SOME PROPERTIES OF THE PISIER-XU INTERPOLATION SPACES

By

A. SERSOURI (RABAT)

For a closed subset I of the interval $[0,1]$ we let $A(I)=\left[v_{1}(I), C(I)\right]_{\frac{1}{2} 2}$. We show that $A(I)$ is isometric to a 1 -complemented subspace of $A(0,1)$, and that the Szlenk index of $A(I)$ is larger than the Cantor index of I. We also investigate, for ordinals $\eta<\omega_{1}$, the bases structures of $A(\eta), A^{*}(\eta)$, and $A_{*}(\eta)$ [the isometric predual of $\left.A(\eta)\right]$.

All the results of this paper extend, with obvious changes in the proofs, to the interpolation spaces $\left[v_{1}(I), C(I)\right]_{\theta q}$.
0. Preliminaries. In this section we will recall the definitions of the concepts we are going to work with, and state some of the needed properties. In what follows ω_{0} denotes the first infinite ordinal, and ω_{1} the first uncountable ordinal.
0.1. Real interpolation. We will give the definitions only in the case that interests us.

Let X_{0} and X_{1} be two Banach spaces, and let $j: X_{0} \rightarrow X_{1}$ be an injective continuous linear operator. By abuse of notation we will identify X_{0} with $j\left(X_{0}\right)$, hence considering X_{0} as a (not necessarily closed) subspace of X_{1}.

For each $t>0$ we define an equivalent norm K_{t} on X_{1} by

$$
K_{t}\left(x ; X_{0}, X_{1}\right)=K_{t}(x)=\inf \left\{\left\|x_{0}\right\|_{X_{0}}+t\left\|x_{1}\right\|_{X_{1}}: x=x_{0}+x_{1}\right\}
$$

and we define a new Banach space $\left[X_{0}, X_{1}\right]_{\frac{1}{2} 2}$ by

$$
\left[X_{0}, X_{1}\right]_{\frac{1}{2} 2}=\left\{x \in X_{1}:\|x\|_{\frac{1}{2} 2}=\left(\int_{0}^{\infty}\left(K_{t}(x) / t\right)^{2} d t\right)^{1 / 2}<\infty\right\}
$$

It is known that X_{0} is $\|\cdot\|_{\frac{1}{2} 2}$-dense in $\left[X_{0}, X_{1}\right]_{\frac{1}{2} 2}$, and that for some constant $k<\infty,\|\cdot\|_{\frac{1}{2} 2} \leq k\|\cdot\|_{X_{0}}$. Moreover, if X_{0} is $\|\cdot\|_{X_{1}}$-dense in X_{1}, then $\left[X_{0}, X_{1}\right]_{\frac{1}{2} 2}^{*}$ may be canonically identified with $\left[X_{0}^{*}, X_{1}^{*}\right]_{\frac{1}{2} 2}$ (the latter interpolation space being defined via the map $j^{*}: X_{1}^{*} \rightarrow X_{0}^{*}$ which is injective since j has dense range).

If $\left(X_{0}, X_{1}\right)$ and $\left(Y_{0}, Y_{1}\right)$ are two interpolation couples, and if $T: X_{1} \rightarrow Y_{1}$ is a linear map such that $T\left(X_{0}\right) \subset Y_{0}$ and $\|T\|=\max \left(\|T\|_{X_{0} \rightarrow Y_{0}},\|T\|_{X_{1} \rightarrow Y_{1}}\right)$ $<\infty$, then T defines a bounded operator from $\left[X_{0}, X_{1}\right]_{\frac{1}{2} 2}$ into $\left[Y_{0}, Y_{1}\right]_{\frac{1}{2} 2}$ with norm at most $\|T\|$.
0.2. The Cantor index. Let K be a topological space. We define its Cantor derived set K^{\prime} by

$$
K^{\prime}=\{x \in K: x \text { is an accumulation point of } K\}
$$

and its Cantor index o (K) by

$$
o(K)=\sup \left\{\alpha<\omega_{1}: K^{(\alpha)} \neq \emptyset\right\}
$$

where the sets $K^{(\alpha)}$ are defined inductively by

$$
\begin{aligned}
K^{(0)} & =K \\
K^{(\alpha+1)} & =\left(K^{(\alpha)}\right)^{\prime}, \\
K^{(\alpha)} & =\bigcap_{\beta<\alpha} K^{(\beta)} \quad \text { if } \alpha \text { is a limit ordinal. }
\end{aligned}
$$

It is well known that for each ordinal $\alpha<\omega_{1}$ one has $o\left(\left[0, \omega_{0}^{\alpha}\right]\right)=\alpha$, where $[0, \eta]$ denotes the set $\{\varrho$ ordinal : $0 \leq \varrho \leq \eta\}$ equipped with the order topology.
0.3. The Szlenk index. Let X be a Banach space, C a bounded subset of X, and K a weak* compact subset of X^{*}. For $\varepsilon>0$ we define a weak* compact set by

$$
\begin{aligned}
& \sigma_{C, \varepsilon}(K)=\left\{x^{*} \in K: \exists\left(x_{n}\right)_{n \geq 1} \subset C, \exists\left(x_{n}^{*}\right)_{n \geq 1} \subset K\right. \text { with } \\
& \left.\quad 0=\underset{n \rightarrow \infty}{w-\lim _{n}} x_{n}, x^{*}=w_{n \rightarrow \infty}^{*}-\lim x_{n}^{*}, \text { and } \inf _{n}\left|x_{n}^{*}\left(x_{n}\right)\right| \geq \varepsilon\right\}
\end{aligned}
$$

The Szlenk index $\operatorname{Sz}(X)$ of X is given by

$$
\operatorname{Sz}(X)=\sup _{\varepsilon>0}\left[\sup \left\{\alpha<\omega_{1}: S_{\alpha}(\varepsilon) \neq \emptyset\right\}\right]
$$

where the sets $S_{\alpha}(\varepsilon)$ are defined inductively by

$$
\begin{aligned}
S_{0}(\varepsilon) & =\operatorname{Ball}\left(X^{*}\right), \\
S_{\alpha+1}(\varepsilon) & =\sigma_{\operatorname{Ball}(X), \varepsilon}\left(S_{\alpha}(\varepsilon)\right), \\
S_{\alpha}(\varepsilon) & =\bigcap_{\beta<\alpha} S_{\beta}(\varepsilon) \quad \text { if } \alpha \text { is a limit ordinal. }
\end{aligned}
$$

It is known that if X is separable, then X^{*} is nonseparable if $\mathrm{Sz}(X)=\omega_{1}$.
0.4. Projectional resolution of the identity (P.R.I.), transfinite bases. Let X be a Banach space and μ an ordinal number. A sequence of projections $\left(P_{\alpha}\right)_{0 \leq \alpha \leq \mu}$ is called a P.R.I. of X if the following holds:
(i) $P_{0}=0$ and $P_{\mu}=\mathrm{Id}$.
(ii) $\sup _{0 \leq \alpha \leq \mu}\left\|P_{\alpha}\right\|<\infty$.
(iii) $P_{\alpha} P_{\beta}=P_{\min (\alpha, \beta)}$.
(iv) For every $x \in X$, the map $\varphi_{x}:[0, \mu] \rightarrow X$ defined by $\varphi_{x}(\alpha)=P_{\alpha}(x)$ is continuous.

Under conditions (ii) and (iii), it is not hard to prove that (iv) is equivalent to (see [JZ])
$(\text { iv })^{\prime}$ For every $\alpha \leq \mu, P_{\alpha}(X)=\overline{\bigcup_{\beta<\alpha} P_{\beta+1}(X)}$.
A sequence of vectors $\left(x_{\alpha}\right) \subset X$ is called a basis of X if every $x \in X$ has a unique decomposition $x=\sum_{\alpha \leq \mu} a_{\alpha} x_{\alpha}$ (with norm convergence).

It is well known and easy to check that basic sequences are (up to normalization) in 1-1 correspondence with P.R.I.'s that satisfy $\operatorname{rank}\left(P_{\alpha+1}-P_{\alpha}\right)=1$ for every α.

1. The spaces $A(I)$. Let Γ denote either a closed subset I of \mathbb{R}, or the compact space $[1, \eta]$ for some ordinal number η. We denote by $C(\Gamma)$ the space of continuous functions on Γ, and we define the spaces $v_{p}(\Gamma), 1 \leq p \leq \infty$, by

$$
v_{p}(\Gamma)=\left\{f \in C(\Gamma):\|f\|_{v_{p}}=\sup \left(\left|f\left(t_{0}\right)\right|^{p}+\sum_{i=1}^{n}\left|f\left(t_{i}\right)-f\left(t_{i-1}\right)\right|^{p}\right)^{1 / p}<\infty\right\}
$$

where the sup runs over all ordered finite subsets $\left\{t_{0}<t_{1}<\ldots<t_{n}\right\}$ of Γ.
The spaces $A(\Gamma)$ are defined by

$$
A(\Gamma)=\left[v_{1}(\Gamma), C(\Gamma)\right]_{\frac{1}{2} 2}
$$

Let us show first that for every ordinal $\eta<\omega_{1}$, the space $A(\eta)=A([1, \eta])$ is isometric to $A\left(I_{\eta}\right)$ for some closed subset I_{η} of $[0,1]$. Indeed:

For every $\eta<\omega_{1}$, let $\phi_{\eta}:[0, \eta] \rightarrow[0,1]$ be a continuous map with the property that $\phi_{\eta}(\alpha)<\phi_{\eta}(\beta)$ whenever $\alpha<\beta \leq \eta$. (The existence of such maps is well known, and can be easily proved by transfinite induction). From the definitions it is clear that the map Φ_{η} defined by $\Phi_{\eta}(f)=f \phi_{\eta}$ is an onto isometry from the interpolation couple $\left(v_{1}\left(I_{\eta}\right), C\left(I_{\eta}\right)\right)$ into $\left(v_{1}(\eta), C(\eta)\right)$ where $I_{\eta}=\phi_{\eta}([0, \eta])$. Hence Φ_{η} also defines an onto isometry between $A\left(I_{\eta}\right)$ and $A(\eta)$.

Theorem 1. For every closed subset I of $[0,1]$, the space $A(I)$ is isometric to a 1-complemented subspace of $A(0,1)$.

Proof. It is enough to construct operators $E:\left(v_{1}(I), C(I)\right) \rightarrow$ $\left(v_{1}(0,1), C(0,1)\right)$ and $R:\left(v_{1}(0,1), C(0,1)\right) \rightarrow\left(v_{1}(I), C(I)\right)$, both of norm 1, and such that $R E$ is the identity map. Indeed, this will imply that
$E R[A(0,1)]$ is a 1-complemented subspace of $A(0,1)$ which is isometric to $A(I)$.

For R we take the formal restriction map: $R f=f_{\mid I}$. It is clear that R sends $C(0,1)$ into $C(I)$, and $v_{1}(0,1)$ into $v_{1}(I)$, and that $\|R\|=1$.

Let us now define the operator E. In the next definition we will use the conventions $\min \emptyset=\max I$, and $\max \emptyset=\min I$. With these conventions we define, for $t \in[0,1]$,

$$
\begin{aligned}
t^{+} & =t_{I}^{+} \\
t^{-} & =\min \{s \in I: s \geq t\}
\end{aligned},
$$

Observe that since I is closed, $t^{ \pm} \in I$ for every $t \in[0,1]$, and $t^{+}=t^{-}$if and only if $t \in[0, \min I] \cup[\max I, 1] \cup I$.

If $f \in C(I)$ is given, we define its extension $E f$ to $[0,1]$ by

$$
E f(t)= \begin{cases}f\left(t^{+}\right) & \text {if } t^{+}=t^{-} \\ f\left(t^{+}\right)-\frac{t^{+}-t}{t^{+}-t^{-}}\left(f\left(t^{+}\right)-f\left(t^{-}\right)\right) & \text {if } t^{+} \neq t^{-} .\end{cases}
$$

Observe that $E f$ is linear on any interval of the form $\left[t^{-}, t^{+}\right]$.
It is clear from this definition that E sends $C(I)$ into $C(0,1)$, and that $\|E f\|_{C(0,1)}=\|f\|_{C(I)}$. All what remains to check now is that $\|E f\|_{v_{1}(0,1)}=$ $\|f\|_{v_{1}(I)}$. For this we need only check that $\|E f\|_{v_{1}(0,1)} \leq\|f\|_{v_{1}(I)}$ since the other inequality is trival.

Let $f \in v_{1}(I)$, fix $\left\{t_{0}<t_{1}<\ldots<t_{k}\right\} \subset[0,1]$, and let us show that

$$
\left|E f\left(t_{0}\right)\right|+\sum_{i=0}^{k-1}\left|E f\left(t_{i+1}\right)-E f\left(t_{i}\right)\right| \leq\|f\|_{v_{1}(I)}
$$

It is clear from the definition of $E f$ that we can suppose $t_{0} \geq \min I$ and $t_{k} \leq \max I$, so we will suppose that this is the case.

Consider now the sets $P=\left\{t_{i}: 1 \leq i \leq k\right\} \cup\left\{t_{i}^{ \pm}: 1 \leq i \leq k\right\}$ and $Q=P \cap I$, and order them, i.e. $P=\left\{\tilde{t}_{0}<\tilde{t}_{1}<\ldots<\tilde{t}_{l}\right\}, Q=\left\{s_{0}<s_{1}<\right.$ $\left.\ldots<s_{m}\right\}$.

For each $j, 0 \leq j \leq m$, let $\pi(j)$ be such that $s_{j}=\tilde{t}_{\pi(j)}$. Observe that $\pi(j-1) \leq \pi(j)-1$ for every $j \in[1, m]$. Moreover, if $\pi(j-1) \neq \pi(j)-1$, then $E f$ is linear on $\left[s_{j-1}, s_{j}\right]$. (Indeed, if $\left.i \in\right] \pi(j-1), \pi(j)\left[\right.$, then $\tilde{t}_{i}^{-}=s_{j-1}$ and $\tilde{t}_{i}^{+}=s_{j}$.)

From the above observation one can easily deduce that for every $j \in$ $[1, m]$,

$$
\sum_{i=\pi(j-1)}^{\pi(j)-1}\left|E f\left(\tilde{t}_{i+1}\right)-E f\left(\tilde{t}_{i}\right)\right|=\left|f\left(s_{j}\right)-f\left(s_{j-1}\right)\right| .
$$

We are now ready to show that $\|E f\|_{v_{1}(0,1)} \leq\|f\|_{v_{1}(I)}$. We distinguish two cases for the set $\left\{t_{i}: 0 \leq i \leq k\right\}$.

Case 1: $t_{0} \in I$. In this case we have $t_{0}=\tilde{t}_{0}=s_{0}$, i.e. $\pi(0)=0$. We also have $\pi(m)=l$. In what follows the first inequality comes from the triangular inequality.

$$
\begin{aligned}
\left|E f\left(t_{0}\right)\right|+\sum_{i=0}^{k-1} \mid E f\left(t_{i+1}\right) & -E f\left(t_{i}\right) \mid \\
& \leq\left|E f\left(\tilde{t}_{0}\right)\right|+\sum_{i=0}^{l-1}\left|E f\left(\tilde{t}_{i+1}\right)-E f\left(\tilde{t}_{i}\right)\right| \\
& =\left|E f\left(\tilde{t}_{0}\right)\right|+\sum_{j=1}^{m} \sum_{i=\pi(j-1)}^{\pi(j)-1}\left|E f\left(\tilde{t}_{i+1}\right)-E f\left(\tilde{t}_{i}\right)\right| \\
& =\left|f\left(s_{0}\right)\right|+\sum_{j=1}^{m}\left|f\left(s_{j}\right)-f\left(s_{j-1}\right)\right| \leq\|f\|_{v_{1}(I)} .
\end{aligned}
$$

Case 2: $t_{0} \notin I$. In this case we have $\tilde{t}_{0}=s_{0}<\tilde{t}_{1}=t_{0}<s_{1}$, which implies $s_{0}=t_{0}^{-}$and $s_{1}=t_{0}^{+}$and so $E f$ is linear on $\left[s_{0}, s_{1}\right]$. Let $\lambda=\left(s_{1}-t_{0}\right) /\left(s_{1}-s_{0}\right)$, i.e. $t_{0}=\lambda s_{0}+(1-\lambda) s_{1}$. Then

$$
\begin{aligned}
&\left|E f\left(t_{0}\right)\right|+\sum_{i=0}^{k-1}\left|E f\left(t_{i+1}\right)-E f\left(t_{i}\right)\right| \\
& \leq\left|E f\left(\tilde{t}_{1}\right)\right|+\sum_{i=0}^{\pi(1)-1}\left|E f\left(\tilde{t}_{i+1}\right)-E f\left(\tilde{t}_{i}\right)\right| \\
& \quad+\sum_{j=2}^{m} \sum_{i=\pi(j-1)}^{\pi(j)-1}\left|E f\left(\tilde{t}_{i+1}\right)-E f\left(\tilde{t}_{i}\right)\right| \\
&=\left|E f\left(\tilde{t}_{1}\right)\right|+\left|E f\left(s_{1}\right)-E f\left(\tilde{t}_{1}\right)\right|+\sum_{j=2}^{m}\left|f\left(s_{j}\right)-f\left(s_{j-1}\right)\right| \\
& \leq \lambda\left(\left|f\left(s_{0}\right)\right|+\left|f\left(s_{1}\right)-f\left(s_{0}\right)\right|\right) \\
& \quad+(1-\lambda)\left|f\left(s_{1}\right)\right|+\sum_{j=2}^{m}\left|f\left(s_{j}\right)-f\left(s_{j-1}\right)\right| \\
& \leq\|f\|_{v_{1}(I)} .
\end{aligned}
$$

This concludes the proof of the theorem.

Remark. With the same proof, Theorem 1 can be extended as follows: if I and J are two closed subsets of \mathbb{R} with $I \subset J$ and if B is a Banach space, then $A(I ; B)$ is isometric to a 1-complemented subspace of $A(J ; B)$.

Theorem 2. $\mathrm{Sz}(A(I)) \geq o(I)$ for every closed subset I of $[0,1]$.
Proof. Observe first that Weierstrass' theorem implies that $v_{1}(I)$ is norm dense in $C(I)$. Therefore $(\S 0.1), A^{*}(I)=\left[\mathcal{M}(I), v_{1}^{*}(I)\right]_{\frac{1}{2} 2}$ (where $\mathcal{M}(I)$ stands for the space of random measures on $I)$. In particular, $\mathcal{M}(I)$ is norm dense in $A^{*}(I)$.

Let $k>0$ be such that $\|x\|_{A(I)} \leq k\|x\|_{v_{1}(I)}$ for every $x \in v_{1}(I)$, and $\left\|x^{*}\right\|_{A^{*}(I)} \leq k\left\|x^{*}\right\|_{\mathcal{M}(I)}$ for every $x^{*} \in \mathcal{M}(I)$.

The result of the theorem will be an immediate consequence of the following:

Lemma 3. If $x \in I$ and $\left(x_{n}\right)_{n \geq 1} \in I \backslash\{x\}$ are such that $x=\lim _{n \rightarrow \infty} x_{n}$, then:
(i) $\delta_{x}=\lim _{n \rightarrow \infty} \delta_{x_{n}}$ in the weak ${ }^{*}$ topology of $A^{*}(I)$, where δ_{y} denotes the Dirac measure at y.
(ii) There exist functions $f_{n} \in v_{1}(I), n \geq 1$, with $\left\|f_{n}\right\|_{v_{1}(I)}=2$, such that

$$
\begin{aligned}
& \left\langle\delta_{x_{n}}, f_{n}\right\rangle=1 \quad \text { for every } n \geq 1, \quad \text { and } \\
& 0=\lim _{n \rightarrow \infty} f_{n} \quad \text { in the weak topology of } A(I) .
\end{aligned}
$$

Indeed, this lemma implies-with the notation of $\S 0.2$, §0.3-that $S_{\alpha}\left(1 /\left(2 k^{2}\right)\right) \supset\left\{(1 / k) \delta_{x}: x \in I^{(\alpha)}\right\}$, which clearly implies the assertion of Theorem 2 .

It remains to prove Lemma 3.
(i) is clear as $\left\langle\delta_{x}, f\right\rangle=\lim _{n \rightarrow \infty}\left\langle\delta_{x_{n}}, f\right\rangle$ for every $f \in C(I)$.
(ii) Let $F_{n} \in C(0,1)$ be defined by

$$
F_{n}(t)=\left(1-\frac{2\left|t-x_{n}\right|}{\left|x-x_{n}\right|}\right)^{+}
$$

and let $f_{n}=F_{n \mid I}$. It is clear that $\left\|f_{n}\right\|_{v_{1}(I)}=2$, for every $n \geq 1$, and that $\lim _{n \rightarrow \infty} f_{n}(t)=0$ for every $t \in I$.

If $\mu \in \mathcal{M}(I)$, then Lebesgue's dominated convergence theorem (applied to $|\mu|)$ implies that $\lim _{n \rightarrow \infty}\left\langle\mu, f_{n}\right\rangle=0$. This implies that $0=\lim _{n \rightarrow \infty} f_{n}$ in the weak topology of $A(I)$, as $\left(f_{n}\right)_{n \geq 1}$ is bounded in $A(I)$, and $\mathcal{M}(I)$ is norm dense in $A^{*}(I)$.

This concludes the proof of the lemma and thus of the theorem.
Remark. Xu proved that the spaces $A(I)$ have nontrivial types $[\mathrm{X}]$, which implies in particular that they do not contain the l_{n}^{1} 's uniformly $[\mathrm{P}]$, and therefore that $i(A(I))=\omega_{0}$, where i denotes the l^{1}-Bourgain index [B].

We then have a transfinite family of Banach spaces with separable duals, namely $(A(\eta))_{\eta<\omega_{1}}$, such that $\omega_{1}>\sup _{\eta<\omega_{1}} i(A(\eta))$, and $\omega_{1}=$ $\sup _{\eta<\omega_{1}} \operatorname{Sz}(A(\eta))$ [as $o\left(\left[1, \omega_{0}^{\alpha}\right]\right)=\alpha$ for every ordinal $\left.\alpha<\omega_{1}\right]$. This result can be looked at as a quantitative version of the - by now-well known result on the existence of separable Banach spaces not containing l^{1}, and with nonseparable duals.
2. The spaces $A(\eta)$. For the next result we need the following notation: If A is a set, χ_{A} will denote the characteristic function of A. Clearly $\chi_{] \alpha, \eta]} \in$ $v_{1}(\eta)$ for every $0 \leq \alpha<\eta$. We also define for $1 \leq \alpha \leq \eta$ the element $e_{\alpha} \in C^{*}(\eta)=l^{1}(\eta)$ by $\left\langle e_{\alpha}, f\right\rangle=f(\alpha)$.

Theorem 4. $\left(\chi_{] \alpha, \eta]}\right)_{0 \leq \alpha<\eta}$ and $\left(e_{\alpha}\right)_{1 \leq \alpha \leq \eta}$ are transfinite bases of $A(\eta)$ and $A^{*}(\eta)$ respectively.

Proof. (i) Let us show that $\left(\chi_{[\alpha, \eta]}\right)_{0 \leq \alpha<\eta}$ is a basis of $A(\eta)$.
For each α, define a projection $P_{\alpha}:\left(v_{1}(\eta), C(\eta)\right) \rightarrow\left(v_{1}(\eta), C(\eta)\right)$ by $P_{\alpha} f(\beta)=f(\min (\alpha, \beta))$ and observe that the projections so defined are increasing, i.e. $P_{\alpha} P_{\beta}=P_{\min (\alpha, \beta)}$, and are of norm 1. Hence $\left(P_{\alpha}\right)_{0 \leq \alpha \leq \eta}$ are increasing, norm 1 projections of $A(\eta)$. Let us show that they satisfy the continuity property ($\S 0.4(\mathrm{iv}))$ on $A(\eta)$.

It is well known and easy to check that $\left(P_{\alpha}\right)_{0 \leq \alpha \leq \eta}$ form a P.R.I. of $v_{1}(\eta)$, therefore

$$
P_{\alpha}\left(v_{1}(\eta)\right)=\overline{\bigcup_{\beta<\alpha} P_{\beta+1}\left(v_{1}(\eta)\right)}\|\cdot\|_{v_{1}} \quad \text { for every } 0 \leq \alpha \leq \eta
$$

On the other hand, $v_{1}(\eta)$ is $\|\cdot\|_{A}$-dense in $A(\eta)$, so

$$
P_{\alpha}(A(\eta))=\overline{P_{\alpha}\left(v_{1}(\eta)\right)}{ }^{\|\cdot\|_{A}} .
$$

This implies that

$$
P_{\alpha}(A(\eta))=\overline{\bigcup_{\beta<\alpha} P_{\beta+1}(A(\eta))}\|\cdot\|_{A}
$$

since $\|\cdot\|_{A} \leq k\|\cdot\|_{v_{1}}$ for some constant k.
This finishes the proof of the first part as

$$
\left(P_{\alpha+1}-P_{\alpha}\right)(f)=(f(\alpha+1)-f(\alpha)) \chi_{] \alpha, \eta]}
$$

for every f and every $\alpha<\eta$.
(ii) We show now that $\left(e_{\alpha}\right)_{1 \leq \alpha \leq \eta}$ is a basis of $A^{*}(\eta)$. Using the facts that $A(\eta)=\left[v_{4 / 3}(\eta), v_{4}(\eta)\right]_{\frac{1}{2} 2}($ see $[\overline{\mathrm{X}}])$, and that $\left(\chi_{] \alpha, \eta]}\right)_{0 \leq \alpha<\eta}$ is a basis for $v_{p}(\eta)$ if $1 \leq p<\infty$ (see [E]), and therefore that $v_{4 / 3}(\eta)$ is $\|\cdot\|_{v_{4}}$-dense in $v_{4}(\eta)$, we deduce that $A^{*}(\eta)=\left[v_{4}^{*}(\eta), v_{4 / 3}^{*}(\eta)\right]_{\frac{1}{2} 2}(\S 0.1)$.

It is also proved in [E] that $\left(e_{\alpha}\right)_{1 \leq \alpha \leq \eta}$ is a basis of $v_{p}^{*}(\eta)$ if $1<p<\infty$, therefore the operators $\left(Q_{\alpha}\right)_{0 \leq \alpha \leq \eta+1}$ defined by $Q_{\alpha}\left(e_{\beta}\right)=\chi_{] 0, \alpha[}(\beta) e_{\beta}$ define a P.R.I. of the spaces $v_{p}^{*}(\eta)$.

Using the same proof as in part (i) we deduce that $\left(Q_{\alpha}\right)_{0 \leq \alpha \leq \eta+1}$ defines a P.R.I. of $A(\eta)$. This concludes the proof since

$$
\left(Q_{\alpha+1}-Q_{\alpha}\right)\left[A^{*}(\eta)\right]=\operatorname{sp}\left[e_{\alpha}\right]
$$

Remarks. (i) Using the same proof as for (ii) of Theorem 4, and the fact (see [E]) that $v_{p}(\eta)=Y_{p}^{*}(\eta)$ if $1<p<\infty$, where

$$
Y_{p}(\eta)=\overline{\operatorname{sp}\left[e_{\alpha}: \alpha \leq \eta, \alpha \text { nonlimit }\right]}\|\cdot\|_{v_{p}^{*}},
$$

we can prove that $A(\eta)=B^{*}(\eta)$, where

$$
B(\eta)=\overline{\operatorname{sp}\left[e_{\alpha}: \alpha \leq \eta, \alpha \text { nonlimit }\right]}\|\cdot\|_{A^{*}}
$$

(ii) Theorem 4 and the previous remark imply that $A(\eta)$ and $J(\eta)$ have the same measure theory properties. The proofs are the same as Edgar's proofs for $J(\eta)$.

REFERENCES

[BL] J. Bergh and J. Löfström, Interpolation Spaces, Grundlehren Math. Wiss. 223, Springer, 1976.
[B] J. Bourgain, On convergent sequences of continuous functions, Bull. Soc. Math. Belgique 32 (1980), 235-249.
[E] G. A. Edgar, A long James space, in: Lecture Notes in Math. 794, Springer, 1980, 31-37.
[JZ] K. John and V. Zizler, Smoothness and its equivalent in weakly compactly generated Banach spaces, J. Funct. Anal. 15 (1974), 1-15.
[P] G. Pisier, Sur les espaces de Banach qui ne contiennent pas uniformément de l_{n}^{1}, C. R. Acad. Sci. Paris 277 (1973), 991-994.
[PX] G. Pisier and Q. Xu, Random series in the real interpolation spaces between the spaces v_{p}, preprint.
[S] W. Szlenk, The non-existence of a separable reflexive Banach space universal for all separable reflexive Banach spaces, Studia Math. 30 (1968), 53-61.
$[\mathrm{X}]$ Q. Xu, Espaces d'interpolation réels entre les espaces v_{p} : Propriétés géométriques et applications probabilistes, preprint.

C.N.R.

B.P. 1346 R.P.

RABAT, MOROCCO

