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A THEOREM OF O’NAN FOR FINITE LINEAR SPACES
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P. -H. Z IESCHANG (KIEL)

One of the most important and beautiful results on doubly transitive
permutation groups is O’Nan’s characterization of PSL(n, q), 3 ≤ n, by
the normal structure of its one-point stabilizer. In a first attack, O’Nan [9]
proves that each doubly transitive permutation group G on a finite set X
such that the one-point stabilizer Gx has an abelian normal subgroup which
does not act semiregularly on X \ {x} satisfies F∗(G) ∼= PSL(n, q) for some
integer n ≥ 3 and some prime power q. In a second paper [10], the same
conclusion is obtained under the hypothesis that Gx has a normal subgroup
which is a T.I. set in G and which does not act semiregularly on X \ {x}.

In [14], the first of these two theorems has been generalized in a natural
way to flag transitive automorphism groups of finite linear spaces which
satisfy the following condition.

(∗) Each stabilizer of a block induces a regular group or a Frobenius group
on the set of points incident with that block.

The main result of that paper appears here as Theorem 2.
The purpose of the present paper is the proof of the following analogous

generalization of O’Nan’s second theorem.

Theorem 1. Let G be a flag transitive automorphism group of a finite
linear space D. Assume that G satisfies (∗). Let X denote the point set
of D. Let x ∈ X, and assume that Gx has a normal subgroup which is a
T.I. set in G and which does not act semiregularly on X \ {x}. Then, for
some integer n ≥ 3 and some prime power q, we have F∗(G) ∼= PSL(n, q).

The proof of this theorem will follow from Theorem 2 and from Propo-
sitions 7(ii), 8, 15, and 16. We shall imitate the argumentation in O’Nan’s
paper. In particular, we take over his results on the structural analysis of
(H,K,L) configurations.

Flag transitive automorphism groups of finite linear spaces satisfying
(∗) have been investigated repeatedly; see [2], [3], [13], and [14]. We also
note that in [1] a general attack on the classification of all flag transitive
automorphism groups of finite linear spaces is announced. Clearly, this
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classification depends on the classification of the finite simple groups which
is not needed in the present paper.

The geometric terminology and notation used in this paper follows that
of [4]. The group-theoretic notation is standard. In addition, we define

FX(H) := {x ∈ X : H ≤ Gx}

for each subgroup H of a permutation group G on a set X.
By a linear space we mean an incidence structure D := (X, B, I) which

satisfies [x, y] = 1 and [x] ≥ 2 ≤ [j] for all x, y ∈ X with x 6= y and for each
j ∈ B. D is called finite if |X| is finite. For convenience in notation, we set
j = (j) for each j ∈ B. In particular, we write ∈ instead of I and (X, B)
instead of (X, B, I).

The following above-mentioned result [14; Satz 2] will play a crucial role
in this paper.

Theorem 2. Let G be a flag transitive automorphism group of a finite
linear space D. Assume that G satisfies (∗). Let X denote the point set
of D. Let x ∈ X, and assume that Gx has an abelian normal subgroup
which does not act semiregularly on X \ {x}. Then, for some integer n ≥ 3
and some prime power q, we have F∗(G) ∼= PSL(n, q).

For the remainder of this paper, we assume that G, D and X satisfy the
hypotheses of Theorem 1.

1. Preliminary results. For a proof of the following lemma see [14;
Lemmas 3 and 4].

Lemma 3. Let x ∈ X. Then:

(i) Gx acts transitively on {Gxy : y ∈ X \ {x}} via conjugation.
(ii) Each normal subgroup of Gx is weakly closed in Gx with respect to G.

Let x ∈ X and N E Gx. Then, by Lemma 3(ii), each one-point stabilizer
of G contains exactly one conjugate of N . Thus, for each r ∈ X, we denote
by Nr the unique conjugate of N contained in Gr. In particular, we write
Nx instead of N . Furthermore, we set

Nr
s := Nr ∩Gs

for arbitrary elements r, s ∈ X with r 6= s.

Lemma 4. Let x ∈ X and Nx E Gx. Then:

(i) Gx acts transitively on {Nx
y : y ∈ X \ {x}} via conjugation.

(ii) For each y ∈ X \ {x}, we have Nx
y E Gxy.

(iii) If Nx is a T.I. set in G, then NG(A) ≤ Gx for each non-trivial
subgroup A of Nx.
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P r o o f. Note that Nx
y = Nx ∩Gxy for each y ∈ X \ {x}. Therefore, (i)

follows from Lemma 3(i), and (ii) is obvious.
To prove (iii), let g ∈ NG(A). Then

1 6= A ≤ Nx ∩ (Nx)g .

Since Nx is a T.I. set in G, this implies that g ∈ NG(Nx) = Gx.

Lemma 5. Let x ∈ X and Nx E Gx. Assume that Nx is a T.I. set
in G. Let y ∈ X \ {x}, and assume that Nx

y is abelian. Let p ∈ π(Nx
y ), and

denote by Wp(x, y) the weak closure of Op(Nx
y ) in Gxy with respect to G.

Set j := FX(Op(Nx
y )) and Bp := jG. Then:

(i) (X, Bp) is a linear space on which G acts flag transitively.
(ii) Wp(x, y) is an abelian p-group.
(iii) j = FX(Wp(x, y)).
(iv) Gj = NG(Wp(x, y)).
(v) Gxj = NGx(Op(Nx

y )).

P r o o f. (i) Assume that there exist r, s ∈ X such that r 6= s and

FX(Op(Nr
s )) 6= FX(Op(Ns

r )) .

Then, by Lemma 4(i), there exists t ∈ FX(Op(Nr
s )) such that t 6∈

FX(Op(Ns
r )).

Since t ∈ FX(Op(Nr
s )), Op(Nr

s ) ≤ Gt. Thus, by Lemma 4(ii),
Op(Nr

s )Op(Ns
t ) is a group.

Since t 6∈ FX(Op(Ns
r )), Op(Ns

r ) 6≤ Gt. Thus, by Lemma 4(i), Op(Ns
t ) 6≤

Gr, whence

(1) (Op(Nr
s )Op(Ns

t ))r < Op(Nr
s )Op(Ns

t ) .

As Op(Nr
s )Op(Ns

t ) is a p-group, we find an element g ∈ Op(Nr
s )Op(Ns

t )\Gr

which normalizes (Op(Nr
s )Op(Ns

t ))r.
We now have

Op(Nr
s ) ≤ (Op(Nr

s )Op(Ns
t ))r = ((Op(Nr

s )Op(Ns
t ))r)g ≤ Grg

and

Op(Nrg

s ) ≤ ((Op(Nr
s )Op(Ns

t ))r)g = (Op(Nr
s )Op(Ns

t ))r ≤ Gr .

Thus, we conclude that Op(Nr
s ) = Op(Nr

rg ) and Op(Nrg

s ) = Op(Nrg

r ), so,
by (1),

Op(Nrg

r )Op(Nr
rg ) < Op(Nr

s )Op(Ns
t ) .

By Lemma 4(i), this leads to the contradiction

1 < Op(Nrg

r ) ∩Op(Nr
rg ) .
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Thus, we have shown that

(2) FX(Op(Nr
s )) = FX(Op(Ns

r ))

for all r, s ∈ X with r 6= s.
Let r, s, t, u ∈ X with r 6= s, t 6= u, and t, u ∈ FX(Op(Nr

s )). We shall
show that FX(Op(Nr

s )) = FX(Op(N t
u)).

Without loss of generality we may assume that r 6= t. Since t ∈
FX(Op(Nr

s )), Op(Nr
s ) ≤ Gt, whence Op(Nr

s ) = Op(Nr
t ). But now (2)

yields FX(Op(Nr
s )) = FX(Op(N t

r)). Therefore, since u ∈ FX(Op(Nr
s )),

Op(N t
r) ≤ Gu, which yields Op(N t

r) = Op(N t
u). It follows that FX(Op(Nr

s ))
= FX(Op(N t

u)), as desired.
Now (i) follows from Lemma 4(i).
(ii) Let g, h ∈ G such that Op(Nx

y )g ≤ Gxy and Op(Nx
y )h ≤ Gxy. Then

x, y ∈ jg ∩ jh, whence, by (i), jg = jh. Now, by Lemma 4(ii), Op(Nx
y )g and

Op(Nx
y )h normalize each other. Since, by hypothesis, Nx is a T.I. set in G,

we even have [Op(Nx
y )g,Op(Nx

y )h] = 1.
(iii) follows from (i), and (iv) follows from (iii).
(v) We have

NGx(Wp(x, y)) ≤ NGx(Wp(x, y) ∩Nx) = NGx(Op(Nx
y )) .

Therefore, the claim follows from (iv).

Lemma 6. Let x ∈ X and Nx E Gx. Assume that Nx is a T.I. set in G.
Let y ∈ X\{x}, and assume that Nx

y is abelian. Then [Ny
x ,NNx(Nx

y )] ≤ Nx
y .

P r o o f. The groups Nx and NxNy
x act transitively on the set yNx

.
Furthermore, we have (Nx)y = Nx

y and (NxNy
x )y = Nx

y Ny
x .

On the other hand, Lemma 5(i) yields FX(Nx
y ) = FX(Nx

y Ny
x ). Thus, by

[12; Theorem 3.5], NNx(Nx
y ) and NNxNy

x
(Nx

y Ny
x ) both act transitively on

yNx ∩ FX(Nx
y ), whence |NNx(Nx

y ) : Nx
y | = |NNx(Nx

y Ny
x ) : Nx

y |.
Thus, NNx(Nx

y Ny
x ) = NNx(Nx

y ), which gives the desired conclusion.

Proposition 7. Let x ∈ X and Nx E Gx. Assume that Nx is a T.I.
set in G. Let y ∈ X \ {x}, and assume that Nx

y 6= 1. Then:

(i) If Nx
y is abelian and the Sylow 2-subgroup of Nx

y is not cyclic, then
either Nx

y E Nx, or , for some integer e ≥ 2, we have Nx ∼= SL(2, 2e)
and |Nx

y | = 2e.
(ii) One of the following holds.

(a) Nx is a Frobenius group with Z(F(Nx))y 6= 1.
(b) Nx

y is a non-abelian Frobenius complement and a Hall subgroup of
Nx. Nx

y has a normal complement in Nx.
(c) Nx

y is abelian.
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P r o o f. From Lemma 4(iii) we may conclude that Ny
x is isomorphic to

a subgroup of Aut(Nx).
Let g ∈ Ny

x \ 1. Then, by Lemma 4(iii), CNx(g) ≤ Nx
y . Since [g,Nx

y ] ≤
Ny ∩ Nx = 1, we thus have CNx(g) = Nx

y . Clearly, Lemma 4(i) implies
that Nx

y
∼= Ny

x . Thus, we have a constrained (Ny
x , Nx, Nx

y ) configuration in
the sense of O’Nan [10].

Now (i) follows from Lemma 6 and [10; Proposition 4.26], and (ii) is a
consequence of [10; Propositions 4.9 and 4.15].

Note that, if, for some x ∈ X, Gx has a normal subgroup which is a
T.I. set in G and which satisfies condition (a) of Proposition 7(ii), then
Theorem 1 follows from Theorem 2. In the following two sections, we shall
treat the cases (b) and (c) of Proposition 7(ii).

2. Case (b) of Proposition 7(ii). The purpose of this section is the
proof of the following proposition which shows that case (b) of Proposi-
tion 7(ii) leads to a contradiction.

Proposition 8. Let x ∈ X and Nx E Gx. Assume that Nx is a T.I. set
in G. Let y ∈ X \ {x}. Then one of the following conditions must be false:

(a) Nx
y is cyclic of prime order.

(b) Nx
y is a Sylow subgroup of Nx.

(c) Nx
y has a normal complement in Nx.

For the sake of clarity we break up the proof of Proposition 8 into a
sequence of lemmas.

For the remainder of this section, let x ∈ X, and let Nx be a normal
subgroup of Gx which is a T.I. set in G. Let y ∈ X \ {x}, and assume that
y satisfies (a), (b), and (c) of Proposition 8. By Mx we denote the normal
complement of Nx

y in Nx.
At the end of this section, we shall obtain a contradiction from Lemma 13.

Lemma 9. Nx is a Frobenius group with kernel Mx and complement Nx
y .

P r o o f. By Lemma 6, we have [Ny
x ,CMx(Nx

y )] ≤ Mx ∩Nx
y = 1. Thus,

Lemma 4(iii) yields CMx(Nx
y ) = 1.

Set p := |Nx
y |, and define Wp(x, y), j, and Bp as in Lemma 5. For

each r ∈ X, we set (r) := {h ∈ Bp : r ∈ h}. We temporarily define
W := Wp(x, y), B := Bp,

J := {Nr
s : r, s ∈ j, r 6= s} ,

and

M := {V ≤ W : |W : V | = p, CMx(V ) 6= 1} .
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Lemma 10. (i) M 6= ∅.
(ii)

⋂
V ∈M V = 1.

(iii) Let r, s ∈ X with r 6= s. Suppose V ∈M. Then Nr
s ∩ V = 1.

P r o o f. From [8; Satz 7.22] we conclude that

(3) Mx = 〈CMx(V ) : V ∈M〉 .
(i) follows from (3).
(ii) Set T :=

⋂
V ∈M V . Then, by (3), Mx centralizes T . On the other

hand, by Lemma 5(iii), T ≤ G(j). Note also that, by (b) and (c), Mx acts
transitively on (x). Thus, we conclude that T = 1, as desired.

(iii) If r 6= x, then CMx(Nr
s ) = 1, by Lemma 4(iii). If r = x, the

same conclusion follows from Lemma 9. Thus, (iii) is a consequence of the
definition of M.

Lemma 11. Let V ∈M, and set B(V ) := {h ∈ B : h ⊆ FX(V )}. Then:

(i) (FX(V ), B(V )) is a linear space.
(ii) CG(V ) acts flag transitively on (FX(V ), B(V )).
(iii) CMx(V ) acts regularly on (x) ∩B(V ).

P r o o f. Set Y := FX(V ), and let r ∈ Y . Assume that there exists
h ∈ (r) such that h ⊆ Y .

Since r ∈ Y , V ≤ Gr. Therefore, MrV is a group acting on (r).
By Lemmas 5(v) and 9, Mr acts regularly on (r). Thus, MrV acts faith-

fully on (r), and we have V = (MrV )h. In particular, by [12; Theorem 3.5],
CMr (V ) acts transitively on {i ∈ (r) : V ≤ Gi}. But, as h ∈ (r) and r ⊆ Y ,
this implies that i ⊆ Y for all i ∈ (r) with V ≤ Gi.

Since j ⊆ Y , the preceding discussion shows that i ⊆ Y for every i ∈ (x)
with 2 ≤ |i ∩ Y |. In particular, the opening assumption is satisfied for each
r ∈ Y , and we conclude that (i) and (iii) hold.

(ii) follows from (iii) and [9; Lemma 4.9].

Lemma 12. We have |W | = p2.

P r o o f. From Lemma 11(ii) it follows that CGj (V ) acts transitively
on J . Since 〈J 〉 = W , we may apply [10; Lemmas 3.15 and 3.16]. Thus,
there exists a subgroup P of W such that |W : P | = p2 and P ≤ V for each
V ∈M. Now the claim follows from Lemma 10(ii).

Lemma 13. We have |j| = 2.

P r o o f. We assume that 3 ≤ |j| (= |J |). Define A := Gj/G(j). From
Lemmas 12 and 5(iv) we conclude that A is isomorphic to a subgroup of
PGL(2, p).

Assume that p divides |A|. Then, since 3 ≤ |J |, |J | ∈ {p, p + 1}.
Therefore, by Lemma 10(iii), |M| = 1, contrary to Lemma 10(ii).
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Thus, p does not divide |A|. In particular, A considered as a permutation
group on j has cyclic one-point stabilizers. On the other hand, Lemma 3(i)
implies that all two-point stabilizers of A have the same size. Thus, we have
Gxy = G(j), which means that A acts regularly or as a Frobenius group
on j.

Let K denote the regular normal subgroup of A. Suppose V ∈M. Then,
by Lemma 11(ii), CGj (V ) acts transitively on j. Thus, the image of CGj (V )
in A contains K. Since K 6= 1 and V is arbitrary, we must have

(4) |M| = 2 .

Define v := |X|, k := |j|, a := |Ax|, and {V1, V2} := M. For each
i ∈ {1, 2}, we set vi := |FX(Vi)| and ri := |CMx(Vi)|.

First of all, by [7; Theorem 5.3.16],

Mx = CMx(V1)CMx(V2) .

Therefore, Lemma 9 yields |Mx| = r1r2. On the other hand, by Lemmas
5(v) and 9, Mx acts regularly on (x). Thus, by Lemma 5(i),

(5) v − 1 = r1r2(k − 1)

and

(6) |G| = vr1r2a|Gxy| .
From Lemma 11(i), (iii) we obtain

(7) vi − 1 = ri(k − 1)

for each i ∈ {1, 2}.
From 3 ≤ |J | we conclude that, for each i ∈ {1, 2}, Gxy ≤ NGxj (Vi).

Conversely, NGxj (Vi) normalizes Nx
y , V1, and V2; see Lemma 5(iv), (v)

and (4). Thus, NGxj (Vi) = Gxy, and so, by Lemma 11(ii),

(8) |NG(Vi)| = viri|Gxy|
for each i ∈ {1, 2}.

Assume without loss of generality that r1 ≤ r2.
If r1 = r2, then, by (6) and (8), v1 divides vr1a. Thus, since a divides

k − 1, (7) implies that v1 divides v. Now, by (5) and (7), we have

1 + r1(k − 1) | 1 + r2
1(k − 1) .

But clearly this is impossible. Consequently, we must have

(9) r1 < r2 .

From (7) and (9) we conclude that V1 and V2 cannot be conjugate in G.
In particular, Gxj normalizes V1, V2, and Nx

y , whence Gxy = Gxj ; equiva-
lently,

(10) a = 1 .
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Define b := |B|, b2 := |B(V2)|, and c := |G : NG(V2)|. Then Lemma 5(i)
implies that bk = vr1r2, and Lemma 11(i) yields b2k = v2r2. In particular,
by (6), (8), and (10), it follows that b = b2c. Thus, V2 is weakly closed in
Gxy with respect to G; equivalently,

(X, {FX(V2)g : g ∈ G})

is a linear space (on which G acts block transitively).
Now (7), [4; 1.3.8], and (5) yield r2 ≤ r2(k − 1) = v2 − 1 < r1, contrary

to (9).

By Lemma 13, G acts doubly transitively on X, and Gx considered as
a permutation group on X \ {x} has a regular normal subgroup. Thus, [10;
Lemma 3.7] yields a contradiction. This proves Proposition 8.

3. Case (c) of Proposition 7(ii). In this section, we shall show that
Theorem 1 holds if, for some x ∈ X, Gx has a normal subgroup Nx which
is a T.I. set in G and which satisfies 1 6= Z(Nx

y ) = Nx
y for each y ∈ X \ {x}.

Lemma 14. Let x ∈ X, and assume that Gx has a normal subgroup of
odd order which is a T.I. set in G and which does not act semiregularly on
X \ {x}. Then, for some integer n ≥ 3 and some prime power q, we have
F∗(G) ∼= PSL(n, q).

P r o o f. Take Nx to be a normal subgroup of odd order of Gx that is
minimal with respect to the property that Nx is a T.I. set in G which does
not act semiregularly on X \ {x}.

By the Feit–Thompson Theorem [5], Nx is solvable. Thus, (Nx)′ < Nx.
Take p ∈ π(Nx/(Nx)′), and let Mx denote the (unique) smallest normal
subgroup of Nx the factor group of which is an elementary abelian p-group.
Then Mx E Gx.

By Theorem 2, we are done if Nx is abelian. Clearly, if Mx = 1, then
Nx must be abelian. We now consider the case that Mx 6= 1.

Let y ∈ X \ {x}. Then, by Lemma 4(iii), the (minimal) choice of Nx

yields CMx(g) = 1 for every g ∈ Ny
x \ 1. Therefore, Mx is a nilpotent

p′-group, and |Nx
y | = p; see [7; Theorem 10.3.1(iv)]. In particular, by Propo-

sition 8, Nx
y 6∈ Sylp(Nx).

Let P be an Ny
x -invariant Sylow p-subgroup of Nx which contains Nx

y .
Since Nx

y < P ,

CNy
x P (Ny

xNx
y ) = Ny

xNx
y < NNy

x P (Ny
xNx

y ) .

Thus, Ny
x is conjugate in Gx to each of the proper subgroups of Ny

xNx
y

different from Nx
y . In particular, each element of Ny

xNx
y \ Nx

y induces a
fixed-point-free automorphism of Mx, whence, by [7; Theorem 6.2.4], Nx

y
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centralizes Mx. It follows that 1 6= Nx
y ≤ Z(Nx). Thus, the minimal choice

of Nx forces Nx to be abelian.

Proposition 15. Let x ∈ X and Nx E Gx. Assume that Nx is a T.I.
set in G. Let y ∈ X \{x}, and assume that Nx

y is a non-trivial abelian group
of odd order. Then, for some integer n ≥ 3 and some prime power q, we
have F∗(G) ∼= PSL(n, q).

P r o o f. Take Nx to be a normal subgroup of Gx that is minimal with
respect to the properties that Nx is a T.I. set in G, and that Nx

y is a
non-trivial abelian group of odd order.

If |Nx| is odd, then we are done by Lemma 14. Therefore, we assume
henceforth that Nx has even order. Let m be an involution in Nx. Then
FX(〈m〉) = {x}. Set z := ym.

Take p ∈ π(Nx
y ), define Bp as in Lemma 5, and let h ∈ Bp such that

y, z ∈ h.
First of all, we shall prove that

(11) (2, |h|) = 1 .

Assume first that there exists g ∈ Gh such that |mgm| is even.
Since FX(〈m〉) = {x}, 〈mg,m〉 has a unique orbit Y of odd length in X.
Let a generate the subgroup of 〈mg,m〉 which fixes all points of Y . Set

k := am. Then k is an involution in 〈mg,m〉. Thus, k is conjugate to mg

or to m. In particular, k is conjugate to some involution of Nx. On the
other hand, since a,m ∈ Gx, k ∈ Gx. Consequently, we must have k ∈ Nx,
whence a = km ∈ Nx.

Suppose g 6∈ Gx. Then {x} ⊂ Y . Thus, since a ∈ (Nx)Y , |a| is odd. It
follows that |mgm| = |Y | · |a| is odd, contrary to the choice of g.

Thus, we have g ∈ Gx, whence

(12) 〈mg,m〉 ≤ Nx .

Set W := Wp(y, z), where Wp(y, z) is defined as in Lemma 5. Since g ∈ Gh,
Lemma 5(iv) implies that 〈mg,m〉 ≤ NG(W ). Let i denote the central
involution of 〈mg,m〉. Then, by [7; Theorem 6.2.4], (12), and Lemma 4(iii),

W = 〈CW (m),CW (i),CW (mi)〉 ≤ Gx .

In particular, by Lemma 5(iii), x ∈ h. Thus, (11) follows from FX(〈m〉)
= {x}.

Assume next that |mgm| is odd for every g ∈ Gh. Define A := Gh/G(h).
Let m∗ denote the image of m in A. Then, by a theorem of Glauberman [6,
Theorem 1],

(13) A = O(A)CA(m∗) .
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Assume first that A acts regularly on h. Then, by Lemma 5(v),

NGy
(Op(Ny

z )) = Gyh = Gyz ,

whence NNy (Op(Ny
z )) = Ny

z . By hypothesis, Ny
z is abelian. Thus, by a

theorem of Burnside [7; Theorem 7.4.3], Ny has a normal p-complement.
The minimal choice of Nx yields Op′(Ny)z = 1. Thus, by Lemma 4(iii),

COp′ (Ny)(g)=1 for each g∈Nz
y \1. In particular, by [7; Theorem 10.3.1(v)],

|Ω1(Op(Nz
y ))| = p. But then the minimal choice of Nx forces Nx =

Op′(Nx)Ω1(Op(Nx
y )), contrary to Proposition 8.

Assume next that A acts as a Frobenius group on h. Let K denote the
kernel of A. If m∗ ∈ K, then [O(A),m∗] = 1, whence m∗ = 1, contrary to
the choice of m. Thus, m∗ has a fixed point in h. Again, (11) follows from
FX(〈m〉) = {x}.

Assume finally that A acts neither regularly nor as a Frobenius group
on h. Then

(h, {FX(Grs) : r, s ∈ h , r 6= s})
is a linear space on which A acts as a flag transitive automorphism group.
Thus, by [4; 2.3.7(a)], A acts primitively on h. In particular, by (13),
O(A) 6= 1, which yields (11).

As FX(〈m〉) = {x}, (11) yields

(14) m ∈
⋂

i∈(x)

Gi ,

where, as usual, (x) := {i ∈ Bp : x ∈ i}.
Define Mx := 〈mg : g ∈ Gx〉. Then, by (14) and Lemma 5(iv),

(15) Mx ≤ NG(W ) ,

where, as above, W denotes the weak closure of Op(Ny
z ) in Gyz with respect

to G. Moreover, by the minimal choice of Nx, we must have Mx
y = 1 or

Mx = Nx.
In the first case, (15) implies that

[m,W ] ≤ [Mx,W ] ≤ Mx ∩W ≤ Mx
y = 1 .

Hence, by Lemma 4(iii), m ∈ Gy, contrary to the choice of m.
In the second case, (15) implies that

Nx = NNx(W ) ≤ NG(Nx
y ) .

Thus, 1 6= Op(Nx
y ) ≤ Op(Nx)y, contrary to the choice of Nx.

Proposition 16. Let x ∈ X and Nx E Gx. Assume that Nx is a T.I.
set in G. Let y ∈ X \ {x}, and assume that Nx

y is an abelian group of even
order. Then, for some integer n ≥ 3 and some prime power q, we have
F∗(G) ∼= PSL(n, q).
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P r o o f. Assume first that the Sylow 2-subgroup of Nx
y is not cyclic.

Then, by Proposition 7(i), either Nx
y E Nx, or, for some integer e ≥ 2, we

have Nx ∼= SL(2, 2e) and |Nx
y | = 2e.

In the first case, we conclude that 1 6= O2(Nx
y ) E Nx. This forces

Z(O2(Nx))y 6= 1, and we are done by Theorem 2.
In the second case, we have

(16) |Nx : NNx(Nx
y )| = 2e + 1

and

(17) |NNx(Nx
y ) : Nx

y | = 2e − 1 .

Define B2 and j (∈ B2) as in Lemma 5. Set (x) := {h ∈ B2 : x ∈ h}.
Since Nx

y ∈ Syl2(Nx), Nx acts transitively on (x). Thus, by Lemma 5(v)
and (16), |(x)| = 2e + 1.

On the other hand, by Lemma 5(v) and (17), 2e − 1 divides |j| − 1.
Thus, |j| = 2e; see [4; 1.3.8]. In particular, (X, B2) is an affine plane on
which G acts doubly transitively. Thus, by [11; Theorem 1], G has a normal
subgroup R acting regularly on X. It follows that RNx = RNy, whence

Nx
y = (RNx)y = (RNy)x = Ny

x ,

contradiction.
Assume next that the Sylow 2-subgroup of Nx

y is cyclic. For all r, s ∈
X with r 6= s we denote by nr

s the unique involution in Nr
s . Let t ∈

FX(〈nr
s〉) \ {r, s}. Then, by Lemma 4(ii), [nr

s, n
s
t ] = 1. Therefore, ns

t ∈ Gr;
see Lemma 4(iii). It follows that ns

r = ns
t ∈ Gt, whence t ∈ FX(〈ns

r〉). Thus,
we have shown that

(18) FX(〈nr
s〉) = FX(〈ns

r〉)

for all r, s ∈ X with r 6= s.
Take z ∈ X \ FX(〈nx

y〉). Define w := znx
y , and let Q be an nw

z -invariant
Sylow 2-subgroup of Nz such that O2(Nz

w) ≤ Q.
Suppose O2(Nz

w) = Q. Then Q is cyclic. Thus, by [7; Theorem 7.4.3],
Nz has a normal 2-complement. Set Mz := O(Nz)〈nz

w〉. Then, by Propo-
sition 8, we must have 〈nz

w〉 < Mz
w, whence O(Nz)w 6= 1. Thus, the desired

assertion follows from Lemma 14.
Suppose O2(Nz

w) < Q. Then O2(Nz
w)〈nw

z 〉 < Q〈nw
z 〉. Take g ∈

NQ〈nw
z 〉(O2(Nz

w)〈nw
z 〉) such that g 6∈ O2(Nz

w)〈nw
z 〉 = CQ〈nw

z 〉(O2(Nz
w)〈nw

z 〉).
Then g fixes Ω1(O2(Nz

w)〈nw
z 〉) = 〈nz

w, nw
z 〉 and Q ∩ Ω1(O2(Nz

w)〈nw
z 〉)

= 〈nz
w〉. Thus, nw

z and nz
wnw

z are conjugate in G. In particular, by (18),

(19) FX(〈nz
w〉) = FX(〈nz

w, nw
z 〉) .
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Since w = znx
y , nx

y ∈ CG(nz
wnw

z ). Therefore, by Lemma 4(iii), nz
wnw

z

∈ Gx. Now (19) implies that nz
w ∈ Gx, whence nz

w = nz
x. Thus, by (18), we

must have nx
z ∈ Gw, which yields nx

z = nx
w. It follows that nx

y ∈ CG(nx
z ).

Since z ∈ X \FX(〈nx
y〉) is arbitrary, 〈nx

z : z ∈ X \{x}〉 is an abelian nor-
mal subgroup of Gx. Thus, the desired assertion follows from Theorem 2.

REFERENCES

[1] F. Buekenhout, A. Delandtsheer, and J. Doyen, Finite linear spaces with
flag-transitive groups, J. Combin. Theory Ser. A 49 (1988), 268–293.

[2] A. R. Camina, Permutation groups of even degree whose 2-point stabilisers are
isomorphic cyclic 2-groups, Math. Z. 165 (1979), 239–242.

[3] —, Groups acting flag-transitively on designs, Arch. Math. (Basel) 32 (1979), 424–
430.

[4] P. Dembowski, Finite Geometries, Springer, Berlin 1968.
[5] W. Fe i t and J. G. Thompson, Solvability of groups of odd order , Pacific J. Math.

13 (1963), 771–1029.
[6] G. Glauberman, Central elements in core-free groups, J. Algebra 4 (1966), 403–

420.
[7] D. Gorenste in, Finite Groups, Harper & Row, New York 1968.
[8] H. Kurzwei l, Endliche Gruppen, Springer, Berlin 1977.
[9] M. O’Nan, A characterization of Ln(q) as a permutation group, Math. Z. 127

(1972), 301–314.
[10] —, Normal structure of the one-point stabilizer of a doubly-transitive permutation

group. I , Trans. Amer. Math. Soc. 214 (1975), 1–42.
[11] T. G. Ostrom and A. Wagner, On projective and affine planes with transitive

collineation groups, Math. Z. 71 (1959), 186–199.
[12] H. Wie landt, Finite Permutation Groups, Academic Press, New York 1964.
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