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THE SPACE OF WHITNEY LEVELS IS HOMEOMORPHIC TO I,

BY

ALEJANDRO ILLANES (MEXICO, D.F.)

If (X,d) is a metric continuum, C'(X) stands for the hyperspace of all
nonempty subcontinua of X, endowed with the Hausdorff metric H. A map
is a continuous function.

A Whitney map is a map p : C(X) — I such that u({z}) = 0 for each
ze X, u(X)=1landif A,B € C(X), A ¢ B then pu(A) < p(B). The space
of Whitney maps W (X) is endowed with the sup metric. Throughout this
paper p denotes a fixed Whitney map. A Whitney level is a subset of C'(X)
of the form p~1(t) where p is a Whitney map. By [5, p. 1032], Whitney
levels are in C(C(X)) = C%(X). The space of Whitney levels, denoted by
N(X), is a subspace of C?(X).

Given A,B € N(X) we write A < B if for each A € A there exists
B € B such that A C B, and we write A < B if for each A € A there
exists B € B such that A & B. The space of Whitney decompositions is
WD(X) = {{w t(t) e C3(X) |0 <t <1} € C(C(C(X))) | w € W(X)}.
Other conventions that we use: I denotes the interval [0, 1], the metric for
C?(X) is denoted by H?, F;(X) is the set of all one-element subsets of X.

The space N (X) was introduced in [6]; it was useful to prove that W (X)
and WD(X) are homeomorphic to the Hilbert space Iy for all X (see [7]
and [8]).

The aim of this paper is to prove

MAIN THEOREM. The space N(X) of Whitney levels is homeomorphic
to the Hilbert space ly for all X.

For that we use Torunczyk’s characterization of Hilbert space. Theo-
rems 1 and 2 are intermediate results.

THEOREM 1. N(X) is topologically complete.

DEFINITION 1.1. A large ordered arc (l.o.a.) in C(X) is a subcontinuum
v of C(X) such that vy € Fi(X), Uy = X and A, B € 7 implies that
ACBor BCA.

An antichain in C(X) is a subset A of C(X) such that if A, B € A and
A C B then A = B.
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By [9, Lemma 1.3], every l.o.a. in C'(X) is homeomorphic to I and by [9,
Thm. 2.8], if A, B € C(X) and A C B, then there exists a l.o.a. v in C'(X)
such that A, B € 7. In [7] it was proved that if A C C(X) - ({X}UF; (X)),
then A is a Whitney level if and only if A is a compact antichain which
intersects every l.o.a. in C'(X).

Proof of Theorem 1. Let % = {D € C*(X) : DN~ # 0 for every
lo.a. v in C(X)}. Then 2 is closed in C?(X), thus 2 is topologically com-
plete. For each n € N define 2,, = {D € 2: there exist A, B € D such
that A C B and H(A,B) > 1/n} and B, ={D € A: DN F(X) # 0 and
Dnu=1/n,1] # 0}. It is easy to prove that 2, and B, are closed subsets
of 2.

Clearly 2, UJ®B,, CA—-N(X). Let D e A— N(X). If X € D, then
there exists A € D such that A # X. Thus there exists n € N such that
D e,. If DN F1(X) # 0, since D intersects every l.o.a. in C(X) and
D # Fi(X), we see that D is not contained in Fj(X). Thus there exists
n € N such that D € 9B,,. Finally, if D C C(X)— ({X}UF;(X)), then since
D ¢ N(X), D is not an antichain. Therefore D € 2, for some n.

Hence 2 — N(X) = U2, U UB,,. Thus N(X) is a G5 subset of 2A.
Therefore [12, Thm. 24.12], N(X) is topologically complete.

THEOREM 2. N(X) is a metric AR.

In [7] it was proved that for every A, B € N(X), the infimum and supre-
mum of the set {A, B} with respect to the order < both exist. They were
constructed in the following way: For each lo.a. v in C(X), let A, (resp.
B,) be the unique element in AN~ (resp. BN~) (notice that A, C B, or
A, D By). The infimum of A and B is defined to be AANB = {4, N
B, : yisalo.a.in C(X)} and the supremum is AV B = {A, U B, :
v is alo.a. in C(X)}. Also it was shown that the functions A,V : N(X) x
N(X) — N(X) are continuous [7, Thm. 1.9].

To prove Theorem 2 we use V and A to endow N(X) with a convex
structure in the sense of Curtis [2, Definition 2.1]. We imitate Dugundji’s
proof in [3] to prove that N(X) is a metric AR. First we need to introduce
a new metric for N(X).

DEFINITION 2.1. Let H* : N(X) x N(X) — R be given by
H*(A,B) =sup{H(A,B): Ac A,BeBand AC Bor AD B}.

LEMMA 2.2. (a) H* is a metric for N(X) which is equivalent to H>.
(b) If A< B <C then H*(A,B),H*(B,C) < H*(A,C).

(c) IfC<B<Dand H*(A,C),H*(A,D) < ¢, then H*(A,B) <.
(d) H*(CVv B,DV B) < H*(C,D) for every B,C,D € N(X).
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Proof. (a) Let A,B,C € N(X) and let A € A and C € C such that
A C Cor ADC. Then there exists a l.o.a. v in C(X) such that A,C €
v. Let B € yNB. Then A C Bor A D Band B C Cor B D C.
Hence H(A,C) < H(A,B) + H(B,C) < H*(A,B) + H*(B,C). Therefore
H*(A,C) < H*(A,B)+ H*(B,C).

Clearly H> < H*. Let A € N(X) and let ¢ > 0. By [7, 1.8] there exists
§ > 0 such that if B € N(X), H*(A,B) <d, A€ A,B€ Band AC B or
A D B then H(A,B) < e. Given B € N(X) such that H*(A,B) < 4, we
have H*(A,B) < e. Hence H* and H? are equivalent metrics for N(X).

(b) This is evident.

(c) Let A € Aand B € B be such that A C Bor A D B. Let v be a
lLo.a. in C(X) such that A,B € 7. Let C € yNC and D € yND. Then
CCcBCD. If AC B then H(A,B) < H(A,D) < H*(A,D) < . If
A D B, then H(A,B) < H(A,C) < H*(A,C) < e. Therefore H*(A,B) < ¢.

(d) Let A CVvBand E € DV B be such that A C Eor A D E. Let
v be a l.o.a. in C(X) such that A,E € v. Let C € CU~, B € BU~ and
D € DU~. Suppose, for example, that C C D. If B C C then A = C and
E =D, thus HA,E) < H*(C,D). If C C BC D, then A= B and E = D,
hence H(A,E) < H(C,D) < H*(C,D). If D C B then A = B = E, so
H(A,E) < H*(C,D). Therefore H*(CV B,DV B) < H*(C, D).

DEFINITION 2.3. Let

An:{(sla-..,sn)eln’81—|—..-“|—Sn:1}.

Given A; € N(X), let M;(Ay,1) = Ay, If Aj, Ay € N(X) and s € 1, let
[ AV (um(2s) A AL ifo<s<?i,
MQ(AI’AQ’S’l_S){Alv(u—1(2—2s)AA2) ifl<s<l.

Inductively, if n > 3, A,..., A, € N(X) and (s1,...,8,) € Ay, let
My(Ag, ...y Apy 81,0y Sn)

S Sp—
M2 Mn—l Ala-"aAn—la ! PRI ! 7Ana1_8nasn
= 1_STL 1_8n
if s, < 1,
A, ifs,=1.

LEMMA 2.4. (a) M, : N(X)" x A, — N(X) is continuous for every
n € N.
(b) Suppose that H*(A,Ay),...,H*(AA,) < e.
($1y-.+,8n) € Ap, H*(M,(Aq,..., Ap,81,...,80),A) <e.
(c) Suppose that n > 2 and (S1,...,8i—1,8i+1s---18n) € An_1. Then
Mn(Al,...,An,sl,...,Si_1,0,8i+1,...,8n)
= n_l(Al,...,Ai_l,AHl,...,An,sl,...,si_l,si_,_l,...,sn).

Then for every
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Proof. (a) Clearly M; and My are continuous. Suppose that M, is
continuous (n > 3). Let z = (A1,...,An,81,...,8,) € N(X)" x A,. If
Sp < 1, the continuity of M, at z is immediate. Suppose then that s,, = 1.
Let ¢ > 0. Take § > 0 such that § < 1/2 and H*(Fy(X), " 1(2t)) < &/2
for every t € [0,0). Let w = (By,...,Bp,t1,...,t,) € N(X)" x A,, be
such that H*(A1,B1),...,H*(A,,B,) and 1 — ¢, are less than ¢ and /2.
If t, = 1, then H*(M,(z), M, (w)) = H*(A,,B,) < e. If t, < 1, then
M, (w) = Ms(C, B,,,1 — t,,t,) where

C =My 1(By,....Buoi,t1)(1—tn), .o tn)(1—t)).

Thus M,,(w) = B,V (=1 (2(1—t,))AC). Then B,V F(X) < M, (w) < B,V
p=1(2(1—t,)). Applying Lemma 2.2, we have H*(B,,, M,,(w)) < /2. Hence
H*(M,(z), M, (w)) = H*(A,, M, (w)) < €. Therefore M, is continuous.

(b) We only check this property for n = 2. Let z = (A, As, s1,52) €
N(X)? x Ay be such that H*(A;,A), H*(A2,A) < e. Then H*(A, A; V
Ay) < e. Since Ay < My(z) < A1V Ay or A1 < My(z) < A V Ay,
Lemma 2.2 implies that H*(A, Ma(z)) < e.

Proof of Theorem 2. Let (Z,0) be a metric space, let A be a
closed subset of Z and let g : A — N(X) be a map.

Foreachz € Z — A, let B, ={z€ Z | o(x,2) < (1/2)o(z,A)}. Let U =
{Us | @ € J} be a neighborhood finite open refinement of {B,, | x € Z — A},
indexed by a well ordered set J. Let {¢, | @ € J} be a partition of unity
on Z — A subordinate to U. Given a € J, choose z, € Z — A such that
Uy C By, . Also choose a, € A such that o(z,,aq) < 20(x4, A). If 2z € U,,
then (1/2)p(xq,A) < 0(z,A), so o(z,a4) < 50(z, A).

Define g : Z — N(X) in the following way:

(a) For x € Z — A, let a1 < ... < ay, be the ordering in J of those
elements « for which ¢, (z) > 0, and define

g(‘r) = Mn(g(aal), Tt 79(0’0411)7 ¢a1 (:ZI), T 7¢an(x)) :
(b) For x € A, define g(z) = g(z).

If x € Z — A, there exists an open subset U of Z and (1,...,0m € J
such that z € U C Z — A, /1 < ... < B and ¢, (2) = 0 for every z € U
and every o & {(1,...,m}. Lemma 2.4(c) implies that

/g\(z) = Mm(g(a,@1)7 s 7g(a5m)7 ¢ﬁ1 <Z)7 SRR ¢ﬁm (Z))

for every z € U. Hence g is continuous at z. If x € Fr(A), let € > 0. Let
0 > 0 be such that if @ € A and g(a,z) < 6, then H*(g(a),g(x)) < e. Take
z € Z such that g(z,z) < 0/6 and z ¢ A. Let a1 < ... < «, be those a’s
for which ¢4(z) > 0. Then z € Uy, N...NU,,, . Thus o(z,a4,) < 5o(z, A) <
50(z,2) < (5/6)d for each i. Hence o(x,a,) < ¢ for each i. Lemma 2.4(b)
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implies that H*(g(z),g(x)) < e. So g is continuous at x, thus continuous
and therefore X is an AR (metric).

We now make a start towards the proof of the Main Theorem with some
preliminary technical results.

Some conventions. We consider the space 2% of all nonempty closed
subsets of X with the Hausdorff metric. Throughout this section w will
denote a fixed Whitney map for 2% such that w(X) = 1 and if 4, B,C € 2%
and A C B, then

w(BUC)—-w(AUC) <w(B) —w(4)

(such a map exists by [1]). Also # will denote a fixed l.o.a. in C(X). Let
g =0 - ({X}UFi(X)). Let 0 : I — (3 denote the inverse of the map
w|f: 0B — I. Let ¢ : N(X) — [ be a continuous function defined by
»(A) = A if and only if A is the unique element in A N 5. Finally, let
N(X)* = N(X) — {{X}, Fy(X)}.

DEFINITION 3.1. Let ¢ : 8* x (0,1] x C(X) — R be given by
(At B) = w(AU B) — w(B) — t(w(B) —w(4)).

LEMMA 3.2. (a) ¢ is continuous.

(b) If Ay & Ag, then (A1, t, B) < (Asg,t, B) for every (t, B) € (0,1] x
C(X).

(c) If B1 & B, then (A, t,B1) > (A, t, By) for every (A,t) € §* x
(0,1].

DEFINITION 3.3. Given (4,t) € 8* x (0,1], let

L(A,1) = {B € C(X) | (A,t, B) = 0}

LEMMA 34. (a) A € L(A,t) and L(A,t) € N(X) for every (A,t) €
B* x (0,1].

(b) If 0 < t; <ty <1, then L(A,t1) > L(A,t2).

(C) If A1 g AQ, then L(Al,t) < L(Ag,t).

(d) The function L : 5* x (0,1] — N(X) is continuous.

Proof. (a) Let (A,t) € 5*x (0,1]. Then ¢(A,t,X) = —t(w(X) —w(A))
< 0. Given z € X, ¥(A,t,{z}) = w(AU{z}) — w(A) + tw(A) > 0. Then
LA )N ({X}UFi(X)) = 0 and L(A,t) intersects every l.o.a. in C(X).
By Lemma 3.2(c), L(A,t) is a compact antichain in C(X). Therefore ([6,
Thm. 1.2]), L(A,t) € N(X).

(b) Let B € L(A,t3) and let v be a l.o.a. in C(X) such that B € ~.
Let A1 € yNw Hw(A)). Since ¥(A,ty, A1) = w(AU A1) — w(4;) > 0
= (A, ts, B), by Lemma 3.2(c), we have A; C B. Then ¢(A,t1,B) >
(A, ta, B) = 0. Let C € yN L(A,t1). Then (A, t;,C) =0 < (A, t1, B).
So Lemma 3.2(c) implies that B C C. Hence L(A,ts) < L(A,t1).
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(c) This follows from Lemma 3.2.

(d) Let ((An,tn))n C B x (0,1] and let (A,t) € 5* x (0, 1] be such that
A, — Aandt, —t. Take B € L(A,t). Let v be a Lo.a. in C(X) such that
B € . For each n € N, take B,, € yNL(A,,t,). If (B,), does not converge
to B, since 7y is compact, there exists a subsequence (B, )i of (B,), and
C € v such that B,, — C # B. Then 0 = ¢(A,,,tn,, Bn,) — (A, t,C).
So (A, t,C) = ¢¥(A,t,B). Lemma 3.2(c) implies that C = B. This con-
tradiction proves that B, — B. Hence B € liminf L(A,,t,). Therefore
L(A,t) C liminf L(A,,t,). Now take B € limsup L(A,,t,). Then there
exists a sequence ny < my < ... and elements By € L(A,,,t,) such that
B — B. Then 0 = ¢(A,, ,tn,, Bx) — (A, t,B). Thus B € L(A,t). Hence
limsup L(A,,t,) C L(A,t). Therefore L(A,,t,) — L(A,t). Consequently,
L is continuous.

LEMMA 3.5. Let A,B € N(X)*. Letr,s > 0 be such that r < w(¢p(A))
and s < w(p(B)). Suppose t1,ta € (0,1] are such that L(o(r),t1) N A =
L(O’(S),tg) A B. Then t, = tz.

Proof. Since r < w(¢(A)), we have o(r) C ¢(A) # o(r). Then o(r) €
(L(o(r),t1) A A) N B. Similarly, o(s) € (L(o(s),t2) A B) N G. Thus o(r) =
o(s). Since o(r) is a proper subset of ¢(.A) and ¢(B), we have o(r) & AUB.
Therefore there exists B € L(o(r),t1) A A such that B # o(r) and B ¢
AUB. Thus B € L(o(r),t1) N L(o(s),t2) and o(r) is not contained in B.
Consequently, (o (r),t1, B) = ¢(o(s),t2, B) = 0. So

w(o(r)UB) = w(B) = ti(w(B) — w(o(r)))

=w(o(r)UB) —w(B) — ta(w(B) —w(a(r))) =0.
Thus (t1 —t2)(w(B) —w(o(r))) = 0. fw(B)—w(o(r)) = 0, then w(o(r)UB)
= w(B). Hence o(r) C B. This contradiction proves that t; = ts.

LEMMA 3.6. Let (A,)n be a sequence in N(X), let A€ N(X), let (Ap)n

be a sequence in — {X}, let A€ f—{X} and let (t,), be a sequence in
(0,1). If t, — 0, A, — A and A, AN L(Ap,t,) — A, then A, — A.

Proof. Let B € limsup L(A,,t,). Then there exists a sequence n; <
ny < ... and elements By € L(A,,,ty,) such that By — B. Then

0= w(Anmtnkak) = W(Bk U Ank) - W(Bk) - tnk (w(Bk) - W(Ank))
—w(BUA) —w(B).
Hence A C B.
For each n € N, A,, € L(A,,ty), so there exists B, € A, A L(Ap,t,)
such that B,, C A,,. It follows that there exists Ay € A such that Ay C A.
Now we prove that A C liminf A,,. Let B € A—{Ap}. Then there exists

a sequence (By,), such that B, € A, A L(A,,t,) for each n and B,, — B.
Since Ap is not contained in B, we have B ¢ limsup L(A,,,t,). Then there
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exists N € N such that B,, € A, for every n > N. Therefore B € liminf A,,.
Since Ag # X, A is a nondegenerate continuum. Hence A C liminf A4,,.

Now we show that limsup A, C A. Let B € limsup.A,,. Then there
exists a sequence n; < ng < ... and elements By, € A,,, such that By — B.
For each k, choose C), € L(A,,,ty,) such that By, C Cy or Cy, C By. If By, C
C), for infinitely many k, then By € A,, A L(A,,,t,,) for infinitely many
k. Thus B € A. Suppose then that Cy C By for every k. Let C € C(X) be
the limit of some subsequence of (Cf)i. Then C € limsup L(A,,t,). Thus
AgCc AcC C cC B. If B= Ag, then B € A. Suppose then that Ay # B.

Choose a point xg € B — Ag. Since A € N(X), there exists a Whitney
map v : 2% — I and there exists s € I such that (v | C(X))71(s) = A (see
[11]). Choose r € I such that s < r < v(AgU{xo}). Take a sequence (xy)x
such that xy € By, for all k and x), — x¢. Since v(B) > v(Ap U {zo}) > 1,
there exists K € N such that v(By) > r for every k > K.

Given k > K, choose a l.o.a. v, in C(X) such that {x}, Br € vx. Take
Dy € v Nv=(r) and Ex € vy N L(Ap, ,tn,). Let (Dy,); and (Eg,); be
subsequences of (Dy)r and (Ej)x respectively which converge to elements
D and E respectively. Then o € DN E and v(D) = r. Since £ C
limsup L(A,,t,), it follows that Ay C E. If E C D, we have v(D) >
v(Ao U {xo}) > r. This contradiction proves that E is not contained in D.
Since Dy, C Ey, or Ey, C Dy, for every I, we have D ¢ E. So v(E) > r.
Thus there exists L € N such that v(Ey,),v(Bg,) > r for all | > L. Then
v(Ey, N By,) > r for all | > L. Hence v(E N B) > r. But

ENB elimsup A, A L(A,, t,) = A= (v | C(X))"!(s)

and s < r. This contradiction proves that B € A.
Therefore limsup A,, C A. Hence A,, — A.

LEMMA 3.7. If A € N(X)* and a > 0, then there exists ¢ € (0,1] such
that H* (AN L(p(A),¢), A) < a.

Proof. Let A = ¢(A). It is enough to prove that AA L(A,1/n) — A.
Let B € A—{A}. Choose a l.o.a. v in C(X) such that B € . For each
n, let B, € yN L(A,1/n). Since A is not contained in B, it follows that
0 < w(BUA)—w(B) =limsupvy(A,1/n,B). Thus there exists N € N such
that 0 < ¥(A,1/n, B) for every n > N. Since ¥(A,1/n, B,,) = 0, we obtain
B C B, for every n > N. So B € AN L(A,1/n) for all n > N. Hence
B € liminf AA L(A,1/n). Therefore A C liminf AN L(A,1/n).

Now take B € limsup A A L(A,1/n). Then there exists a sequence
ny < ng < ...and elements B, € AN L(A,1/ny) such that By, — B. Then
each By = Ay N Cy where Ay, € A, Cy € L(A,1/ny) and Ax C Cy or
Cy C Ag. If By = Ay, for infinitely many &, then B € A. Suppose then that
By, = Cy C Ay, for every k. Then 0 = (A, 1/ny, By) — w(AU B) — w(B).
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Thus A C B. Let (A, )m be a subsequence of (Ay)x which converges to
an Ag € A. Then A C B C Ay. Hence A = B = Ap, so B € A. Thus
limsup AN L(A,1/n) C A.

Therefore AN L(A,1/n) — A.

LEMMA 3.8. Let a: N(X) — (0,00) be a map. Then:
(a) There exists a map € : N(X)* — (0,1] such that
H* (AN L(¢(A),e(A)), A) < a(A)

for every A e N(X)*.
(b) There exist maps ,h : N(

N(X)*, e(A) <1, h(A) <w(p(A))/2 and
) —

H* (A, AN L(o[p(A) = h(A)], e(A))) < aA).

(¢c) There exists a map k : N(X) — (0,1/2] such that, for every A €
N(X),

N(X)* — (0,00) such that, for each A €
)

H*(A, AV w H(k(A) < alA)
and
H* (A, ANw (1 —E(A))) < a(A).

(d) If g : N(X) — (0,00) is a map, then there exists a map 6 : N(X) —
(0,00) such that H*(A, B) < 6(.A) implies that |a(A) — a(B)| < ap(A).

Proof. (a) Let g9 : N(X)* — (0,00) be given by

eo(A) = sup{t € (0,1] : H*(A, AN L($(A),1)) < a(A)}.

By Lemma 3.7, ¢¢ is well defined. Let ¢ € (0,1] be such that H*(A, A A
L(¢(A),t)) < a(A) and let (A,), be a sequence such that A4,, — A. Then
H*(A,, Ay NL(¢(Ap),t) = H*(A, ANL(¢(A),t)) and a(A,,) — a(A). It
follows that ¢¢ is a lower semi-continuous positive function. Then (see [4,
Ch. VIII, 4.3]) there exists a map € : N(X)* — (0, 00) such that 0 < g(A) <
£0(A) for every A € N(X)*.

(b) By (a) there exists a map ¢ : N(X)* — (0, 1] such that

H* (A, AN L(¢(A),e(A))) < a(A)/2

for every A € N(X)*. Let ho : N(X)* — (0, 1] be given by

ho(A) = sup{t € (0,w(4(A))/2] :

H* (AN L(o[w(o(A)) —t],e(A)), A) < a(A)}.

Then hg is a positive lower semi-continuous function, so there exists a map
h: N(X)* — (0,1] such that 0 < h(A) < ho(A) for every A € N(X)*.

The proof of (c¢) is similar. Claim (d) was proved in [8, Lemma 1.13].
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Proof of the Main Theorem. We will use Torunczyk’s charac-
terization of the Hilbert space la ([10, p. 248]): Let Y be a complete sepa-
rable AR space. Then Y is homeomorphic to I5 if and only if given a map
f:NxQ —Y (Q denotes the Hilbert cube) and a map o : ¥ — (0, 00),
there is a map g : N x Q@ — Y with {g({n} X Q)}nen discrete in Y and
dy (f(2),9(2)) < a(f(z)) for every z € N x Q.

Take maps f : Nx Q — N(X) and a : N(X) — (0,00). Lemma 3.8
implies that:

(a) There exists a map 6 : N(X) — (0,00) such that H*(A, B) < §(.A)
implies that |a(A) — a(B)| < a(A)/2.

(b) There exists a map k£ : N(X) — (0,1/2] such that H*(A, AV
w™(k(A))) and

H*(A, ANw™ (1= k(A)) < a(A)/4, 5(A)

for every A € N(X).

(¢) There exist maps €,h : N(X)* — (0,00) such that, for each A €

N(X)", h(A) € w(6(A))/2, £(4) < 1 and
H* (AN L(ow(p(A) — h(A)],e(A)), A) < a(A)/8.

Define G1,Ga : N(X) — N(X) by G1(A) = AVw™(k(A)) and G2(A) =
AANw™H1 = k(A)). Then Gy, Gy are continuous and Ga(G1(A)) € N(X)*
for each A € N(X). Given A € N(X) with |a(A) — a(G;(A))| < a(A)/2,
%henha(Gi(A)) < (3/2)a(A) for i = 1,2. Then a(G2(G1(A))) < (9/4)a(A).

urthermore,
H*(A, Go(G1(A))) < H (A, G1(A)) + HY(G1(A), Ga(G1(A)))
<a(A)/4+ a(G1(A)/4 < (5/8)a(A).

Define fo = G0 Gy o f. Let t; = min(e(fo({1} x Q)) U {1/2}) and,
for n > 2, let t,, = min (e(fo({n} x Q)) U {tn—1/2}). Then ¢, — 0 and
0 <tpny1 <tn/2 <ty <1 for every n.

For each n € N, define g,, : N(X)* — N(X) by gn(A) = AANL(o[w(¢p(A))
—h(A)], tn), and define g : N x Q — N(X) by g(n,z) = g,(fo(n,x)). Then
g is continuous.

Let y = (n,2) € N x Q. Since t,, < e(fo(y)), we have

fo(y) A L(a[o(fo(y)) — h(fo(y))],e(fo(y)))
< fo(y) A L(o[o(fo(y)) — h(fo(y)],tn) < fo(y) -

Then H*(fo(y), 9n(fo(y))) < a(fo(y))/8 < (9/32)a(f(y)). Thus
H*(f(y),9(y)) < H*(f(y), fo(y)) + H*(fo(y),9(v))
< (5/8)a(f(y)) + (9/32)a(f(y)) < a(f(y))-

Therefore H*(f(y), g(y)) < a(f(y)).
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Notice that Lemma 3.5 implies that the sets g({1} x Q), g({2} x Q), ...
are pairwise disjoint.

Now we prove that Fy(X),{X} & Cly(x)G2(G1(N(X))). Suppose that
there exists a sequence (Cy,), in N(X) such that G2(G1(C,)) — Fi(X).
Then

(Cn vV (B(Cp)) Aw™ (1= k(Cn Vw ™ ((Cn)))) — FL(X).

Since w1 — k(Cp, V w 1(k(Cn)))) > w_1(1/2) for each n, we then have
CnVw™ (k(Cn)) — Fy(X). Thus C, and w1 (k(C,)) — Fi(X). Hence
Fi(X) = w Y (k(F1(X))). Thus k(F;(X)) = 0. This contradiction proves
that F1(X) & Cly(x)G2(G1(N(X))). Now suppose that there exists a se-
quence (Cy,), in N(X) such that Go(G1(C,,))—{X}. Then C,,Vw=1(k(C,))
— {X} and w1 (1 — K(C, VwHK(Cp)))) — {X}, so

{X} =0 (1 - k({X} Vo (B({X ) = v (1 - k({X})) -
It follows that k({X}) = 0. This contradiction proves that {X} ¢&
Cly(x) G2(G1(N(X))).

Finally, we prove that the family {g({n} x @)},en is discrete in N(X).
Suppose that this is not true. Then there exists A € N(X), a sequence
np < ng < ... and elements By, € g({nx}x@Q) such that By — A. For each k,
put By, = g(ng, zx), let Ay = fo(nk, zx) and A = ow(d(Ag))—h(Ar)] € 5.
Then By, = A A L(Ag, t,, ). Suppose, by taking a subsequence if necessary,
that A — A for some A € 3.

We will show that A # X. Suppose A = X. Since Ay C o(w(op(Ag)))
= ¢(Ax), we have Ay € B. Now, By — A implies A = {X}. Thus
Ar — {X} and L(Ag,tn,) — {X}. This is a contradiction since {X} &
Cly(x) G2(G1(N(X))). Therefore A € 3 —{X}.

Applying Lemma 3.6 we see that A, — A. Since Ay € G2(G1(N(X))),
we have A € N(X)*. Given k, Ay = o(w(d(Ak))—h(Ak)) C o(w(p(Ag))) =
d(Ay) € Ag. Then Ay, is an element of L(Ag,t,,) contained in an element
of Ay. Thus Ay € Ax A L(Ak,tn,) = Br. This implies that A € A.
Thus A ¢ F1(X) U {X}. Since Ay — o(w(¢(A)) — h(A)), we get A =
o(w(éd(A)) —h(A)). But A € AN S implies that A = ¢(A). Thus h(A) =
This contradiction proves that the family {g({n} X Q)},en is discrete and
ends the proof of the theorem.
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