COLLOQUIUM MATHEMATICUM

SIngular integrals WITH HIGHLY OSCILLATING KERNELS ON THE PRODUCT DOMAINS

I. Introduction. The theory of singular integrals on product domains has been studied by several authors, e.g. [2], [3], [6], [7]. One of its applications is to the problem of almost everywhere convergence of double Fourier series (see [5]). For example, let f be in $L^{p}([-\pi, \pi] \times[-\pi, \pi]), p>1$, and let

$$
S_{M, M^{2}} f(x, y)=\sum_{|n| \leq M,|m| \leq M^{2}} a_{n, m} e^{i(n x+m y)}
$$

be a partial sum of its Fourier series. Define a singular integral with highly oscillatory kernel,

$$
L_{1} f(x, y)=\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{e^{i\left(N(x, y) x^{\prime}+N^{2}(x, y) y^{\prime}\right)}}{x^{\prime} y^{\prime}} f\left(x-x^{\prime}, y-y^{\prime}\right) d x^{\prime} d y^{\prime}
$$

where $N(x, y)$ is any real-valued measurable function on \mathbb{R}^{2}.
To show the convergence of the partial sums $S_{M, M^{2}} f$, it suffices to show the boundedness of the above singular integral $L_{1} f$, i.e. to show that there exists a constant C_{p}, depending only on p, such that

$$
\left\|L_{1} f\right\|_{p} \leq C_{p}\|f\|_{p}
$$

Here, we should remark that the convergence of $S_{M, M^{2}}$ has been proved by C. Fefferman [1] if $p \geq 2$.

Let us look at two special cases of the operator $L_{1} f$. Suppose the function $N(x, y)$ is in $C^{1}\left(\mathbb{R}^{2}\right)$ and there exist three "large" positive constants A, B, C such that $A / 2 \leq N(x, y) \leq A, B / 2 \leq \partial_{x} N \leq B$ and $C / 2 \leq \partial_{y} N \leq C$. This case leads to the study of the singular integral with oscillating kernel (for more details, see [5])

$$
L_{2} f(x, y)=\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{e^{i N(y) x^{\prime}}}{x^{\prime} y^{\prime}} f\left(x-x^{\prime}, y-y^{\prime}\right) d x^{\prime} d y^{\prime}
$$

This operator is easily seen to be the double Hilbert transform. On the other hand [5], the case $N(x, y)=\lambda x y^{\beta}$ where λ is a large number, $\beta \geq 1$, leads us to consider a more general singular integral with variable integration domains, $\left\{D_{y}\right\}_{y \in \mathbb{R}}$,

$$
L_{3} f(x, y)=\iiint_{\left(x^{\prime}, y^{\prime}\right) \in D_{y}} \frac{1}{x^{\prime} y^{\prime}} f\left(x-x^{\prime}, y-y^{\prime}\right) d x^{\prime} d y^{\prime}
$$

where D_{y} is a region symmetrical with respect to the x^{\prime} and y^{\prime} axes (the definition of D_{y} will be given later).

The motivations for our research stem basically from those two operators $L_{2} f$ and $L_{3} f$. In this paper, we would like to consider the boundedness of a singular integral with oscillating kernel and variable integration domains on a product domain.

Throughout this paper, we suppose $f(x, y) \in L^{p}\left(\mathbb{R}^{2}\right) \cap C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$. For each $y \in \mathbb{R}$, let $\widehat{f}(\xi, y)$ denote the Fourier transform of f with respect to the first variable. Let $\|f(x, y)\|_{L^{p}(x)}$ and $\|f(x, y)\|_{L^{p}(y)}$ denote the L^{p} norms in the first and second variable, respectively, and let $\|f(x, y)\|_{L^{p}(x, y)}$ be the usual $L^{p}\left(\mathbb{R}^{2}\right)$ norm. C will denote some constants which may depend on p and may change at different occurrences.

Let

$$
T f(x, y)=\text { p.v. } \iint_{D_{y}} \frac{e^{i N(y) x^{\prime}}}{x^{\prime} y^{\prime}} f\left(x-x^{\prime}, y-y^{\prime}\right) d y^{\prime} d x^{\prime}
$$

and consider the associated maximal singular integral

$$
\left.T^{*} f(x, y)=\left.\sup _{\varepsilon>0}\right|_{D_{y},\left|x^{\prime}\right|>\varepsilon} \iint_{x^{\prime} y^{\prime}} \frac{e^{i N(y) x^{\prime}}}{x^{\prime}} f\left(x-x^{\prime}, y-y^{\prime}\right) d y^{\prime} d x^{\prime} \right\rvert\,
$$

where N is any real-valued measurable function defined on \mathbb{R} and the definition of the domains $\left\{D_{y}\right\}_{y \in \mathbb{R}}$ is given below.

For any two fixed numbers, $a>1, b>1$, take two non-negative smooth functions ψ and ϕ with compact supports in $\left\{1 / a<r<a^{2}\right\}$ and $\{1 / b<$ $\left.r<b^{2}\right\}$, respectively, such that

$$
\sum_{h \in \mathbb{Z}} \psi\left(a^{h} r\right)=\sum_{k \in \mathbb{Z}} \phi\left(b^{k} r\right)=1
$$

for all $r>0$. Let δ be a measurable function from $\mathbb{Z} \times \mathbb{R}$ to \mathbb{R}^{+}, i.e. $\delta(h, y) \geq$ $0, h \in \mathbb{Z}, y \in \mathbb{R}$. Define a family of measurable sets $\left\{D_{y}\right\}_{y \in \mathbb{R}}$ by

$$
D_{y}=\left\{\left(x^{\prime}, y^{\prime}\right) \in \mathbb{R}^{2} \mid \sum_{(h, k) \in B_{y}} \psi\left(a^{h}\left|x^{\prime}\right|\right) \phi\left(b^{k}\left|y^{\prime}\right|\right) \neq 0\right\}
$$

where $B_{y}=\left\{(h, k) \mid b^{-k} \leq \delta(h, y)\right\}$.

Theorem. For every measurable function $N(y)$ and the family of measurable sets $\left\{D_{y}\right\}_{y \in \mathbb{R}}, 1<p<\infty$, there exists a constant C_{p} independent of f such that
(i) $\|T f\|_{p} \leq C_{p}\|f\|_{p}$,
(ii) $\left\|T^{*} f\right\|_{p} \leq C_{p}\|f\|_{p}$.

In the $p=2$ case, those operators have been studied by E. Prestini (see [7]).
II. Proof of Theorem. We need only show (i), since (ii) then follows from

Lemma [7]. Under the hypotheses of the Theorem, there exists a constant C such that

$$
T^{*} f(x, y) \leq C\left\{M_{x} H_{y}^{M} f(x, y)+M_{x} T f(x, y)\right\}
$$

where M_{x} denotes the classical Hardy-Littlewood maximal operator acting on x and H_{y}^{M} denotes the associated maximal Hilbert transform acting on y, i.e.

$$
M_{x} f(x, y)=\sup _{\varepsilon>0} \frac{1}{\varepsilon} \int_{\left|x^{\prime}\right|<\varepsilon}\left|f\left(x-x^{\prime}, y\right)\right| d x^{\prime}
$$

and

$$
H_{y}^{M} f(x, y)=\sup _{\varepsilon>0}\left|\int_{\left|y^{\prime}\right|>\varepsilon} f\left(x, y-y^{\prime}\right) \frac{d y^{\prime}}{y^{\prime}}\right|
$$

Without loss of generality, one assumes $a=b=2$. Then

$$
\begin{aligned}
T f(x, y) & =\iint \sum_{(h, k) \in B_{y}} e^{i N(y) x^{\prime}} \frac{\psi\left(2^{h}\left|x^{\prime}\right|\right)}{x^{\prime}} \frac{\phi\left(2^{k}\left|y^{\prime}\right|\right)}{y^{\prime}} f\left(x-x^{\prime}, y-y^{\prime}\right) d y^{\prime} d x^{\prime} \\
& \equiv \iint \sum_{(h, k) \in B_{y}} e^{i N(y) x^{\prime}} \Psi_{h}\left(x^{\prime}\right) \Phi_{k}\left(y^{\prime}\right) f\left(x-x^{\prime}, y-y^{\prime}\right) d y^{\prime} d x^{\prime} \\
& =\int_{\mathbb{R}} \sum_{h \in \mathbb{Z}} e^{i N(y) x^{\prime}} \Psi_{h}\left(x^{\prime}\right) \int_{\mathbb{R}} \sum_{2^{-k} \leq \delta(h, y)} \Phi_{k}\left(y^{\prime}\right) f\left(x-x^{\prime}, y-y^{\prime}\right) d y^{\prime} d x^{\prime},
\end{aligned}
$$

where

$$
\Psi_{h}\left(x^{\prime}\right)=\frac{\psi\left(2^{h}\left|x^{\prime}\right|\right)}{x^{\prime}}, \quad \Phi_{k}\left(y^{\prime}\right)=\frac{\phi\left(2^{k}\left|y^{\prime}\right|\right)}{y^{\prime}} .
$$

Remark 1. Clearly, Ψ_{h} and Φ_{k} have the following properties:
(i) $\widehat{\Psi}_{h}(\xi)=\widehat{\Psi}_{0}\left(\xi / 2^{h}\right)$,
(ii) $\widehat{\Psi}_{h}(0)=0$,
(iii) $\widehat{\Psi}_{0}(\xi) \leq C_{l} /|\xi|^{l}$ for any non-negative integer l,
(iv) $\widehat{\Psi}_{0}(\xi) \leq C|\xi|$,
(v) Φ has the same properties (i)-(iv).

Let us make a partition of unity, i.e. take a non-negative function $p \in$ $C_{0}^{\infty}(\mathbb{R})$ with compact support contained in the set $\{1 / 4<|\xi|<2\}$ such that $\sum_{j \in \mathbb{Z}} p^{2}\left(2^{-j}|\xi|\right)=1$ for all $\xi \in \mathbb{R}, \xi \neq 0$. For each y, define partial sum operators

$$
\widehat{S_{j} f}(\xi, y)=p\left(2^{-j}|\xi-N(y)|\right) \widehat{f}(\xi, y)
$$

where the Fourier transform acts on the first variable. Obviously, for every $h \in \mathbb{Z}$,

$$
\sum_{j} S_{j+h}^{2} f(x, y) \equiv \sum_{j} S_{j+h} S_{j+h} f(x, y)=f(x, y)
$$

in the sense of L^{2} convergence. Let

$$
\widehat{S_{j}^{+}} g(\xi, y)=p\left(2^{-j}|\xi|\right) \widehat{g}(\xi, y)
$$

Since

$$
\widehat{S_{j} f}(\xi+N(y), y)=p\left(2^{-j}|\xi|\right) \widehat{f}(\xi+N(y), y)
$$

and

$$
\widehat{S_{j}^{2} f}(\xi+N(y), y)=p^{2}\left(2^{-j}|\xi|\right) \widehat{f}(\xi+N(y), y),
$$

one has

$$
\begin{aligned}
S_{j} f(x, y) & =e^{i N(y) x} S_{j}^{+}\left(e^{-i N(y)(\cdot)} f(\cdot, y)\right)(x) \\
& =S_{j}^{+}\left(e^{i N(y) x} e^{-i N(y)(\cdot)} f(\cdot, y)\right)(x)
\end{aligned}
$$

and

$$
S_{j}^{2} f(x, y)=S_{j}^{+} S_{j}^{+}\left(e^{i N(y) x} e^{-i N(y)(\cdot)} f(\cdot, y)\right)(x)
$$

Therefore, for each fixed $y \in \mathbb{R}$, by the Littlewood-Paley Theorem (see [8]),

$$
\begin{aligned}
& \left\|\left(\sum_{j}\left|S_{j} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}(x)} \\
& \quad=\left\|\left(\sum_{j}\left|S_{j}^{+}\left(e^{-i N(y)(\cdot)} f(\cdot, y)\right)\right|^{2}\right)^{1 / 2}\right\|_{L^{p}(x)} \approx\|f(x, y)\|_{L^{p}(x)}
\end{aligned}
$$

Now, integrating both sides with respect to y, one has

$$
\begin{align*}
& \left\|\left(\sum_{j}\left|S_{j} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}(x, y)} \tag{1}\\
& \quad=\left\|\left(\sum_{j}\left|S_{j}^{+}\left(e^{-i N(y)(\cdot)} f(\cdot, y)\right)\right|^{2}\right)^{1 / 2}\right\|_{L^{p}(x, y)} \approx\|f\|_{L^{p}(x, y)}
\end{align*}
$$

for $1<p<\infty$.

Let us write

$$
\begin{aligned}
T f(x, y)= & \sum_{(h, k) \in B_{y}}\left[e^{i N(y) x^{\prime}} \Psi_{h}\left(x^{\prime}\right) \Phi_{k}\left(y^{\prime}\right)\right] *\left(\sum_{j} S_{j+h}^{2} f(x, y)\right) \\
= & \sum_{(h, k) \in B_{y}}\left[e^{i N(y) x^{\prime}} \Psi_{h}\left(x^{\prime}\right) \Phi_{k}\left(y^{\prime}\right)\right] \\
& *\left[\sum_{j}\left(S_{j+h}^{+} S_{j+h}^{+}\left(e^{i N(y) x} e^{-i N(y)(\cdot)} f(\cdot, y)\right)(x)\right)\right] \\
= & \sum_{j}\left\{\sum _ { (h , k) \in B _ { y } } S _ { j + h } ^ { + } \left[\left(e^{i N(y) x^{\prime}} \Psi_{h}\left(x^{\prime}\right) \Phi_{k}\left(y^{\prime}\right)\right)\right.\right. \\
& \left.\left.*\left(S_{j+h}^{+}\left(e^{i N(y) x} e^{-i N(y)(\cdot)} f(\cdot, y)\right)(x)\right)\right]\right\} \\
\equiv & \sum_{j} T_{j} f(x, y) .
\end{aligned}
$$

We rewrite $T_{j} f(x, y)$ as

$$
\begin{aligned}
\sum_{h \in \mathbb{Z}} S_{j+h}^{+} & \left\{\left(e^{i N(y) x^{\prime}} \Psi_{h}\left(x^{\prime}\right)\right)\right. \\
& \left.*_{1}\left[\sum_{2^{-k} \leq \delta(h, y)} \Phi_{k}\left(y^{\prime}\right) *_{2}\left(S_{j+h}^{+}\left(e^{i N(y) x} e^{-i N(y)(\cdot)} f(\cdot, y)\right)(x)\right)\right]\right\}
\end{aligned}
$$

where $*_{1}$ and $*_{2}$ denote the convolution operators acting on the first and second variables, respectively, and the variable index of the sum $\sum_{2^{-k} \leq \delta(h, y)}$ is k.

By the Littlewood-Paley Theorem, it follows that the $L^{p}(x)$ norm of $T_{j} f,\left\|T_{j} f(\cdot, y)\right\|_{L^{p}(x)}$, is dominated by
(2)

$$
\begin{aligned}
& \|\left[\sum_{h \in \mathbb{Z}} \mid\left(e^{i N(y) x^{\prime}} \Psi_{h}\left(x^{\prime}\right)\right) *_{1}\left(\sum_{2^{-k} \leq \delta(h, y)} \Phi_{k}\left(y^{\prime}\right)\right.\right. \\
& \\
& \left.\left.\quad *_{2}\left(S_{j+h}^{+}\left(e^{i N(y) x} e^{-i N(y)(\cdot)} f(\cdot, y)\right)(x)\right)\right)\left.\right|^{2}\right]^{1 / 2} \|_{L^{p}(x)}
\end{aligned}
$$

Define

$$
\begin{aligned}
g_{\{y, h, j\}}(x) & =\sum_{2^{-k} \leq \delta(h, y)} \Phi_{k}\left(y^{\prime}\right) *_{2}\left(S_{j+h}^{+}\left(e^{i N(y) x} e^{-i N(y)(\cdot)} f(\cdot, y)\right)(x)\right) \\
& =\sum_{2^{-k} \leq \delta(h, y)} \Phi_{k}\left(y^{\prime}\right) *_{2} S_{j+h} f(x, y) .
\end{aligned}
$$

Hence, by (2),
(3) $\left\|T_{j} f(x, y)\right\|_{L^{p}(x)} \leq C\left\|\left[\sum_{h \in \mathbb{Z}}\left|\left(e^{i N(y) x^{\prime}} \Psi_{h}\left(x^{\prime}\right)\right) *_{1} g_{\{y, h, j\}}(x)\right|^{2}\right]^{1 / 2}\right\|_{L^{p}(x)}$.

Remark 2. It is clear that

$$
\begin{aligned}
\left|g_{\{y, h, j\}}(x)\right| & \leq \sup _{l}\left|\sum_{2^{-k} \leq l} \Phi_{k}\left(y^{\prime}\right) *_{2}\left(S_{j+h}^{+}\left(e^{i N(y) x} e^{-i N(y)(\cdot)} f(\cdot, y)\right)(x)\right)\right| \\
& \leq 2 H_{y}^{M}\left(S_{j+h}^{+}\left(e^{i N(y) x} e^{-i N(y)(\cdot)} f(\cdot, y)\right)(x)\right)
\end{aligned}
$$

where H_{y}^{M} is the associated maximal Hilbert transform acting on the second variable.

The proof of the Theorem is now divided into three parts, according as $p=2,2<p<\infty$, and $1<p<2$.

For the first part, $p=2$, applying Plancherel's Theorem to the right hand side of (3), one has

$$
\begin{aligned}
\left\|T_{j} f(x, y)\right\|_{L^{2}(x)} & \leq C\left\|\left[\sum_{h \in \mathbb{Z}}\left|\widehat{\Psi}_{h}(\xi-N(y)) \widehat{g}_{\{y, h, j\}}(\xi)\right|^{2}\right]^{1 / 2}\right\|_{L^{2}(\xi)} \\
& =C\left\|\left[\sum_{h \in \mathbb{Z}}\left|\widehat{\Psi}_{h}(\xi) \widehat{g}_{\{y, h, j\}}(\xi+N(y))\right|^{2}\right]^{1 / 2}\right\|_{L^{2}(\xi)} .
\end{aligned}
$$

Before computing the Fourier transform of $g_{\{y, h, j\}}(x)$, let us note that the convolution operator $*_{2}$ in the next three equalities is only acting on the second component " y ". It has nothing to do with the y in the function $N(y)$, for example

$$
\Phi_{k}\left(y^{\prime}\right) *_{2} \widehat{f}(\xi+N(y), y)=\int_{\mathbb{R}} \Phi_{k}\left(y^{\prime}\right) \widehat{f}\left(\xi+N(y), y-y^{\prime}\right) d y^{\prime}
$$

Since

$$
\begin{aligned}
\widehat{g}_{\{y, h, j\}}(\xi+N(y)) & =\sum_{2^{-k} \leq \delta(h, y)} \Phi_{k}\left(y^{\prime}\right) *_{2}\left(\left(S_{j+h} f(\cdot, y)\right)^{\wedge}(\xi+N(y))\right) \\
& =\sum_{2^{-k} \leq \delta(h, y)} \Phi_{k}\left(y^{\prime}\right) *_{2}\left(p\left(2^{-j-h}|\xi|\right) \widehat{f}(\xi+N(y), y)\right) \\
& =\sum_{2^{-k} \leq \delta(h, y)} p\left(2^{-j-h}|\xi|\right)\left(\Phi_{k}\left(y^{\prime}\right) *_{2} \widehat{f}(\xi+N(y), y)\right),
\end{aligned}
$$

one has

$$
\begin{aligned}
& \left\|T_{j} f(x, y)\right\|_{L^{2}(x)} \\
& \leq C\left\|\left[\sum_{h \in \mathbb{Z}}\left|\widehat{\Psi}_{h}(\xi) p\left(2^{-j-h}|\xi|\right) \sum_{2^{-k} \leq \delta(h, y)} \Phi_{k} *_{2} \widehat{f}(\xi+N(y), y)\right|^{2}\right]^{1 / 2}\right\|_{L^{2}(\xi)} \\
& =C\left\|\left[\sum_{h \in \mathbb{Z}}\left|\widehat{\Psi}_{0}\left(2^{-h} \xi\right) p\left(2^{-j-h}|\xi|\right) \sum_{2^{-k} \leq \delta(h, y)} \Phi_{k} *_{2} \widehat{f}(\xi+N(y), y)\right|^{2}\right]^{1 / 2}\right\|_{L^{2}(\xi)}
\end{aligned}
$$

Employing Remark 1, one has

$$
\begin{aligned}
\left\|T_{j} f(x, y)\right\|_{L^{2}(x)} \leq C \| & {\left[\sum_{h \in \mathbb{Z}} \mid \min \left\{\left|2^{-h} \xi\right|,\left|2^{-h} \xi\right|^{-1}\right\} p\left(2^{-j-h}|\xi|\right)\right.} \\
& \left.\times\left.\sum_{2^{-k} \leq \delta(h, y)} \Phi_{k} *_{2} \widehat{f}(\xi+N(y), y)\right|^{2}\right]^{1 / 2} \|_{L^{2}(\xi)} .
\end{aligned}
$$

By the hypothesis on the support of p, the function $p\left(2^{-j-h}|\xi|\right)$ is supported in $2^{j+h-2}<|\xi|<2^{j+h+1}$, i.e. $2^{j-2}<\left|2^{-h} \xi\right|<2^{j+1}$. This implies $\min \left\{\left|2^{-h} \xi\right|,\left|2^{-h} \xi\right|^{-1}\right\} \leq 4 \min \left\{2^{-j}, 2^{j}\right\}$. Therefore,

$$
\begin{aligned}
& \left\|T_{j} f(x, y)\right\|_{L^{2}(x)} \\
& \quad \leq C \min \left\{2^{-j}, 2^{j}\right\}\left\|\left[\sum_{h \in \mathbb{Z}}\left|\sum_{2^{-k} \leq \delta(h, y)} \Phi_{k} * \widehat{S_{j+h}} f(\xi+N(y), y)\right|^{2}\right]^{1 / 2}\right\|_{L^{2}(\xi)} \\
& \quad \leq C \min \left\{2^{-j}, 2^{j}\right\} \|\left[\sum_{h \in \mathbb{Z}} \mid H_{y}^{M} \widehat{\left.\left.\left(\widehat{S_{j+h}} f(\xi+N(y), y)\right)\right|^{2}\right]^{1 / 2} \|_{L^{2}(\xi)}} .\right.
\end{aligned}
$$

where the last inequality is obtained by using the ideas in Remark 2.
Finally, to finish the proof of this case, take the L^{2} norm with respect to y in the last inequality and apply Fubini's Theorem to get
(4) $\left\|T_{j} f(x, y)\right\|_{L^{2}(x, y)}$

$$
\leq C \min \left\{2^{-j}, 2^{j}\right\}\| \|\left(\sum_{h \in \mathbb{Z}}\left|H_{y}^{M}\left(\widehat{S_{j+h}} f(\xi+N(y), y)\right)\right|^{2}\right)^{1 / 2}\left\|_{L^{2}(y)}\right\|_{L^{2}(\xi)}
$$

By the fact that the vector-valued Hilbert transform is bounded on $L^{p}(y)$, $1<p<\infty$ (see [4]), and the Plancherel Theorem, one concludes that

$$
\begin{aligned}
& \left\|T_{j} f(x, y)\right\|_{L^{2}(x, y)} \\
& \quad \leq C \min \left\{2^{-j}, 2^{j}\right\}\| \|\left(\sum_{h \in \mathbb{Z}}\left|\widehat{S_{j+h}} f(\xi+N(y), y)\right|^{2}\right)^{1 / 2}\left\|_{L^{2}(y)}\right\|_{L^{2}(\xi)} \\
& \quad=C \min \left\{2^{-j}, 2^{j}\right\}\| \|\left(\sum_{h \in \mathbb{Z}}\left|\widehat{S_{j+h}} f(\xi+N(y), y)\right|^{2}\right)^{1 / 2}\left\|_{L^{2}(\xi)}\right\|_{L^{2}(y)} \\
& \quad=C \min \left\{2^{-j}, 2^{j}\right\}\left\|\left(\sum_{h \in \mathbb{Z}}\left|e^{-i N(y) x} S_{j+h} f(x, y)\right|^{2}\right)^{1 / 2}\right\| \|_{L^{2}(x, y)} \\
& \quad \leq C \min \left\{2^{-j}, 2^{j}\right\}\|f\|_{L^{2}(x, y)},
\end{aligned}
$$

where the last inequality is obtained by using (1).
For the second part, $2<p<\infty$, by (3) since

$$
\left\|T_{j} f(x, y)\right\|_{L^{p}(x)} \leq C\left\|\left[\sum_{h \in \mathbb{Z}}\left|\left(e^{i N(y) x^{\prime}} \Psi_{h}\left(x^{\prime}\right)\right) *_{1} g_{\{y, h, j\}}(x)\right|^{2}\right]^{1 / 2}\right\|_{L^{p}(x)},
$$

there exists a $G \in L^{(p / 2)^{\prime}}(\mathbb{R})$ with norm one such that

$$
\begin{aligned}
\left\|T_{j} f(x, y)\right\|_{L^{p}(x)} & \leq C\left(\int \sum_{h \in \mathbb{Z}}\left|\left(e^{i N(y) x^{\prime}} \Psi_{h}\left(x^{\prime}\right)\right) *_{1} g_{\{y, h, j\}}(x)\right|^{2} G(x) d x\right)^{1 / 2} \\
& \leq C\left(\sum_{h \in \mathbb{Z}} \int\left|\Psi_{h}\right| *_{1}\left|g_{\{y, h, j\}}(x)\right|^{2}|G(x)| d x\right)^{1 / 2} \\
& =C\left(\sum_{h \in \mathbb{Z}} \int\left|g_{\{y, h, j\}}(x)\right|^{2}\left|\Psi_{h}(-\cdot)\right| *_{1}|G(x)| d x\right)^{1 / 2} \\
& \leq C\left(\int \sum_{h \in \mathbb{Z}}\left|g_{\{y, h, j\}}(x)\right|^{2} M G(x) d x\right)^{1 / 2}
\end{aligned}
$$

where $M G(x)$ denotes the classical Hardy-Littlewood maximal function in one dimension. Applying Hölder's inequality, one has

$$
\begin{aligned}
\left\|T_{j} f(x, y)\right\|_{L^{p}(x)} & \leq C\left\|\sum_{h \in \mathbb{Z}}\left|g_{\{y, h, j\}}(x)\right|^{2}\right\|_{L^{p / 2}(x)}^{1 / 2}\|M G\|_{L^{(p / 2)^{\prime}}(x)}^{1 / 2} \\
& \leq C\left\|\left(\sum_{h \in \mathbb{Z}}\left|g_{\{y, h, j\}}(x)\right|^{2}\right)^{1 / 2}\right\|_{L^{p}(x)}
\end{aligned}
$$

where the last inequality is obtained by using the L^{p} boundedness of the Hardy-Littlewood maximal function (see [8]) and the definition of G. Applying Remark 2, one has

$$
\begin{aligned}
& \left\|T_{j} f(x, y)\right\|_{L^{p}(x)} \\
& \quad \leq C\left\|\left(\sum_{h \in \mathbb{Z}}\left|H_{y}^{M}\left(S_{j+h}^{+}\left(e^{i N(y) x} e^{-i N(y)(\cdot)} f(\cdot, y)\right)(x)\right)\right|^{2}\right)^{1 / 2}\right\|_{L^{p}(x)}
\end{aligned}
$$

Now, one takes the L^{p} norm with respect to y in the last inequality. By Fubini's Theorem and, again, the L^{p} boundedness of the vector-valued Hilbert transform, one has

$$
\begin{align*}
& \left\|T_{j} f(x, y)\right\|_{L^{p}(x, y)} \tag{5}\\
& \quad \leq C\left\|\left(\sum_{h \in \mathbb{Z}}\left|H_{y}^{M}\left(S_{j+h}^{+}\left(e^{i N(y) x} e^{-i N(y)(\cdot)} f(\cdot, y)\right)(x)\right)\right|^{2}\right)^{1 / 2}\right\|_{L^{p}(x, y)} \\
& \quad \leq C\left\|\left(\sum_{h \in \mathbb{Z}}\left|e^{i N(y) x} S_{j+h}^{+}\left(e^{-i N(y)(\cdot)} f(\cdot, y)\right)(x)\right|^{2}\right)^{1 / 2}\right\|_{L^{p}(x, y)} \\
& \quad \leq C\|f\|_{L^{p}(x, y)} \quad(\text { by }(1)) .
\end{align*}
$$

For the third part, $1<p<2$, for each fixed $y \in \mathbb{R}$, let us compute $\left\|T_{j} f(x, y)\right\|_{L^{p}(x)}$. Again, using (3), by duality, there exists a sequence of
functions $\left\{q_{h}(x)\right\}_{h \in \mathbb{Z}} \in L^{p^{\prime}}\left(l^{2}\right)$ with mixed norm one such that

$$
\begin{aligned}
& \left\|T_{j} f(x, y)\right\|_{L^{p}(x)} \\
& \leq C \sum_{h \in \mathbb{Z}} \int_{\mathbb{R}}\left(e^{i N(y)(\cdot)} \Psi_{h}(\cdot)\right) *_{1} g_{\{y, h, j\}}(x) q_{h}(x) d x \\
& =C \sum_{h \in \mathbb{Z}} \int_{\mathbb{R}} g_{\{y, h, j\}}(x)\left(e^{-i N(y)(\cdot)} \Psi_{h}(-\cdot)\right) *_{1} q_{h}(x) d x \\
& \leq C \int_{\mathbb{R}} \sum_{h \in \mathbb{Z}} H_{y}^{M}\left(S_{j+h}^{+}\left(e^{i N(y) x} e^{-i N(y)(\cdot)} f(\cdot, y)\right)(x)\right) \\
& \quad \times\left|\left(e^{-i N(y)(\cdot)} \Psi_{h}(-\cdot)\right) *_{1} q_{h}(x)\right| d x \\
& \leq C\left\|\left(\sum_{h \in \mathbb{Z}}\left|H_{y}^{M}\left(S_{j+h}^{+}\left(e^{i N(y) x} e^{-i N(y)(\cdot)} f(\cdot, y)\right)(x)\right)\right|^{2}\right)^{1 / 2}\right\|_{L^{p}(x)} \\
& \quad \times\left\|\left(\sum_{h \in \mathbb{Z}}\left|\left(e^{-i N(y)(\cdot)} \Psi_{h}(-\cdot)\right) *_{1} q_{h}(x)\right|^{2}\right)^{1 / 2}\right\|_{L^{p^{\prime}(x)}} .
\end{aligned}
$$

It is clear that the term $\left|\left(e^{-i N(y)(\cdot)} \Psi_{h}(-\cdot)\right) *_{1} q_{h}(x)\right|$ is bounded by the classical Hardy-Littlewood maximal function $M q_{h}(x)$, which does not depend on y. Again, by the boundedness of the vector-valued Hardy-Littlewood maximal function and the definition of $\left\{q_{h}(x)\right\}_{h \in \mathbb{Z}} \in L^{p^{\prime}}\left(l^{2}\right)$, one concludes that

$$
\begin{aligned}
& \left\|T_{j} f(x, y)\right\|_{L^{p}(x)} \\
& \quad \leq C\left\|\left(\sum_{h \in \mathbb{Z}}\left|H_{y}^{M}\left(S_{j+h}^{+}\left(e^{i N(y) x} e^{-i N(y)(\cdot)} f(\cdot, y)\right)(x)\right)\right|^{2}\right)^{1 / 2}\right\|_{L^{p}(x)}
\end{aligned}
$$

From now on, one uses the same ideas as in the proof of the case $2<p<\infty$ to get

$$
\begin{equation*}
\left\|T_{j} f\right\|_{L^{p}(x, y)} \leq C\|f\|_{L^{p}(x, y)} \quad(1<p<2) . \tag{6}
\end{equation*}
$$

Employing the real interpolation theorem between (4) and (5), and (4) and (6), together with Minkowski's inequality, one obtains

$$
\begin{aligned}
\|T f\|_{L^{p}(x, y)} & \leq \sum_{j}\left\|T_{j} f\right\|_{L^{p}(x, y)} \\
& \leq C \sum_{j} \min \left\{2^{-j \alpha}, 2^{j \alpha}\right\}\|f\|_{L^{p}(x, y)} \leq C\|f\|_{L^{p}(x, y)}
\end{aligned}
$$

for some $\alpha=\alpha(p)>0,1<p<\infty$. Thus (i) is proved. Hence, the Theorem is proved.

Acknowledgment. The author thanks the referee for some valuable suggestions.

REFERENCES

[1] C. Fefferman, On the convergence of multiple Fourier series, Bull. Amer. Math. Soc. 77 (1971), 744-745.
[2] R. Fefferman, Singular integrals on product domains, ibid. 4 (1981), 195-201.
[3] R. Fefferman and E. Stein, Singular integrals on product spaces, Adv. in Math. 45 (1982), 117-143.
[4] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 116, North-Holland, 1985.
[5] E. Prestini, Uniform estimates for families of singular integrals and double Fourier series, J. Austral. Math. Soc. Ser. A 41 (1986), 1-12.
[6] -, Singular integrals on product spaces with variable coefficients, Ark. Mat. 25 (1987), 275-287.
[7] -, L^{2} boundedness of highly oscillatory integrals on product domains, Proc. Amer. Math. Soc. 104 (1988), 493-497.
[8] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.

DEPARTMENT OF MATHEMATICS
OREGON STATE UNIVERSITY
CORVALLIS, OREGON 97331
U.S.A.

E-mail: CHEN@MATH.ORST.EDU

