AN EXTREMAL SET OF UNIQUENESS?

BY
DAVID E. GROW and MATT INSALL (ROLLA, MISSOURI)

Let \mathbb{T} denote the group $[0,1)$ with addition modulo one, let \mathbb{Z} denote the integers, and let E be a subset of \mathbb{T}. E is a set of uniqueness if the only trigonometric series $\sum_{n=-\infty}^{\infty} c(n) e^{2 \pi i n x}$ on \mathbb{T} which converges to zero for all x outside E is the zero series; E is an H-set if there exists a nonempty open interval I in \mathbb{T} such that $N(E ; I)=\{n \in \mathbb{Z} \mid n x \notin I$ for all $x \in E\}$ is infinite; E is a Dirichlet set if $N(E ;(\varepsilon, 1-\varepsilon))$ is infinite for all $\varepsilon>0$. Let $E^{(0)}=E$ and inductively define $E^{(n)}$ as the set of limit points of $E^{(n-1)}$. If there exists a positive integer n such that $E^{(n)}$ is empty then E has finite (Cantor-Bendixson) rank; in this case, the least such integer n is the rank of E.

Every finite subset of \mathbb{T} is a Dirichlet set [3], every Dirichlet set is clearly an H-set, and every H-set is a set of uniqueness [5]. Cantor [2] showed that any set of finite rank is a set of uniqueness, and a similar argument shows that every countable closed set E in \mathbb{T} is a set of uniqueness [4, p. 32]. By a result of W. H. Young [7], the hypothesis that E is closed can be deleted without changing the conclusion. For an introduction to the vast literature on sets of uniqueness see [1], [8], and [4].

The purpose of this note is an elementary construction of a closed set S of rational numbers in \mathbb{T} which necessarily is a set of uniqueness, but which cannot be expressed as the union of two H-sets. We conjecture, moreover, that S is not the union of a finite number of H-sets. In this case, S would be extremal among the closed subsets of \mathbb{T} which are expressible as a countable union of H-sets. (By a nonconstructive argument [4, pp. 127-128], it is known that possibly uncountable extremal sets of this type exist.) The extremality of S, consequently, would provide insight into the long-standing problem of characterizing the closed sets of uniqueness in \mathbb{T}.

Given x in \mathbb{T}, let $x=\sum_{k=0}^{\infty} x_{k} 2^{-k}, x_{k} \in\{0,1\}$, denote its binary expansion, and write $x=x_{0} \cdot x_{1} x_{2} x_{3} \ldots$; this expression for x is unique if the terminating expansion is chosen whenever possible. Let $S_{-1}=\{0\}$ and, for each nonnegative integer n, let S_{n} signify the set of all $x=x_{0} \cdot x_{1} x_{2} x_{3} \ldots$ in \mathbb{T} such that $\sum_{j=0}^{\infty} x_{j}=n+1$ and $x_{j}=0$ if $0 \leq j \leq n$.

Theorem. The set $S=\bigcup_{n=-1}^{\infty} S_{n}$ is a closed set of rational numbers in \mathbb{T} whose rank is infinite and which cannot be expressed as the union of two H-sets.

Proof. By construction, S consists of rational points. To see that it is closed, let $\left\{x^{(k)}\right\}$ be a sequence of points from S with $x^{(k)} \rightarrow x$ as $k \rightarrow \infty$. If there exists a positive integer n such that infinitely many points of $\left\{x^{(k)}\right\}$ belong to $\bigcup_{j=-1}^{n} S_{j}$, then x belongs to this closed set; if no such integer n exists then $x=0$. In either case, x belongs to S.

It is not hard to see that S has infinite rank; for this purpose, corresponding to each nonnegative integer n, define a mapping Π_{n} from \mathbb{T} into \mathbb{T} by $\Pi_{n}\left(x_{0} \cdot x_{1} x_{2} x_{3} \ldots\right)=y_{0} . y_{1} y_{2} y_{3} \ldots$ where $y_{j}=0$ if $0 \leq j \leq n$ and $y_{j}=x_{j}$ if $j \geq n+1$. By convention, $\Pi_{-1}=0$. It is easy to verify that $S_{n}^{(1)}=\bigcup_{j=-1}^{n-1} \Pi_{n}\left(S_{j}\right)$ and $\left(\Pi_{n}\left(S_{k}\right)\right)^{(1)}=\Pi_{n}\left(S_{k}^{(1)}\right)$ for all $n \geq k \geq 0$. Induction then yields $S_{n}^{(n)}=\{0\} \cup \Pi_{n}\left(S_{0}\right)$, and consequently $S^{(n)} \supseteq S_{n}^{(n)} \neq \emptyset$, for each $n \geq 0$.

Suppose, by way of contradiction, that $S=E \cup F$ where E and F are H sets. Then there exist integers r, μ, and ν, where $r \geq 2$ and $\mu, \nu \in\left[1,2^{r}-1\right)$, and infinite sequences of positive integers $m_{1}<n_{1}<m_{2}<n_{2}<\ldots$, with $n_{k} / m_{k} \rightarrow \infty$ as $k \rightarrow \infty$, such that $m_{k} x \notin\left(\mu 2^{-r},(\mu+1) 2^{-r}\right)$ and $n_{k} y \notin$ $\left(\nu 2^{-r},(\nu+1) 2^{-r}\right)$ for all $x \in E, y \in F$, and integers $k \geq 1$. Fix a positive integer k and let r_{k} be the nonnegative integer such that $2^{r_{k}} \leq m_{k}<2^{r_{k}+1}$; without loss of generality, $r_{k} \geq 3 r+4$. Let $l=l(k)$ denote the smallest positive integer such that the real number $t_{*}^{(k)}=(4 \mu+l) 2^{-\left(r_{k}+r+3\right)}$ belongs to $\left(\mu 2^{-r} m_{k}^{-1},(\mu+1) 2^{-r} m_{k}^{-1}\right)$, and let $T\left(k ; t_{*}^{(k)}\right)$ denote the set of all points in \mathbb{T} of the form

$$
t_{*}^{(k)}+\sum_{j=r_{k}+r+4}^{\infty} t_{j} 2^{-j}
$$

where $t_{j} \in\{0,1\}$ for all j and $\sum_{j=r_{k}+r+4}^{\infty} t_{j} \leq r_{k}-r-2$. Note that $T\left(k ; t_{*}^{(k)}\right)$ is contained in $S \cap\left(\mu 2^{-r} m_{k}^{-1},(\mu+1) 2^{-r} m_{k}^{-1}\right)$; since $E \cap\left(\mu 2^{-r} m_{k}^{-1}\right.$, $\left.(\mu+1) 2^{-r} m_{k}^{-1}\right)$ is empty, it follows that $T\left(k ; t_{*}^{(k)}\right)$ is a subset of F. Observe that $\left\{t \in \mathbb{T} \mid n_{j} t \in(\alpha, \beta)\right\} \cap F$ is empty for all $j \geq 1$, where $\alpha=\nu 2^{-r}$ and $\beta=(\nu+1) 2^{-r}$; in particular,

$$
\begin{equation*}
\left\{t \in \mathbb{T} \mid n_{k} t \in(\alpha, \beta)\right\} \cap T\left(k ; t_{*}^{(k)}\right)=\emptyset \tag{1}
\end{equation*}
$$

We assert that (1) implies

$$
\begin{equation*}
n_{k} / 2^{r_{k}}<2^{r+7} \tag{2}
\end{equation*}
$$

in contradiction to $n_{k} / m_{k} \rightarrow \infty$, which would establish the theorem. In order to prove (2), let λ_{k} be the nonnegative integer satisfying $2^{\lambda_{k}} \leq n_{k}<$ $2^{\lambda_{k}+1}$. Let $m=m(k)$ denote the largest integer such that the real number
$(\beta+m) n_{k}^{-1}$ does not exceed $t_{*}^{(k)}$, let $m^{\prime}=m^{\prime}(k)$ denote the largest integer such that $\left(\alpha+m^{\prime}\right) 2^{-\left(\lambda_{k}+r+1\right)}$ is less than $(\beta+m) n_{k}^{-1}$, and let $m^{\prime \prime}=m^{\prime \prime}(k)$ denote the smallest integer such that $\left(\alpha+m^{\prime}+m^{\prime \prime}\right) 2^{-\left(\lambda_{k}+r+1\right)}$ is greater than $(\alpha+m+1) n_{k}^{-1}$. The definitions of $m^{\prime \prime}$ and λ_{k} yield

$$
\begin{aligned}
(\alpha+m+1) n_{k}^{-1} & <\left(\alpha+m^{\prime}+m^{\prime \prime}\right) 2^{-\left(\lambda_{k}+r+1\right)} \\
& =\left(\alpha+m^{\prime}+m^{\prime \prime}-1+1\right) 2^{-\left(\lambda_{k}+r+1\right)} \\
& <(\alpha+m+1) n_{k}^{-1}+2^{-r} n_{k}^{-1}=(\beta+m+1) n_{k}^{-1}
\end{aligned}
$$

that is,
(3) $\quad\left(\alpha+m^{\prime}+m^{\prime \prime}\right) 2^{-\left(\lambda_{k}+r+1\right)} \in\left((\alpha+m+1) n_{k}^{-1},(\beta+m+1) n_{k}^{-1}\right)$.

The definition of m implies $(\beta+m) n_{k}^{-1} \leq t_{*}^{(k)}<(\beta+m+1) n_{k}^{-1}$, and $t_{*}^{(k)} \notin\left((\alpha+m+1) n_{k}^{-1},(\beta+m+1) n_{k}^{-1}\right)$ by (1); consequently,

$$
\begin{equation*}
(\beta+m) n_{k}^{-1} \leq t_{*}^{(k)} \leq(\alpha+m+1) n_{k}^{-1} \tag{4}
\end{equation*}
$$

Using (4) and the definitions of m^{\prime} and $m^{\prime \prime}$,

$$
\begin{aligned}
m^{\prime} & <\alpha+m^{\prime}<2^{\lambda_{k}+r+1}(\beta+m) n_{k}^{-1} \leq 2^{\lambda_{k}+r+1} t_{*}^{(k)} \\
& \leq 2^{\lambda_{k}+r+1}(\alpha+m+1) n_{k}^{-1}<\alpha+m^{\prime}+m^{\prime \prime}<m^{\prime}+m^{\prime \prime}+1
\end{aligned}
$$

From the definitions of λ_{k} and m^{\prime},

$$
\begin{aligned}
\left(\alpha+m^{\prime}+2^{r+1}+1\right) 2^{-\left(\lambda_{k}+r+1\right)} & \geq(\beta+m) n_{k}^{-1}+2^{-\lambda_{k}} \geq(\beta+m+1) n_{k}^{-1} \\
& >(\alpha+m+1) n_{k}^{-1}
\end{aligned}
$$

and thus $m^{\prime \prime} \leq 2^{r+1}+1$. Again from the definitions of m^{\prime} and $m^{\prime \prime}$,

$$
\begin{aligned}
\left(\alpha+m^{\prime}\right) 2^{-\left(\lambda_{k}+r+1\right)} & <(\beta+m) n_{k}^{-1}<(\alpha+m+1) n_{k}^{-1} \\
& <\left(\alpha+m^{\prime}+m^{\prime \prime}\right) 2^{-\left(\lambda_{k}+r+1\right)}
\end{aligned}
$$

so that $m^{\prime \prime}>0$. In summary,

$$
2^{\lambda_{k}+r+1} t_{*}^{(k)} \in\left(m^{\prime}, m^{\prime}+m^{\prime \prime}+1\right), \quad \text { and } \quad m^{\prime \prime} \in\left(0,2^{r+1}+2\right) .
$$

Suppose that (2) is violated. Then the integer $2^{\lambda_{k}+r+1} t_{*}^{(k)}$ is equal to $m^{\prime}+s$ for some integer $s \in\left[1, m^{\prime \prime}\right]$. However,

$$
\left(\alpha+m^{\prime}+m^{\prime \prime}\right) 2^{-\left(\lambda_{k}+r+1\right)}=t_{*}^{(k)}+\left(\alpha+m^{\prime \prime}-s\right) 2^{-\left(\lambda_{k}+r+1\right)},
$$

where $\left(\alpha+m^{\prime \prime}-s\right) 2^{-\left(\lambda_{k}+r+1\right)}$ has at most $2 r$ ones in its binary expansion and at least $\lambda_{k}-2$ leading zeros, and it follows that $\left(\alpha+m^{\prime}+m^{\prime \prime}\right) 2^{-\left(\lambda_{k}+r+1\right)}$ belongs to $T\left(k ; t_{*}^{(k)}\right)$. But this, together with (3), contradicts (1).

The fact that S has infinite rank is necessary for our conjecture that S is not a finite union of H-sets. Indeed, by an argument of Salinger [6], if E is a subset of \mathbb{T} with finite rank n then E is the union of at most 2^{n} Dirichlet sets.

REFERENCES

[1] N. Bary, A Treatise on Trigonometric Series, Macmillan, New York 1964.
[2] G. Cantor, Ueber die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen, Math. Ann. 5 (1872), 123-132.
[3] G. Lejeune Dirichlet, Werke, Vol. 1, Chelsea, New York 1969, p. 635.
[4] A. Kechris and A. Louveau, Descriptive Set Theory and the Structure of Sets of Uniqueness, Cambridge U. Press, Cambridge 1987.
[5] A. Rajchman, Sur l'unicité $d u$ développement trigonométrique, Fund. Math. 3 (1922), 287-302.
[6] D. Salinger, Sur les ensembles indépendants dénombrables, C. R. Acad. Sci. Paris 272 (1971), 786-788.
[7] W. H. Young, A note on trigonometrical series, Messenger for Math. 38 (1909), 44-48.
[8] A. Zygmund, Trigonometric Series, Cambridge U. Press, Cambridge 1979.

DEPARTMENT OF MATHEMATICS AND STATISTICS
UNIVERSITY OF MISSOURI
ROLLA, MISSOURI 65401
U.S.A.

