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SOME NEW HARDY SPACES
ON LOCALLY COMPACT VILENKIN GROUPS
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1. Introduction and notations. Let G denote a locally compact
Vilenkin group. In Section 1 of this paper we define some new Hardy spaces
HK} (G) associated with the Herz spaces K ,(G) on G, where 0 < ¢ <1 <
p < oo and —1 < a < 0. Section 2 establishes their atomic decomposition
theorem and some interpolation results. The molecular characterization can
be found in Section 3. In Section 4, we give some application. Now, let us
introduce some basic notations; for more details we refer to [1]-[11].

Throughout this paper G will denote a locally compact Abelian group
containing a strictly decreasing sequence of open compact subgroups
{Gn}52 _ . such that

i) U~ G,=Gand N, _G,={0},
(i) sup{order(G,,/Gni1) :n € Z} < .
Let I" denote the dual group of G and for each n € Z, let
Iy={yel:v(x)=1foralxzeG,}.

Then {I,}>2 _ _ is a strictly increasing sequence of open compact subgroups
of I and

U o Ihn=Tand (N~ _ In={1},

(ii)* order(Iy41/1) = order(G,/Gp+1).
We choose Haar measures p on G and A on I so that u(Gp) = A(Ip) = 1.
Then u(G,) = (MI3))"! =: (m,)~! for each n € Z. For each a > 0 and
k € Z, we have

oo

(1.1) D (mn)”* < Clmp) ™,

n=k
k

(1.2) D (ma)® < C(my)°

n=—oo
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(see [5] and [8]). Here, like elsewhere in this paper, C' denotes a constant
whose value may change from one occurrence to the next.

There exists a metric d on G x G defined by d(x,z) = 0 and d(z,y) =
(my))~tifx —y € G\ Gyt for I € Z. Then the topology on G determined
by d coincides with the original topology. For = € G, we set |z| = d(z,0),
and define the function v, on G by v,(z) = |z|* for each a € R; the
corresponding measure v,dp = |x|“dp is denoted by du,. Moreover, dx
will sometimes be used in place of du. It is easy to note that us(G;) <
C(my)~ @t if a > —1, and if | < n and = € G\ Giy1, then po(z 4+ G,) =
(my)~%(my,)~ L. Similarly to G, we can define a metric § on I" x I" such
that the topology on I' induced by § coincides with the original topology.
Furthermore, we write ||v|| = d(y,1) = my, if v € I,41 \ [, and (y) =
max{1, |1y}

The symbols A and Vv will be used to denote the Fourier transform and
inverse Fourier transform respectively. A simple computation shows that

(Xe,)" = AIn) " xp, = (mn) " 'xp, -
and hence,
(Xr)" = (G) Xe, =MnXe, = An.

In this paper, S(G) (or S(I")) and S’(G) (or S'(I')) denote the spaces
of test functions and distributions on G (or I) respectively. For details, see
[6], [8] and [10].

2. The spaces HK} ,(G). First of all, we introduce some Herz spaces
defined by Onneweer in [4].

DEFINITION 2.1. Let 0 < ¢ <1< p<ooand —1 < a <0. The Herz
space K ,(G) is defined by

K} o(G) == {f : [ is a measurable function on G and || f||xs () < oo}

where
. S 1—q/p q L4
1£llc3 o) = (lz 12l G) P X ee n i)
Here we write LP(G) = {f : f is a measurable function on G and

(o 1 ()P dpa (2)/7 < o0}, Obviously, K3, (G) < L&(G).

For f € S'(G), we define f,(z) = f* A, (z). Then f, is a function on G
which is constant on the cosets of G,, in G. Moreover, lim, . frn, = f
in S’(G) (see [10]). For f € S’(G) we define its maximal function f*(x) by

[ (@) = sup|f + Ay(@)] = sup|u(Ga) ™ [ S() dity)]-
neZ neZ 4G,
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Now, we define some new Hardy spaces HK? ,(G) associated with the
Herz spaces K/ ,(G).

DEFINITION 2.2. Suppose 0 < ¢ <1 <p <ooand -1 < a < 0. We
define HK} ,(G) by

HK} (G) :={f € 5'(G): [" € K} ,(G)},
and set

| fllarce ) = I1f ke o) -
Clearly HK} (G) C Hi(G), where Hi(G) are weighted Hardy spaces on G
(see [1], [2], [6] and [7]).

Remark 2.3. Let 1 <p < oo and —1 < a < (. Because K;’Q(G) C
LL(G), if f* € K} ,(G) then f € L\(G) by Lemma 3.5 of Kitada [1].
Therefore we can redefine HK IIW(G) by

HEK, ,(G) ={f € L3(G) : [* € K} ,(G)}

We now characterize the spaces HK} ,(G) in terms of atoms. First, we
have

DEFINITION 2.4. Let 0 < ¢<1<p<ooand —1 < a <0. A function a
on G is said to be a central (q,p)q-atom if

(1) suppa C Gy, for some n; € Z,
(2) (fan |a(2) [P dpa (2))VP < pa(Gy,) /P14,
(3) [ alx) du() = 0.

THEOREM 2.5. Assume 0 < ¢ < 1 < p < oo and -1 < a < 0. 4
distribution f on G is in HK] ,(G) if and only if f = > Nja; in S'(G)
where a;’s are central (q,p)o-atoms and Y |\;|7 < co. Then

1/l mxcs (@) ~ inf { ( > W"q> l/q}

where the infimum is taken over all atomic decompositions of f. Moreover,
for g =1 the identity f(x) = > Nja;j(z) holds pointwise.

Proof. We first show the necessity for g = 1. Let f € HK;7Q(G). Noting
that f is a function in this case, we can write

f@) =3 F@)xene,, (@)

l=—00

s R ¢
=5 (@ ([ ) et

l=—o00 Gi\Gi11
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S (S ) e

e N e\ W(Gry1 \ Giyz)
= Il + IQ .
Let

XGz+1\Gz+2 (1‘)

by (ac) = f(w)XGl\Gl+1 (x) - ( f f(y) dy) m .

GI\Gi+1

Clearly, [b;(z)dz =0, suppb; C G; \ Gi42 C G; and from Lemma 1 of [5]
and (1) in [8], for a > —1, we easily deduce that

10 (Gri1 \ Grao) & pa(Gra1) & (myyr) ™D & (my) (T

From this, we have

([ @Pana@) " <( [ 1r@PdaE)”
Gy Gi\Gi41

po(Gryr \ Giya)'/?
1(Grya \ Giy2)

1/p

+( [ If@)dz)

Gi\Gi11

() V@ du@)

G\Gi41
—_ 1/p
+( [ @ d)
Gi\Gi1
(ml)a/pM(Gl \ Gl+1)1_1/pua(Gl+1 \ Giio)'/P
X
1(Gre1 \ Giy2)

<o [ @Pdw)”

GI\Gi41

IN

Thus, it is easy to see that

)= {Co( [ P dw) " ) )
GI\Gi41

is a central (1, p),-atom. If we write

/
M= Cona( @) ([ If@)P dpa@)
GiI\Gi+1



HARDY SPACES 121

then I = 70 Nai(x), and

o0 o0
Z A <G Z /‘a(Gl)l/p foc;l\c;pr1 ||L§(G)

l=—00 l=—00

< Coll fllxz ) < Collf* k2 ) = Coll fllurz () -

To estimate I, we write X ¢, ., (x) = {p(Gi\ Gl+1)}_1XGl\Gl+l(x);
then

[e.o]

L= ( [ (o). o, @

l=—c0 G|\Gi41

= > AY [ w6, @ = Tope,., @)

l=—00 ]:l Gj\Gj+1
= Z hl(l‘),
l=—0c0
where
) = (3 [ 0 dy) R0 @) ~ Yo, (@)
J=t G\Gjm1

:< [ f) dy>(>?cz+1\cl+2(x)—icl\c,ﬂ(w))-
Gy

Therefore supphy C G; \ Gi42 C Gy and [ Iy(z)dz = 0. In addition, by
Lemma 1(d) of [5] for & = 0 and (1) in [8], we have

()] < CLu(GO) f*(2) X, (2)
< (1(G)  Xapar,, @)+ 1(GD)  Xap e, (@)
< O @) Xapar, (@) + CLF @, e, (@)
SO
1hillz ey < Cillf Xopna,,, Iz T Crllf X, ey 226 -
Thus
a(z) = {1 f " Xepa,, 2@ + Crllf Xe, v6rss Iz}
X pa (G177 ()
is a central (1, p)y-atom. If we write

M= ACU  Xepen, lzn@) + Cillf Xa,, oz ia (G 7,
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then Iy = > N\a;, and

Z (A < Cullf* ks ) = Cull fllaxe (c) -

l=—00
It remains to verify that f =Y A\ja; in S’(G). We first prove
(1) Moo [ a@de—0 asl— oo
Gi+1\Gi42
This can be deduced from
f bi(z)dr — 0 and f hi(z)dz — 0
Gi+1\Gi42 Gi41\Gi42
as | — 0o. By the definitions of b; and h;, (1) is easily reduced to
(2) [ fdy—0 and [ fy)dy—0
Gi\Giy1 Gy

as | — oo. If a = 0, since f € LY(G) and 0 < u(G;\ Gi41) < u(Gy) — 0 as
[ — 00, (2) holds. If =1 < a < 0, since f € L} (G), noting that |y| < (my;)~!
for y € Gy, and |y| = (m;)~! for y € G; \ G141, we have

| [ rwydy| < o) [ 1F@)III dy < (m)* | f Ly ) = 0
G, Gy

as [ — oo, and

| twa < [ Wy [ If)ldy 0
Gi\Gi11 Gi\Gi11 G
as | — oo, thus (2) also holds.

Now, assume ¢ € S(G), suppy C G, and ¢ is constant on the cosets
of G, in G but not on the cosets of Gy, _1 (unless ¢(x) = 0). Obviously, ¢y >
m. Because f(z) = > A\a;(z) pointwise, from (1) and sz\Gz+2 ai(x) dp(x)
=0, it follows that

o) = [ (3 M@)o ds
l=—0c0
-y (3 he@)el)
t=m G \Giy1 I=t—1

= i <>\t—1 f ag—1p + A f atSO)

t=m Gi\Gt+1 Gi\Gi41
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to—1

Am—1 me\Gm+1 am—1¥, to = m,
)\m—l me\Gm_H Am—-1¥ + Zt:m )\t f atp, tO >m,

ma
= Jm [ (X na)e.
Mo —00 l=—m;

that is, f = > Na; in S’(G). Thus, we have shown the necessity of Theo-
rem 2.5 for ¢ = 1.

If 0 < ¢ < 1, we have lim, o f, = lim,,_, f * A, = f in S'(G) and
fn(x) = f* A, (x) is a function on G which is constant on the cosets of G,
in G. It is easy to show the following facts:

(3) | fu(@)] < f*(2),
(4) (fn)"(2) < f*(2),
(5) f fn(x)dx — 0 and f fo(z)de — 0 asl— 0.
Gi\Giy1 Gy
Using (3)—(5) for f,, and repeating the above process, we obtain
(6) Fal@) =) Naj()
l=—0o0

in S’(G) and pointwise, where Y= |\ |7 < C’HfH?LIKg,a(G), and each a]'(z)

is a central (g, p)q-atom supported in G, in fact, suppa;’ C G;\ Gi42. Since
sup [lag (7)[ 2z () < po(Go) /P14
neN
the Banach—Alaoglu theorem implies that there exists a subsequence {agvo}
of {aj} converging in the weak* topology of L2 (G) to some ag € LP(G).
It is easy to verify that ag is a central (g, p),-atom supported in Gy. Next,
since
sup [|ay ™ (@)l 2z ) < pa(Gr) /P79,
Nyg
another application of the Banach—Alaoglu theorem yields a subsequence
{a}"*} of {a}*} and a central (q,p)y-atom a; with suppa; C Gy which
converges weak® in LP (G) to a;. Furthermore, because
sup [|a™ ()| 22 (@) < pa(G_1)/P7Ya,

nvl
similarly, by the Banach—Alaoglu theorem, we obtain a subsequence {aT_L”f1 }
of {a"' } which converges weak* in L?(G) to some a_; € L2(G), and a_;
is a central (gq,p)q-atom supported in G_;. Repeating the above process,

for each [ € Z, we can find a subsequence {a,”"} of {a}'} converging weak*
in L (G) to some a; € L2(G), and a; is a central (g, p),-atom supported
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in GG;. By the usual diagonal method we obtain a sequence {n,} of natural
numbers such that for each [ € Z, lim,_ al”“ = q; in the weak* topology
of LP (@), and therefore, in S’(G).

We shall prove that
(7) f: Z )\lal
l=—o0

in S'(G). To do this, take any ¢ € S(G) and suppose supp ¢ C G, and ¢
is constant on the cosets of G, in G but not on the cosets of G,_;. Then,
similarly to the proof of (6), we have

()= Tim (uvh = Tim (3 M)
l=—00

TNy — OO Ny —00
_ {limnu_,oo Am—1 [ ani_1p, to =m,
limy,, oo {Am—1 [ap’_ ¢+ Z;’O::nl N [arre}, to >m,
_ {Am—l S am-1¢, to =m,
= -1
Am—1 [ ame1+ 3050 N [ ap, to >m,

= (% e

mg— 00 I=—mq

that is, (7) holds in S’(G). The necessity of Theorem 2.5 has been shown.
Conversely, suppose f = Z;’ifoo Ajaj in S’(G), where a; is a central
(¢, p)a-atom. Then f*(z) <3772 |Ajla}(z) and

oo

q q
1F N5 ) < > Al % ) -

j=—00
It remains to verify that
laillxs @) < C

where C'is independent of a;. Assuming suppa; C G,,;, we first prove that
suppa; C G,,;. We have

a; * Ap(x) =my, f a;(y)dy.
anﬁ(a:—i-Gn)

Thus, if 2 & G, then for n; > n, G, € Gy and G, N (x + Gp) # 0
implies G, N (z + Gn) C Gy, so a; * A,(z) = 0. For nj < n, we have
Gn C Gp; and thus Gy, N (z + Gp) = 0. Note af(x) = sup,,cz(a; * An) ()
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and suppa; C Gy,;; thus
oo

* 1— *
”aj“‘;(gva(g): Z pa(Gh) q/pHanGl\GHlH%g(G)

l=—o0

<C Z Na(Gl)l_q/p”ajH%g(G)

l=’I’L]'

oo
< Cua(an)Q/p” Z(ml)f(ocﬂ)(lfq/p) <C.
l:nj
Here we use the fact that ||a}|[1z(q) < Clla;llz (o) (see [2]) together with
(1.1) and (a+1)(1 —g/p) > 0.
Thus the proof of Theorem 2.5 is complete.

Using Theorem 2.5, it is easy to deduce the following interpolation the-
orems.

THEOREM 2.6. Let 0 < ¢ <1 <p < oo and —1 < a < 0. If a linear
operator T is (LE(G), LE(G))-type and (HK ', (G), HK' ,(G))-type, then T
is (HKZ,Q(G)v HKg,a(G))'typev where q1 < q <1

The proof is easy, and we omit it.

THEOREM 2.7. Suppose 0 < ¢1 < ¢ < 1 < p < o0, 0 < #; <
0 <1, ¢ < 0;, i =12 and -1 < o« < 0. If a linear operator T is
(HK% (G), HKY (G))-type, i = 1,2, then T is (HKY (G), HK} .(G))-
type, where 1/q =t/q1 + (1 —1)/q2, 1/0 =1/61 + (1 —1)/02, 0 <t < 1.

Proof. By Theorem 2.5 and ¢ < 6, we only need to prove that if a is a
central (g, p)q-atom supported in Gy, then

I(Ta) "Ik () < C

where C is independent of a.

First of all, because a is a central (g, p)s-atom with support G, it is
easy to verify that pa(Gy,)'/9 /% is a central (g;, p)a-atom for i = 1,2.
So,

HCLHHKf,ia < Ua(Glo)l/Qi_l/q fori=1,2.
Next, we write Sy = (1/q1 — 1/g2)/(1/61 — 1/02). Noting that . (Gi+1) <

1o (Gy) for I € Z, and po(G;) — oo (or 0) as I — —oo (or 00), we can choose
[ satisfying

.ua(Gll-l—l) < :uOé(Glo)BO < :uOé(Gh) .
On the other hand,



126 S. LU AND D. YANG

oo

1T s )= S 1a(@)' 71T Xy, I )
l=—00
I 0o
= Z .+ Z..—Il+12,
l=—00 I=l1+1

where

_ — * 6.0/6
I, < Ma(Gll)l 6/61 Z ,u,a(Gl)(l 01/?)9/91”(Ta) XG,\GHlHng(/G;

l=—00

< 1a(GL) O Tal o, o

< Cpa(GL) ™ allfens o
< Clig(Gy, )P 1=0/00)+0(/a1=1/a)

To estimate I, noting that o > —1, we first have

> halG) <C > (my) D < Clmy, 1) < Cpa(Gryia)
I=lp+1 I=l1+1

by (1.1) in Section 1 of this paper and Lemma 1(a) of [5]. Therefore, using

0 < 02 and Holder’s inequality, we have

o0

1-6/64
I g( > ua(Gz))
I=l1+1
- ) ) 0/,
X( Z :“a(Gl)l 92/p||(Ta) XGZ\GlJrlHi%(G))
=l +1

< C:U’a Gl1+1)1_9/92 ||Ta||§‘IKf)2a(G)

(
< Cpia(Gry1)' 70/ HCLH?{K;;?Q(G)
< Cﬂa(Glo)ﬁo(1—9/92)+9(1/q2—1/q) )
Since 1/q = t/q1 + (1 —t)/q2 and 1/0 = t/01 + (1 — t)/02, we have [y =
(/a1 —1/q)/(1/61 —1/0) = (1/q2 — 1/q)/(1/62 — 1/0). Thus,
H(Ta)*”%g,a(c;) <C,
where C is independent of a. This finishes the proof of Theorem 2.7.

Next, we consider the dual spaces of HK}(G) := HK] ;(G), where 0 <
q <1 < p < oo. We first define some spaces CMOJ(G) of central mean
oscillation functions.

DEFINITION 2.8. Let 0 < ¢ <1 < p < oo. A function f € L} (G) will
be said to belong to CMO}(G) if and only if for every n € Z, there exists a



HARDY SPACES 127

constant C,, such that

1/
sup p(G) =1 (w(Ga) ™ [ IS (@) = CulPda) < oo
nez G,

It is easy to verify that we can take C\, = mg, (f) = u(Gn)™ ! [5 f(z)dx;
set

1/
I llentog@) = sup (G /4 (u(Ga) ™ [ 17(@) =me, (DIF ) "
n G,

For the space HK(G), we have the following duality theorem.
THEOREM 2.9. Let 0 < ¢<1<p<oo, and 1/p+1/p' =1. Then
(HK}(G))* = CMO,, (G)

in the following sense. Given g € CMOZ,(G), the functional A, defined for
finite combinations of atoms f = ¢ ... Aja; € HKI(G) by

A4(f) = [ f(@)g(w)de
a
extends uniquely to a continuous linear functional Ay € (HK}(G))* whose
(HK(G))*-norm satisfies
[ Agll < C”Q”CMOZ,(G) .

Conversely, given A € (HKI(G))*, there evists a unique (up to con-
stants) g € CMO},(G) such that A = A,. Further,

l9llemor, @) = ClIAl-

Proof. Take g € CMOJ],(G). 1If a is a central (g,p)-atom (i.e.,
(¢, p)o-atom) supported in G,,, then

< (G ([ la(a) - me (@) do)
Gn

n

< HgHCMOZ,(G)-
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Thus, if f =) 4.1 Ajaj € HK](G), where each a; is a central (g, p)-atom,
then

| [ i@ty | < S | f an()g(a) da
finite
< 3 Pllgllonon o) < (X 14l7) lglleno,

that is, [A4(f)] < CHfHHK;’,(G)HgHCMOZ,(G)-

Obviously, the class of finite combinations of atoms is dense in HK(G),
so Ay can be extended to a continuous linear functional on HK(G), and

4]l < C'||9||<31\40;{,(G)-
Conversely, given A € (HK}(G))*, we must prove that there exists a
unique (up to constants) g € CMO}, (G) such that A = Ay, and ||g/lcmos, (@)

< C|A].

Fixing n € Z, let Lj(Gy) == {f € LP(G,) : [, f(x)dx = 0}. For each
f € LE(G,), it is easy to see that g(z) = M(Gn)l/p_l/quH;lf(x) is a central
(g,p)-atom, where || f||, = ([ |f(z)|P dz)!/P for 1 < p < co. Therefore,

f(z) = plG) VP flpg(e) € HER(G).
Moreover, we have
1 mcacey < w(Ga) T2 £
Thus, if A € (HK}(G))*, it follows that
A< IAINIF ey < U(Ga) Y PIAD1F ] -
That is, 4 € (L§(Gy))*. From this, we know that there exists a g, €
L{ (Gp) C L (G) such that

Af)= [ f@)gn(z)do
Gn

for any f € L§(G,), where 1/p+ 1/p’ = 1. In the following, we need to
construct a function g € L} (G) such that

loc

Af)= [ fx)g(z)da
G

for any f e oo LE(Gn).
Let f € LE(Gy). From the above argument, we know that there exists a
go € L} (G) such that

loc

A(f)= [ f@)go()dax.
Go
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But, since L} (G,,) C L§(Go), n € N, we have
A(f) = [ f@)go(x)dz
G

for any f € U,—,LH(Gn) = L{(Go). In addition, because Lf(Gy) C
L(G_1), from the above argument, there exists a g_1 € LI (G) such that

Af)= [ f@)gal@)de= [ f(z)go(z)dz.
G_1 Go

It follows that
f f(il?){go(:v) — gfl(x)} dr =0
Go

for any f € LE(Gy). For each f € LP(Gy), if we write h(z) = f(z)—meg,(f),
then h € L}(Gp). From this and the above equality, we have

[ 1@){(g0(x) = g-1(x)) — ma, (90 — 9-1)} dz =0
Go

for any f € LP(Gp). Thus, if x € G, then go(x) = g_1(x) +C_1, where C_;
is a constant. Define

_ g()(.’lj), MRS G07
g(:z:) o {g_l(l') + C_l, T € G_1 \ Go.

Then g(z) = g_1(x) + C_; for x € G_1. It is easy to see that
Af) = [ f(2)g(z)dz
G

for each f € |J22 | LE(G,,). Continuing, we obtain the desired function g
defined on G. It remains to verify g € CMOZ,(G). For each n € Z, we have

([ 19@ - me, (@l )"
Gn
= sup {‘ f (9(z) —mg, (9))h(x) dav‘ bl e,y =1, supph C Gn} .
G

From

and
I(h = ma, (W)Xe, s < Clu(Gn)[VI71P,
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it follows that

< sup{|A(h)| : h € LG(Gn), [IhllLe(c,) < C}
< Ol Al G|

for each n € Z, and therefore
”g”CMOZ,(G) < OlA]l.

We have finished the proof of Theorem 2.9.

3. The molecular characterization. We first define weighted central
molecules.

DEFINITION 3.1. Assume 0 < ¢ < 1 < p < o0, -1 < a < 0 and
b>max{(1+a)(1/¢—1/p), 1 — (14 «)/p}. A function M(z) on G is said
to be a central (q,p,b)q-molecule if

(1) [ M(z)dz =0,

(2) Rp,a(M) = [ M|z (e 2" M5 o) < 0
where 0 = (1/g — 1/p)(a + 1) /b.

We first point out that the central (g, p, b),-molecule is indeed a gener-
alization of the central (g, p),-atom.

PROPOSITION 3.2. Let 0 < g< 1 <p< o and -1 < a<0. Ifa is a
central (q,p)a-atom, then a is a central (q,p,b)o-molecule and Ry, o(a) < C,
where b > max{(1+a)(1/¢g—1/p),1—(1+a)/p} and C is independent of a.

Proof. We only need to verify that a satisfies (2) of Definition 3.1.
Assume suppa C Gy,. Note that if z € G, then |z| < (m,,)~!. Therefore,
we have

lz’all Lz @y < (ma)~"llall e q) -
It follows that

Rpala) = llall ;o 1z’ allZn ) < (ma) " llalle )
< (mn)_beﬂa(Gn)l/p_l/q < C,

where C' is independent of a.
This completes the proof of the proposition.

We can now characterize the space HK ,(G) in terms of molecules.

THEOREM 3.3. Suppose 0 < ¢ <1 <p < oo, -1 <a<0andb >
max{(1+a)(1/q—1/p), 1—(1+a)/p}. A distribution f on G is in HK} ,(G)
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if and only if f = ), AMy, both in S'(G) and pointwise, where each My,
is a central (q,p,b)q-molecule, Ry o(My) < C and ) |\i|? < co. Further,

11l sy ~ inf {(Z W@w}

where the infimum is taken over all molecular decompositions of f. More-
over, for ¢ =1 the identity f(x) = > A\ My(x) holds pointwise.

The proof is immediately deduced from Proposition 3.2 and the following

proposition.

PROPOSITION 3.4. If M is a central (q,p,b)o-molecule, then M €
HK] (G) and

M| axca (@) < CRp,a(M)
where C' is independent of M.

Proof. Without loss of generality, we can suppose R, (M) = 1, there-

fore, H|x]bM||Lp @ = HM||L,, () Choose ng € Z satisfying

ta(Gna) < IMIEE < (G 1)

Write B_1 := 0 and By, := G, for k € Z. Moreover, for k € Z,., define
Dk = Bk \Bk:—l- Let
M(@) i= u(De) 7 ([ M@ dp() x5, (@)
Dy

Note that if z € Dy = By = Gy, |2 < (my,) !, and a < 0, then

| Mol

e <C [ IM@)Plal® dz
Dy

by Hélder’s inequality. That is, || Mol 1z () < C||M|| Lz (o) with C indepen-
dent of ng and thus of M. If £ > 1, then

1/p
1Mz = ([ IMe@)P dpa(@)) " < Cu(B) M2l M 16 -

k

Now, we decompose M (z) as follows:

M(x) = ) (M(z) = My(z +ZMk )X p, (©
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N o, (B) Xo,_, (@)
+3 ( [ M@ du(ﬂ) (Z(Dk) - z(Dk1)>

k=1  G\Bj_1
= Zak(:c) + Z bi ()
k=0 k=1
Then
laollze(qy < ClIM|| 1z (c)
and, for k > 1,

1/p
larllzzey < C( [ IM@)P dpa(@)) ™ < Cu(Br) 21" M| ) -
Dy,

Moreover, suppag C Dy C By, suppay C Dy = By, \ Bx—1 C By, for k € N,
and if k € Z4, then [ ai(z)dz = 0. If we write

ai(@) = llanll 2 g an(@)pa(By) =00

then aj} is a central (g, p),-atom, and supp a; C By. Furthermore, if \j, :=
llar ]l 2 () Ha (Br) /477, then Y77%  ax(x) = 3277, Akaj(a) and

oo
Z RIS M1, o (G P 43 (B a1,
k=1

1123 B (B M
k=1

b {b—(1/q—1/p)(a+1)}
<1+4C||=z°M]|4, (G)Z ) a=1/p)(«
q(6 1)/9+q(1 6)/6
§1+C]|M||LP(G) <C
where C is independent of M. In addition,
’ 1/17/
S IM@)du@) < WP Ml ([ 270 duia))
G\Bj_1 G\Bj_1

Note that the integral in parentheses is

S [ faT @R g < Cp(By)t P e/
i=k Bi\Bi_1

and thus

[ 1M(@)] du(@) < Clllal® M| g yu(Bi) /P ~E+elp).
G\Bg -1
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On the other hand,
HM(Dk)_lXDk 2z (@) < Cu(By) et /p,
therefore
bkl 22 @y < Cllw*M || oy i(Bi) ™"

Note that supp by, C Dy, U D1 = By, \ By—2 C Bi, k> 1, and [ by(z)dz
= 0. Hence if we let b} (z) := kuHZ,}(G)bk(m)ua(Bk)_(l/q_l/p) and vy, =
||bk||L5(G)pa(Bk)1/q*1/p, then Y 72 | by(z) = > bj (), and b} is a cen-
tral (g, p)a-atom. Further,

Z Ivel? < CH@PMH%&(G) ZM(Bk)—bq-&-q(a—i-l)(l/q—l/p)

k=1 k=1
0-1)/0 (e B
< CHMHqL(g(Gl))/ Z(mno_k)q{b (e+D)(A/q=1/P)} < O,
k=1

where C is independent of b.

Finally, considering that suppay C suppby C By \ Brp_2 for k& > 1
and suppag C By = Gy,, the pointwise equality M (z) = Y po o Awar(z) +
> re; Ykbk(x) obviously holds in S’(G). This finishes the proof of Proposi-
tion 3.4.

4. Some application. We establish some multiplier theorems on the
space HK{ ., (G) in this section.

THEOREM 4.1. Let 0 < g <1 <p < oo and —1 < a < 0. Suppose ¢ is a
multiplier on LY (G), and consider the condition

(%) ?EP { Z ||(D/\g0J')VHLr(Gz\Gl+1)} < Clm)V7 A,

where @7 1= PXr, g D ol = (|z|M @)V (2)", 1 <7 < o0 and 1/r +
1/r" = 1. If the condition (x) is satisfied in the following two cases:
(i) for some r > p and some A > (a+1)/q —1/r,
or, in the case when p' < p where 1/p+1/p' =1,
(ii) for some r with p" <r < p and some X\ > (a+1)/q,
then ¢ is a multiplier on HKJ (G).

Proof. Let ¢ := ©x, and f = (¢r)" * a. By Theorem 2.5, we need
only prove that for any central (g, p),-atom a,

1 ke @) < C,

where C' is independent of k and a.
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Suppose that suppa C G,. If [ > n, then

([ 1r@rd) " <1 lwe < Cflwe

Gl\Gl+1
< Cllallzz ) < C(my,)~ e+ A/p=1/0)

by the results of Kitada [2]. Therefore,

oo B . 1/q
<ZN(GZ)1 q/pr XG;\G1+1H%Z(G))
l=n

[e.e]
< C(mn)*(aﬂ)(l/pfl/q){ Z(ml)f(aJrl)(l,q/p)}l/q <o

l=n

If | < n, then (G;\ G141) NG, =0 and G, 11 C G, C G,. By Kitada’s proof
of Theorem 2 in [2], we have

< Sy ah( [ 1 @)

Jj=n G\Gi41

> o , 1/p
= S )Ml ([ (D) @) dul))
Jj=n Gi\Gi+1

where ||all; = [ |a(z)|dz. If p < r, then

(f 1r@rdue)”

Gi\Gi+1
< (my) "Vl (D) (@) -
j=n
For A > (a+1)/q — 1/r, from (x) and

lally < llallp(ma) =2 < lal g @) (ma) TP < O(my) e D/a7L
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we have

n—1

( Z :U’(Gl)l q/p“f XG[\G1+1||%Q(G))

l=—o0

n—1

< CHaHl( > (ml)_(aﬂ)ﬂ’\ﬂ/r)q)

l=—0c0

< Cllal1(my)' et/ < ¢

This shows the conclusion of Theorem 4.1(i).
For (ii), suppose p’ < p, where 1/p+1/p’ = 1. If x € G; \ Gj4+1 then

@) sa@l < ([ 1 @=nrat)” al.
Gnp

1/q(mn)1/r,_/\

< 16 Xy, e lallp () 7107
< (m) T )M (D) X g

Therefore,

(] 1r@rdue)”

Gi\Gi+1

< Z(mn)(a—i-l)/q—l/r (ml))\—(a+1)/p||(D>\<pj)V’

L™ (GI\Gi+41)

< O(m)@HV/aA (A=t /b

For A > (a +1)/q, we have

n—1

1/q
1— *
(X w@ 11 nen)

l=—00

n—1

1/
<03 (m @) i, @0/ < 0

l=—00

This shows the conclusion of Theorem 4.1(ii).

COROLLARY 4.2. If 0 < ¢ <1 and there existr > 2 and A > 1/q—1/r
such that o € M(r',\) (see [1] for definition), where 1/r + 1/r" = 1, then ¢

is a multiplier on HK3(QG).

THEOREM 4.3. Suppose 0 < ¢ <1, —1 < a <0 and o is a multiplier on
LZ(G). Assume o € S;* (see [7] for definition, and also [9]), where 0 < o

<1and p>max{(1-0)(1/¢g—1/2)+a((1—-0)/q—0/2),(1—0)/2—0a/2}.

Then o is a multiplier on HK3 (G).
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Proof. Using Theorem 3.3, we only need to show that if a is a cen-
tral (¢, 2)q-atom with support G,,, then M = (ca)V is a central (q,2,b),-
molecule, where b satisfies

(u+o0a—a/2)/(1—0)>b>max{(a+1)(1/¢g—1/2),1 - (a+1)/2}.
Obviously, we need only estimate Rq (M ). First, we have
1M1z < Cllallzz 6y < Cpa(Gn)/?711 < C(my,) @t DU/a12),

It remains to estimate [|[z|°M ]| 12 ). Because suppa C G, @ is constant

on I,. Write 0 = ox,, + 0X,.,, =: 01+ 09; then M = (0a)" = (020a)",
and
2]*(o20) [l 22 () = (020) " | e (b +a2,2.0)
- —2(b+a) ~ ~12 1/2
< (D2 (m) 720 sup{|ire(o2d) — o2dl}3 : € € 11}
l=—c0

by the theorem of [4] (or [7]). We now consider two cases: n > 0 and n < 0.
(A) n > 0. Define [ng] to satisfy
1(Gngi+1) < p(Gn)? < 1(Gpngl) -
Clearly, n > [ng] for n > 0. Write

[ne] oo

1/2
lal*(@28) iz < (D 4 > )

l=—00 I=[ne]+1

For Ay, because | < [ng] < n, we have £ € I} C I, and therefore, for v € I,
(o2a)(y = &) — (02a)(7) = (o2(y = &) — 02(7))a(y) .
Thus,
sup{||7e(02@) — o3alf3 : & € [} < CF (my)** (my,) 2H e [@3
where we take k > b+ . We have

[no]
Ay < CR(my) 2R @13 Y (my) 2R

l=—00

< Ci(my)~20tetted) g 3.

In order to estimate Ay, note that |oa(y)| < (v) * and b+ « > 0. Then

Ay <C Y (m) PO logd5 < Clma) 20T (my,) 7 a3
I=[no]+1
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To sum up,

l2]°(02a)" || 2, () < C(my) ~WFTeN a]l

< C(mn)f(u+gb+goz)+a/2HaHLi(G)

< C(mn)7(u+gb+ga)+a/2—(a+1)(1/2—1/q) )
Therefore,
Ra,a (M) = [|M]| 1 (el M|
2,a L2 ()T L2(G)
< C(mn)be—(p+gb+ga)9+a9/2 < C,
because m,, > 1 and b — (u + 0b + o) + /2 < 0.
(B) n < 0. Then

n

s 1/2
llal"(o5@) e < (D o+ > )

l=—0c0 l=n+1
=: (A + Ay)Y/2.

For A1, note that (y) > 1. Similarly to (A), we take k > b+ «. Then,

A< C Y (m) R a3 < Cmy) 720 a5

l=—00

On the other hand,

oo
Ap £ O (i) 2 a3 < Clma) 720 a

I=n
So,
2" (o20) (| 2 () < C(mn) =+ alf3
< C(my,)~bte)—1/2+(a41)/q
Therefore,
Rao (M) = 1M1, 2" M]3 ) < Clm,) = < C.
This finishes the proof of Theorem 4.3.

COROLLARY 4.4. Let 0 < ¢ <1, 0 < o < 1, 0 € S;* and suppose
p>(1—0)(1/q—1/2). Then o is a multiplier on HK3(G).
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