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AN EXTREMAL SET OF UNIQUENESS?

BY

DAVID E. GROW AND MATT INSALL (ROLLA, MISSOURI)

Let T denote the group [0, 1) with addition modulo one, let Z denote the
integers, and let E be a subset of T. E is a set of uniqueness if the only
trigonometric series

∑∞
n=−∞ c(n)e2πinx on T which converges to zero for all

x outside E is the zero series; E is an H-set if there exists a nonempty
open interval I in T such that N(E; I) = {n ∈ Z | nx 6∈ I for all x ∈ E} is
infinite; E is a Dirichlet set if N(E; (ε, 1 − ε)) is infinite for all ε > 0. Let
E(0) = E and inductively define E(n) as the set of limit points of E(n−1). If
there exists a positive integer n such that E(n) is empty then E has finite
(Cantor–Bendixson) rank ; in this case, the least such integer n is the rank
of E.

Every finite subset of T is a Dirichlet set [3], every Dirichlet set is clearly
an H-set, and every H-set is a set of uniqueness [5]. Cantor [2] showed that
any set of finite rank is a set of uniqueness, and a similar argument shows
that every countable closed set E in T is a set of uniqueness [4, p. 32]. By
a result of W. H. Young [7], the hypothesis that E is closed can be deleted
without changing the conclusion. For an introduction to the vast literature
on sets of uniqueness see [1], [8], and [4].

The purpose of this note is an elementary construction of a closed set S
of rational numbers in T which necessarily is a set of uniqueness, but which
cannot be expressed as the union of two H-sets. We conjecture, moreover,
that S is not the union of a finite number of H-sets. In this case, S would be
extremal among the closed subsets of T which are expressible as a countable
union of H-sets. (By a nonconstructive argument [4, pp. 127–128], it is
known that possibly uncountable extremal sets of this type exist.) The
extremality of S, consequently, would provide insight into the long-standing
problem of characterizing the closed sets of uniqueness in T.

Given x in T, let x =
∑∞

k=0 xk2−k, xk ∈ {0, 1}, denote its binary ex-
pansion, and write x = x0.x1x2x3 . . .; this expression for x is unique if the
terminating expansion is chosen whenever possible. Let S−1 = {0} and, for
each nonnegative integer n, let Sn signify the set of all x = x0.x1x2x3 . . . in
T such that

∑∞
j=0 xj = n + 1 and xj = 0 if 0 ≤ j ≤ n.
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Theorem. The set S =
⋃∞

n=−1 Sn is a closed set of rational numbers in
T whose rank is infinite and which cannot be expressed as the union of two
H-sets.

P r o o f. By construction, S consists of rational points. To see that it is
closed, let {x(k)} be a sequence of points from S with x(k) → x as k →∞.
If there exists a positive integer n such that infinitely many points of {x(k)}
belong to

⋃n
j=−1 Sj , then x belongs to this closed set; if no such integer n

exists then x = 0. In either case, x belongs to S.
It is not hard to see that S has infinite rank; for this purpose, corre-

sponding to each nonnegative integer n, define a mapping Πn from T into
T by Πn(x0.x1x2x3 . . .) = y0.y1y2y3 . . . where yj = 0 if 0 ≤ j ≤ n and
yj = xj if j ≥ n + 1. By convention, Π−1 = 0. It is easy to verify that
S

(1)
n =

⋃n−1
j=−1 Πn(Sj) and (Πn(Sk))(1) = Πn(S(1)

k ) for all n ≥ k ≥ 0. Induc-

tion then yields S
(n)
n = {0}∪Πn(S0), and consequently S(n) ⊇ S

(n)
n 6= ∅, for

each n ≥ 0.
Suppose, by way of contradiction, that S = E∪F where E and F are H-

sets. Then there exist integers r, µ, and ν, where r ≥ 2 and µ, ν ∈ [1, 2r−1),
and infinite sequences of positive integers m1 < n1 < m2 < n2 < . . . , with
nk/mk → ∞ as k → ∞, such that mkx 6∈ (µ2−r, (µ + 1)2−r) and nky 6∈
(ν2−r, (ν + 1)2−r) for all x ∈ E, y ∈ F , and integers k ≥ 1. Fix a positive
integer k and let rk be the nonnegative integer such that 2rk ≤ mk < 2rk+1;
without loss of generality, rk ≥ 3r + 4. Let l = l(k) denote the smallest
positive integer such that the real number t

(k)
∗ = (4µ+ l)2−(rk+r+3) belongs

to (µ2−rm−1
k , (µ + 1)2−rm−1

k ), and let T (k; t(k)
∗ ) denote the set of all points

in T of the form

t
(k)
∗ +

∞∑
j=rk+r+4

tj2−j

where tj ∈ {0, 1} for all j and
∑∞

j=rk+r+4 tj ≤ rk − r − 2. Note that

T (k; t(k)
∗ ) is contained in S∩(µ2−rm−1

k , (µ+1)2−rm−1
k ); since E∩(µ2−rm−1

k ,

(µ+1)2−rm−1
k ) is empty, it follows that T (k; t(k)

∗ ) is a subset of F . Observe
that {t ∈ T | njt ∈ (α, β)} ∩ F is empty for all j ≥ 1, where α = ν2−r and
β = (ν + 1)2−r; in particular,

(1) {t ∈ T | nkt ∈ (α, β)} ∩ T (k; t(k)
∗ ) = ∅ .

We assert that (1) implies

(2) nk/2rk < 2r+7 ,

in contradiction to nk/mk → ∞, which would establish the theorem. In
order to prove (2), let λk be the nonnegative integer satisfying 2λk ≤ nk <
2λk+1. Let m = m(k) denote the largest integer such that the real number
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(β + m)n−1
k does not exceed t

(k)
∗ , let m′ = m′(k) denote the largest integer

such that (α + m′)2−(λk+r+1) is less than (β + m)n−1
k , and let m′′ = m′′(k)

denote the smallest integer such that (α + m′ + m′′)2−(λk+r+1) is greater
than (α + m + 1)n−1

k . The definitions of m′′ and λk yield

(α + m + 1)n−1
k < (α + m′ + m′′)2−(λk+r+1)

= (α + m′ + m′′ − 1 + 1)2−(λk+r+1)

< (α + m + 1)n−1
k + 2−rn−1

k = (β + m + 1)n−1
k ,

that is,

(3) (α + m′ + m′′)2−(λk+r+1) ∈ ((α + m + 1)n−1
k , (β + m + 1)n−1

k ) .

The definition of m implies (β + m)n−1
k ≤ t

(k)
∗ < (β + m + 1)n−1

k , and
t
(k)
∗ 6∈ ((α + m + 1)n−1

k , (β + m + 1)n−1
k ) by (1); consequently,

(4) (β + m)n−1
k ≤ t

(k)
∗ ≤ (α + m + 1)n−1

k .

Using (4) and the definitions of m′ and m′′,

m′ < α + m′ < 2λk+r+1(β + m)n−1
k ≤ 2λk+r+1t

(k)
∗

≤ 2λk+r+1(α + m + 1)n−1
k < α + m′ + m′′ < m′ + m′′ + 1 .

From the definitions of λk and m′,

(α + m′ + 2r+1 + 1)2−(λk+r+1) ≥ (β + m)n−1
k + 2−λk ≥ (β + m + 1)n−1

k

> (α + m + 1)n−1
k ,

and thus m′′ ≤ 2r+1 + 1. Again from the definitions of m′ and m′′,

(α + m′)2−(λk+r+1) < (β + m)n−1
k < (α + m + 1)n−1

k

< (α + m′ + m′′)2−(λk+r+1)

so that m′′ > 0. In summary,

2λk+r+1t
(k)
∗ ∈ (m′,m′ + m′′ + 1), and m′′ ∈ (0, 2r+1 + 2) .

Suppose that (2) is violated. Then the integer 2λk+r+1t
(k)
∗ is equal to

m′ + s for some integer s ∈ [1,m′′]. However,

(α + m′ + m′′)2−(λk+r+1) = t
(k)
∗ + (α + m′′ − s)2−(λk+r+1) ,

where (α + m′′ − s)2−(λk+r+1) has at most 2r ones in its binary expansion
and at least λk−2 leading zeros, and it follows that (α+m′+m′′)2−(λk+r+1)

belongs to T (k; t(k)
∗ ). But this, together with (3), contradicts (1).

The fact that S has infinite rank is necessary for our conjecture that S is
not a finite union of H-sets. Indeed, by an argument of Salinger [6], if E is
a subset of T with finite rank n then E is the union of at most 2n Dirichlet
sets.
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