En) there exists ν ∈ C(G)∗ with ‖ν‖ ≤ C0‖f‖∞
and such that

∫
γ dν = f(γ) for γ ∈ En. In particular, C−1

0 ‖f‖−1
∞ f is in

the absolutely closed convex hull of the set of functions {g̃ : g ∈ G} where
g̃(γ) = γ(g) for γ ∈ En. Since ‖g̃‖Mp(E,X) = 1 for all g ∈ G we see that
‖f‖∞ ≤ ‖f‖c ≤ C0‖f‖∞.

This implies that Yc is isomorphic to c0. Since Y has a finite-dimensional
Schauder decomposition and is natural we can apply Theorem 3.4 of [6] to
deduce that Y = Yc is already locally convex. Thus there is a constant C ′

0

independent of n so that ‖f‖Mp(E,X) ≤ C ′
0‖f‖∞ whenever f ∈ `∞(En).

This contradicts the choice of En and proves the theorem.

We now consider the case of A-convex quasi-Banach spaces. For this
notion we will introduce the concept of an analytic Sidon set. We say a
subset E of Γ is an analytic Sidon set if E satisfies C∞(X) for every A-
convex quasi-Banach space X.

Proposition 5. Suppose 0 < p < ∞. Then E is an analytic Sidon set
if and only if E satisfies Cp(X) for every A-convex quasi-Banach space X.
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P r o o f. Suppose first E is an analytic Sidon set, and that X is an A-
convex quasi-Banach space (for which we assume the quasinorm is plurisub-
harmonic). Then Lp(G, X) also has a plurisubharmonic quasinorm and
so E satisfies (∗) for X replaced by Lp(G, X) and p replaced by ∞ with
constant M . Now suppose x1, . . . , xn ∈ X and γ1, . . . , γn ∈ E. Define
y1, . . . , yn ∈ Lp(G, X) by yk(g) = γk(g)xk. Then

max
g∈G

∥∥∥ n∑
k=1

ykγk(g)
∥∥∥

Lp(G,X)
=

∥∥∥ n∑
k=1

xkγk

∥∥∥
p

and a similar statement holds for the characters εk on the Cantor group. It
follows quickly that E satisfies (∗) for p and X with constant M .

For the converse direction suppose E satisfies Cp(X) for every A-convex
space X. Suppose X has a plurisubharmonic quasinorm. We show that
M∞(E,X) = `∞(E). In fact, M∞(F,X) can be isometrically embedded
in `∞(X) for every finite subset F of E. Thus (∗) holds for X replaced by
M∞(F,X) for some constant M , independent of F . Denoting by eγ the
canonical basis vectors in `∞(E) we see that if F = {γ1, . . . , γn} ⊂ E then( ∫

∆

∥∥∥ n∑
k=1

εk(t)eγk

∥∥∥p

M∞(F,X)
dµ∆(t)

)1/p

≤ M max
g∈G

∥∥∥ n∑
k=1

γk(g)eγk

∥∥∥
M∞(F,X)

= M .

Thus the set K of t ∈ ∆ such that ‖
∑n

k=1 εk(t)eγk
‖M∞(F,X) ≤ 31/pM

has measure at least 2/3. Arguing that K ·K = ∆ we obtain∥∥∥ n∑
k=1

εk(t)eγk

∥∥∥
M∞(F,X)

≤ 32/pM2

for every t ∈ ∆. It follows quite simply that there is a constant C so that
for every real-valued f ∈ `∞(F ) we have ‖f‖M∞(E,X) ≤ C‖f‖∞. In fact,
this is proved by writing each such f with ‖f‖∞ = 1 in the form f(γk) =∑∞

j=1 2−jεk(tj) for a suitable sequence tj ∈ ∆. A similar estimate for com-
plex f follows by estimating real and imaginary parts. Finally, since these
estimates are independent of F we conclude that `∞(E) = M∞(E,X).

Of course any set of interpolation is an analytic Sidon set and any an-
alytic Sidon set is a Sidon set. The next theorem will show that not every
analytic Sidon set is a set of interpolation. If we take G = T and Γ = Z,
we recall that a Hadamard gap sequence is a sequence (λk)∞k=1 of positive
integers such that for some q > 1 we have λk+1/λk ≥ q for k ≥ 1. It is
shown in [10] and [14] that a Hadamard gap sequence is a set of interpo-
lation. However, the union of two such sequences may fail to be a set of
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interpolation; for example (3n)∞n=1∪(3n +n)∞n=1 is not a set of interpolation,
since the closures of (3n) and (3n + n) in bZ are not disjoint.

Theorem 6. Let G = T so that Γ = Z. Suppose E ⊂ N is a finite union
of Hadamard gap sequences. Then E is an analytic Sidon set.

P r o o f. Suppose E = (λk)∞k=1 where (λk) is increasing. We start with
the observation that E is the union of m Hadamard sequences if and only
if there exists q > 1 so that λm+k ≥ qmλk for every k ≥ 1.

We will prove the theorem by induction on m. Note first that if m = 1
then E is a Hadamard sequence and hence [14] a set of interpolation. Thus
by Theorem 2 above, E is an analytic Sidon set.

Suppose now that E is the union of m Hadamard sequences and that the
theorem is proved for all unions of l Hadamard sequences where l < m. We
assume that E = (λk) and that there exists q > 1 such that λk+m ≥ qmλk

for k ≥ 1. We first decompose E into at most m Hadamard sequences.
To do this let us define E1 = {λ1} ∪ {λk : k ≥ 2, λk ≥ qλk−1}. We will
write E1 = (τk)k≥1 where τk is increasing. Of course E1 is a Hadamard
sequence.

For each k let Dk =E∩[τk, τk+1). It is easy to see that |Dk|≤m for every
k. Further, if nk ∈Dk then nk+1≥ τk+1≥ qnk so that (nk) is a Hadamard
sequence. In particular, E2 =E \E1 is the union of at most m−1 Hadamard
sequences and so E2 is an analytic Sidon set by the inductive hypothesis.

Now suppose w ∈ T. We define fw ∈ `∞(E) by fw(n) = wn−τk for
n ∈ Dk. We will show that fw is uniformly continuous for the Bohr topology
on Z; equivalently we show that fw extends to a continuous function on the
closure Ẽ of E in the Bohr compactification bZ of Z. Indeed, if this is not
the case there exists ξ ∈ Ẽ and ultrafilters U0 and U1 on E both converging
to ξ so that limn∈U0 fw(n) = ζ0 and limn∈U1 fw(n) = ζ1 where ζ1 6= ζ0. We
will let δ = 1

3 |ζ1 − ζ0|.
We can partition E into m sets A1, . . . , Am so that |Aj ∩ Dk| ≤ 1 for

each k. Clearly U0 and U1 each contain exactly one of these sets. Let us
suppose Aj0 ∈ U0 and Aj1 ∈ U1.

Next define two ultrafilters V0 and V1 on N by V0 = {V :
⋃

k∈V Dk ∈ U0}
and V1 = {V :

⋃
k∈V Dk ∈ U1}. We argue that V0 and V1 coincide. If not

we can pick V ∈ V0 \ V1. Consider the set A = (Aj0 ∩
⋃

k∈V Dk) ∪ (Aj1 ∩⋃
k 6∈V Dk). Then A is a Hadamard sequence and hence a set of interpolation.

Thus for the Bohr topology the sets Aj0 ∩
⋃

k∈V Dk and Aj1 ∩
⋃

k 6∈V Dk have
disjoint closures. This is a contradiction since of course ξ must be in the
closure of each. Thus V0 = V1.

Since both U0 and U1 converge to the same limit for the Bohr topology
we can find sets H0 ∈ U0 and H1 ∈ U1 so that if n0 ∈ H0, n1 ∈ H1 then
|wn1 − wn0 | < δ and further |fw(n0)− ζ0| < δ and |fw(n1)− ζ1| < δ.
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Let V0 = {k ∈ N : Dk ∩H0 6= ∅} and V1 = {k ∈ N : Dk ∩H1 6= ∅}. Then
V0 ∈ V0 and V1 ∈ V1. Thus V = V0 ∩ V1 ∈ V0 = V1. If k ∈ V there exists
n0 ∈ Dk ∩H0 and n1 ∈ Dk ∩H1. Then

3δ = |ζ1 − ζ0| < |fw(n1)− fw(n0)|+ 2δ

= |wn1 − wn0 |+ 2δ < 3δ .

This contradiction shows that each fw is uniformly continuous for the Bohr
topology.

Now suppose that X is an r-normed A-convex quasi-Banach space where
the quasi-norm is plurisubharmonic. Since both E1 and E2 are analytic
Sidon sets we can introduce a constant C so that if f ∈`∞(Ej) where j =1, 2
then ‖f‖M∞(Ej ,X)≤C‖f‖∞. Pick a constant 0< δ< 1 so that 3·41/rδ<C.

Let Kl = {w ∈ T : fw ∈ AP (E, l, δ)}. It is easy to see that each Kl is
closed and since each fw is uniformly continuous by the Bohr topology it
follows from the Stone–Weierstrass theorem that

⋃
Kl = T. If we pick l0 so

that µT(Kl0) > 1/2 then Kl0Kl0 = T and hence, since the map w → fw is
multiplicative, fw ∈ AP (E, l20, 3δ) for every w ∈ T.

Let F be an arbitrary finite subset of E. Then there is a least constant
β so that ‖f‖M∞(F,X) ≤ β‖f‖∞. The proof is completed by establishing a
uniform bound on β.

For w ∈ T we can find cj with |cj | ≤ 1 and ζj ∈ T for 1 ≤ j ≤ l20 such
that ∣∣∣fw(n)−

l20∑
j=1

cjζ
n
j

∣∣∣ ≤ 3δ

for n ∈ E. If ζ̃j is defined by ζ̃j(n) = ζn
j then of course ‖ζ̃j‖M∞(E,X) = 1.

Restricting to F we see that

‖fw‖r
M∞(F,X) ≤ l20 + βr(3δ)r .

Define H : C → M∞(F,X) by H(z)(n) = zn−τk if n ∈ Dk. Note that
H is a polynomial. As in Theorem 5, M∞(F,X) has a plurisubharmonic
norm. Hence

‖H(0)‖r ≤ max
|w|=1

‖H(w)‖r ≤ l20 + (3δ)rβr .

Thus, if χA is the characteristic function of A,

‖χE1∩F ‖r
M∞(F,X) ≤ l20 + (3δ)rβr .

It follows that
‖χE2∩F ‖r

M∞(F,X) ≤ l20 + (3δ)rβr + 1 .

Now suppose f ∈ `∞(F ) and ‖f‖∞ ≤ 1. Then

‖fχEj∩F ‖M∞(F,X) ≤ ‖fχEj∩F ‖M∞(Ej∩F,X)‖χEj∩F ‖M∞(F,X)
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for j = 1, 2. Thus

‖f‖r
M∞(F,X) ≤ Cr(1 + 2l20 + 2(3δ)rβr) .

By maximizing over all f this implies

βr ≤ Cr(1 + 2l20 + 2(3δ)rβr) ,

which gives an estimate

βr ≤ 2Cr(1 + 2l20)

in view of the original choice of δ. This estimate, which is independent of
F , implies that E is an analytic Sidon set.

R e m a r k. We know of no example of a Sidon set which is not an analytic
Sidon set.

Added in proof. In a forthcoming paper with S. C. Tam (Factorization theorems
for quasi-normed spaces) we show that Theorem 4 holds for a much wider class of spaces.
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