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ON THE PRODUCT DOMAINS

BY

LUNG-KEE CHEN (CORVALLIS, OREGON)

I. Introduction. The theory of singular integrals on product domains
has been studied by several authors, e.g. [2], [3], [6], [7]. One of its applica-
tions is to the problem of almost everywhere convergence of double Fourier
series (see [5]). For example, let f be in Lp([−π, π] × [−π, π]), p > 1, and
let

SM,M2f(x, y) =
∑

|n|≤M, |m|≤M2

an,me
i(nx+my)

be a partial sum of its Fourier series. Define a singular integral with highly
oscillatory kernel,

L1f(x, y) =
π∫

−π

π∫
−π

ei(N(x,y)x′+N2(x,y)y′)

x′y′
f(x− x′, y − y′) dx′ dy′ ,

where N(x, y) is any real-valued measurable function on R2.
To show the convergence of the partial sums SM,M2f , it suffices to show

the boundedness of the above singular integral L1f , i.e. to show that there
exists a constant Cp, depending only on p, such that

‖L1f‖p ≤ Cp‖f‖p .

Here, we should remark that the convergence of SM,M2 has been proved by
C. Fefferman [1] if p ≥ 2.

Let us look at two special cases of the operator L1f . Suppose the function
N(x, y) is in C1(R2) and there exist three “large” positive constants A, B, C
such that A/2 ≤ N(x, y) ≤ A, B/2 ≤ ∂xN ≤ B and C/2 ≤ ∂yN ≤ C. This
case leads to the study of the singular integral with oscillating kernel (for
more details, see [5])

L2f(x, y) =
π∫

−π

π∫
−π

eiN(y)x′

x′y′
f(x− x′, y − y′) dx′ dy′ .
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This operator is easily seen to be the double Hilbert transform. On the
other hand [5], the case N(x, y) = λxyβ where λ is a large number, β ≥ 1,
leads us to consider a more general singular integral with variable integration
domains, {Dy}y∈R,

L3f(x, y) =
∫∫

(x′,y′)∈Dy

1
x′y′

f(x− x′, y − y′) dx′ dy′ ,

where Dy is a region symmetrical with respect to the x′ and y′ axes (the
definition of Dy will be given later).

The motivations for our research stem basically from those two operators
L2f and L3f . In this paper, we would like to consider the boundedness of
a singular integral with oscillating kernel and variable integration domains
on a product domain.

Throughout this paper, we suppose f(x, y) ∈ Lp(R2) ∩ C∞
0 (R2). For

each y ∈ R, let f̂(ξ, y) denote the Fourier transform of f with respect to the
first variable. Let ‖f(x, y)‖Lp(x) and ‖f(x, y)‖Lp(y) denote the Lp norms in
the first and second variable, respectively, and let ‖f(x, y)‖Lp(x,y) be the
usual Lp(R2) norm. C will denote some constants which may depend on p
and may change at different occurrences.

Let

Tf(x, y) = p.v.
∫∫
Dy

eiN(y)x′

x′y′
f(x− x′, y − y′) dy′ dx′

and consider the associated maximal singular integral

T ∗f(x, y) = sup
ε>0

∣∣∣∣ ∫∫
Dy, |x′|>ε

eiN(y)x′

x′y′
f(x− x′, y − y′) dy′ dx′

∣∣∣∣ ,
where N is any real-valued measurable function defined on R and the defi-
nition of the domains {Dy}y∈R is given below.

For any two fixed numbers, a > 1, b > 1, take two non-negative smooth
functions ψ and φ with compact supports in {1/a < r < a2} and {1/b <
r < b2}, respectively, such that∑

h∈Z
ψ(ahr) =

∑
k∈Z

φ(bkr) = 1

for all r > 0. Let δ be a measurable function from Z×R to R+, i.e. δ(h, y) ≥
0, h ∈ Z, y ∈ R. Define a family of measurable sets {Dy}y∈R by

Dy =
{

(x′, y′) ∈ R2
∣∣∣ ∑
(h,k)∈By

ψ(ah|x′|)φ(bk|y′|) 6= 0
}

where By = {(h, k) | b−k ≤ δ(h, y)}.
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Theorem. For every measurable function N(y) and the family of mea-
surable sets {Dy}y∈R, 1 < p <∞, there exists a constant Cp independent of
f such that

(i) ‖Tf‖p ≤ Cp‖f‖p,
(ii) ‖T ∗f‖p ≤ Cp‖f‖p.

In the p = 2 case, those operators have been studied by E. Prestini
(see [7]).

II. Proof of Theorem. We need only show (i), since (ii) then follows
from

Lemma [7]. Under the hypotheses of the Theorem, there exists a constant
C such that

T ∗f(x, y) ≤ C{MxH
M
y f(x, y) +MxTf(x, y)}

where Mx denotes the classical Hardy–Littlewood maximal operator acting
on x and HM

y denotes the associated maximal Hilbert transform acting on
y, i.e.

Mxf(x, y) = sup
ε>0

1
ε

∫
|x′|<ε

|f(x− x′, y)| dx′

and

HM
y f(x, y) = sup

ε>0

∣∣∣∣ ∫
|y′|>ε

f(x, y − y′)
dy′

y′

∣∣∣∣ .
Without loss of generality, one assumes a = b = 2. Then

Tf(x, y) =
∫∫ ∑

(h,k)∈By

eiN(y)x′ ψ(2h|x′|)
x′

φ(2k|y′|)
y′

f(x− x′, y − y′) dy′ dx′

≡
∫∫ ∑

(h,k)∈By

eiN(y)x′Ψh(x′)Φk(y′)f(x− x′, y − y′) dy′ dx′

=
∫
R

∑
h∈Z

eiN(y)x′Ψh(x′)
∫
R

∑
2−k≤δ(h,y)

Φk(y′)f(x− x′, y − y′) dy′ dx′,

where

Ψh(x′) =
ψ(2h|x′|)

x′
, Φk(y′) =

φ(2k|y′|)
y′

.

R e m a r k 1. Clearly, Ψh and Φk have the following properties:

(i) Ψ̂h(ξ) = Ψ̂0(ξ/2h),
(ii) Ψ̂h(0) = 0,
(iii) Ψ̂0(ξ) ≤ Cl/|ξ|l for any non-negative integer l,
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(iv) Ψ̂0(ξ) ≤ C|ξ|,
(v) Φ has the same properties (i)–(iv).

Let us make a partition of unity, i.e. take a non-negative function p ∈
C∞

0 (R) with compact support contained in the set {1/4 < |ξ| < 2} such
that

∑
j∈Z p

2(2−j |ξ|) = 1 for all ξ ∈ R, ξ 6= 0. For each y, define partial
sum operators

Ŝjf(ξ, y) = p(2−j |ξ −N(y)|)f̂(ξ, y)
where the Fourier transform acts on the first variable. Obviously, for every
h ∈ Z, ∑

j

S2
j+hf(x, y) ≡

∑
j

Sj+hSj+hf(x, y) = f(x, y) ,

in the sense of L2 convergence. Let

Ŝ+
j g(ξ, y) = p(2−j |ξ|)ĝ(ξ, y) .

Since
Ŝjf(ξ +N(y), y) = p(2−j |ξ|)f̂(ξ +N(y), y)

and
Ŝ2

j f(ξ +N(y), y) = p2(2−j |ξ|)f̂(ξ +N(y), y) ,
one has

Sjf(x, y) = eiN(y)xS+
j (e−iN(y)(·)f(·, y))(x)

= S+
j (eiN(y)xe−iN(y)(·)f(·, y))(x)

and
S2

j f(x, y) = S+
j S

+
j (eiN(y)xe−iN(y)(·)f(·, y))(x) .

Therefore, for each fixed y ∈ R, by the Littlewood–Paley Theorem (see [8]),∥∥∥( ∑
j

|Sjf |2
)1/2∥∥∥

Lp(x)

=
∥∥∥( ∑

j

|S+
j (e−iN(y)(·)f(·, y))|2

)1/2∥∥∥
Lp(x)

≈ ‖f(x, y)‖Lp(x) .

Now, integrating both sides with respect to y, one has

(1)
∥∥∥( ∑

j

|Sjf |2
)1/2∥∥∥

Lp(x,y)

=
∥∥∥( ∑

j

|S+
j (e−iN(y)(·)f(·, y))|2

)1/2∥∥∥
Lp(x,y)

≈ ‖f‖Lp(x,y)

for 1 < p <∞.
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Let us write

Tf(x, y) =
∑

(h,k)∈By

[eiN(y)x′Ψh(x′)Φk(y′)] ∗
( ∑

j

S2
j+hf(x, y)

)
=

∑
(h,k)∈By

[eiN(y)x′Ψh(x′)Φk(y′)]

∗
[ ∑

j

(S+
j+hS

+
j+h(eiN(y)xe−iN(y)(·)f(·, y))(x))

]
=

∑
j

{ ∑
(h,k)∈By

S+
j+h[(eiN(y)x′Ψh(x′)Φk(y′))

∗ (S+
j+h(eiN(y)xe−iN(y)(·)f(·, y))(x))]

}
≡

∑
j

Tjf(x, y) .

We rewrite Tjf(x, y) as∑
h∈Z

S+
j+h

{
(eiN(y)x′Ψh(x′))

∗1

[ ∑
2−k≤δ(h,y)

Φk(y′) ∗2 (S+
j+h(eiN(y)xe−iN(y)(·)f(·, y))(x))

]}
where ∗1 and ∗2 denote the convolution operators acting on the first and
second variables, respectively, and the variable index of the sum

∑
2−k≤δ(h,y)

is k.
By the Littlewood–Paley Theorem, it follows that the Lp(x) norm of

Tjf , ‖Tjf(·, y)‖Lp(x), is dominated by

(2)
∥∥∥[ ∑

h∈Z

∣∣∣(eiN(y)x′Ψh(x′)) ∗1

( ∑
2−k≤δ(h,y)

Φk(y′)

∗2(S+
j+h(eiN(y)xe−iN(y)(·)f(·, y))(x))

)∣∣∣2]1/2∥∥∥
Lp(x)

.

Define

g{y,h,j}(x) =
∑

2−k≤δ(h,y)

Φk(y′) ∗2 (S+
j+h(eiN(y)xe−iN(y)(·)f(·, y))(x))

=
∑

2−k≤δ(h,y)

Φk(y′) ∗2 Sj+hf(x, y) .

Hence, by (2),

(3) ‖Tjf(x, y)‖Lp(x) ≤ C
∥∥∥[ ∑

h∈Z
|(eiN(y)x′Ψh(x′)) ∗1 g{y,h,j}(x)|2

]1/2∥∥∥
Lp(x)

.
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R e m a r k 2. It is clear that

|g{y,h,j}(x)| ≤ sup
l

∣∣∣ ∑
2−k≤l

Φk(y′) ∗2 (S+
j+h(eiN(y)xe−iN(y)(·)f(·, y))(x))

∣∣∣
≤ 2HM

y (S+
j+h(eiN(y)xe−iN(y)(·)f(·, y))(x))

where HM
y is the associated maximal Hilbert transform acting on the second

variable.

The proof of the Theorem is now divided into three parts, according as
p = 2, 2 < p <∞, and 1 < p < 2.

For the first part, p = 2, applying Plancherel’s Theorem to the right
hand side of (3), one has

‖Tjf(x, y)‖L2(x) ≤ C
∥∥∥[ ∑

h∈Z
|Ψ̂h(ξ −N(y))ĝ{y,h,j}(ξ)|2

]1/2∥∥∥
L2(ξ)

= C
∥∥∥[ ∑

h∈Z
|Ψ̂h(ξ)ĝ{y,h,j}(ξ +N(y))|2

]1/2∥∥∥
L2(ξ)

.

Before computing the Fourier transform of g{y,h,j}(x), let us note that
the convolution operator ∗2 in the next three equalities is only acting on
the second component “y”. It has nothing to do with the y in the function
N(y), for example

Φk(y′) ∗2 f̂(ξ +N(y), y) =
∫
R
Φk(y′)f̂(ξ +N(y), y − y′) dy′ .

Since

ĝ{y,h,j}(ξ +N(y)) =
∑

2−k≤δ(h,y)

Φk(y′) ∗2 ((Sj+hf(·, y))∧(ξ +N(y)))

=
∑

2−k≤δ(h,y)

Φk(y′) ∗2 (p(2−j−h|ξ|)f̂(ξ +N(y), y))

=
∑

2−k≤δ(h,y)

p(2−j−h|ξ|)(Φk(y′) ∗2 f̂(ξ +N(y), y)) ,

one has

‖Tjf(x, y)‖L2(x)

≤ C
∥∥∥[ ∑

h∈Z

∣∣∣Ψ̂h(ξ)p(2−j−h|ξ|)
∑

2−k≤δ(h,y)

Φk ∗2 f̂(ξ +N(y), y)
∣∣∣2]1/2∥∥∥

L2(ξ)

= C
∥∥∥[ ∑

h∈Z

∣∣∣Ψ̂0(2−hξ)p(2−j−h|ξ|)
∑

2−k≤δ(h,y)

Φk ∗2 f̂(ξ +N(y), y)
∣∣∣2]1/2∥∥∥

L2(ξ)
.
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Employing Remark 1, one has

‖Tjf(x, y)‖L2(x) ≤ C
∥∥∥[ ∑

h∈Z

∣∣∣ min{|2−hξ|, |2−hξ|−1}p(2−j−h|ξ|)

×
∑

2−k≤δ(h,y)

Φk ∗2 f̂(ξ +N(y), y)
∣∣∣2]1/2∥∥∥

L2(ξ)
.

By the hypothesis on the support of p, the function p(2−j−h|ξ|) is sup-
ported in 2j+h−2 < |ξ| < 2j+h+1, i.e. 2j−2 < |2−hξ| < 2j+1. This implies
min{|2−hξ|, |2−hξ|−1} ≤ 4 min{2−j , 2j}. Therefore,

‖Tjf(x, y)‖L2(x)

≤ Cmin{2−j , 2j}
∥∥∥[ ∑

h∈Z

∣∣∣ ∑
2−k≤δ(h,y)

Φk ∗ ̂Sj+hf(ξ +N(y), y)
∣∣∣2]1/2∥∥∥

L2(ξ)

≤ Cmin{2−j , 2j}
∥∥∥[ ∑

h∈Z
|HM

y ( ̂Sj+hf(ξ +N(y), y))|2
]1/2∥∥∥

L2(ξ)
,

where the last inequality is obtained by using the ideas in Remark 2.
Finally, to finish the proof of this case, take the L2 norm with respect

to y in the last inequality and apply Fubini’s Theorem to get

(4) ‖Tjf(x, y)‖L2(x,y)

≤ Cmin{2−j , 2j}
∥∥∥∥∥∥( ∑

h∈Z
|HM

y ( ̂Sj+hf(ξ +N(y), y))|2
)1/2∥∥∥

L2(y)

∥∥∥
L2(ξ)

.

By the fact that the vector-valued Hilbert transform is bounded on Lp(y),
1 < p <∞ (see [4]), and the Plancherel Theorem, one concludes that

‖Tjf(x, y)‖L2(x,y)

≤ Cmin{2−j , 2j}
∥∥∥∥∥∥( ∑

h∈Z
| ̂Sj+hf(ξ +N(y), y)|2

)1/2∥∥∥
L2(y)

∥∥∥
L2(ξ)

= Cmin{2−j , 2j}
∥∥∥∥∥∥( ∑

h∈Z
| ̂Sj+hf(ξ +N(y), y)|2

)1/2∥∥∥
L2(ξ)

∥∥∥
L2(y)

= Cmin{2−j , 2j}
∥∥∥( ∑

h∈Z
|e−iN(y)xSj+hf(x, y)|2

)1/2∥∥∥
L2(x,y)

≤ Cmin{2−j , 2j}‖f‖L2(x,y),

where the last inequality is obtained by using (1).
For the second part, 2 < p <∞, by (3) since

‖Tjf(x, y)‖Lp(x) ≤ C
∥∥∥[ ∑

h∈Z
|(eiN(y)x′Ψh(x′)) ∗1 g{y,h,j}(x)|2

]1/2∥∥∥
Lp(x)

,
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there exists a G ∈ L(p/2)′(R) with norm one such that

‖Tjf(x, y)‖Lp(x) ≤ C
( ∫ ∑

h∈Z
|(eiN(y)x′Ψh(x′)) ∗1 g{y,h,j}(x)|2G(x) dx

)1/2

≤ C
( ∑

h∈Z

∫
|Ψh| ∗1 |g{y,h,j}(x)|2|G(x)| dx

)1/2

= C
( ∑

h∈Z

∫
|g{y,h,j}(x)|2|Ψh(−·)| ∗1 |G(x)| dx

)1/2

≤ C
( ∫ ∑

h∈Z
|g{y,h,j}(x)|2MG(x) dx

)1/2

,

where MG(x) denotes the classical Hardy–Littlewood maximal function in
one dimension. Applying Hölder’s inequality, one has

‖Tjf(x, y)‖Lp(x) ≤ C
∥∥∥ ∑

h∈Z
|g{y,h,j}(x)|2

∥∥∥1/2

Lp/2(x)
‖MG‖1/2

L(p/2)′ (x)

≤ C
∥∥∥( ∑

h∈Z
|g{y,h,j}(x)|2

)1/2∥∥∥
Lp(x)

,

where the last inequality is obtained by using the Lp boundedness of the
Hardy–Littlewood maximal function (see [8]) and the definition of G. Ap-
plying Remark 2, one has

‖Tjf(x, y)‖Lp(x)

≤ C
∥∥∥( ∑

h∈Z
|HM

y (S+
j+h(eiN(y)xe−iN(y)(·)f(·, y))(x))|2

)1/2∥∥∥
Lp(x)

.

Now, one takes the Lp norm with respect to y in the last inequality. By Fu-
bini’s Theorem and, again, the Lp boundedness of the vector-valued Hilbert
transform, one has

(5) ‖Tjf(x, y)‖Lp(x,y)

≤ C
∥∥∥( ∑

h∈Z
|HM

y (S+
j+h(eiN(y)xe−iN(y)(·)f(·, y))(x))|2

)1/2∥∥∥
Lp(x,y)

≤ C
∥∥∥( ∑

h∈Z
|eiN(y)xS+

j+h(e−iN(y)(·)f(·, y))(x)|2
)1/2∥∥∥

Lp(x,y)

≤ C‖f‖Lp(x,y) (by (1)) .

For the third part, 1 < p < 2, for each fixed y ∈ R, let us compute
‖Tjf(x, y)‖Lp(x). Again, using (3), by duality, there exists a sequence of
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functions {qh(x)}h∈Z ∈ Lp′(l2) with mixed norm one such that

‖Tjf(x, y)‖Lp(x)

≤ C
∑
h∈Z

∫
R

(eiN(y)(·)Ψh(·)) ∗1 g{y,h,j}(x)qh(x) dx

= C
∑
h∈Z

∫
R
g{y,h,j}(x)(e−iN(y)(·)Ψh(−·)) ∗1 qh(x) dx

≤ C
∫
R

∑
h∈Z

HM
y (S+

j+h(eiN(y)xe−iN(y)(·)f(·, y))(x))

× |(e−iN(y)(·)Ψh(−·)) ∗1 qh(x)| dx

≤ C
∥∥∥( ∑

h∈Z
|HM

y (S+
j+h(eiN(y)xe−iN(y)(·)f(·, y))(x))|2

)1/2∥∥∥
Lp(x)

×
∥∥∥( ∑

h∈Z
|(e−iN(y)(·)Ψh(−·)) ∗1 qh(x)|2

)1/2∥∥∥
Lp′ (x)

.

It is clear that the term |(e−iN(y)(·)Ψh(−·)) ∗1 qh(x)| is bounded by the clas-
sical Hardy–Littlewood maximal function Mqh(x), which does not depend
on y. Again, by the boundedness of the vector-valued Hardy–Littlewood
maximal function and the definition of {qh(x)}h∈Z ∈ Lp′(l2), one concludes
that

‖Tjf(x, y)‖Lp(x)

≤ C
∥∥∥( ∑

h∈Z
|HM

y (S+
j+h(eiN(y)xe−iN(y)(·)f(·, y))(x))|2

)1/2∥∥∥
Lp(x)

.

From now on, one uses the same ideas as in the proof of the case 2 < p <∞
to get

(6) ‖Tjf‖Lp(x,y) ≤ C‖f‖Lp(x,y) (1 < p < 2) .

Employing the real interpolation theorem between (4) and (5), and (4)
and (6), together with Minkowski’s inequality, one obtains

‖Tf‖Lp(x,y) ≤
∑

j

‖Tjf‖Lp(x,y)

≤ C
∑

j

min{2−jα, 2jα}‖f‖Lp(x,y) ≤ C‖f‖Lp(x,y)

for some α = α(p) > 0, 1 < p <∞. Thus (i) is proved. Hence, the Theorem
is proved.
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