COLLOQUIUM MATHEMATICUM

VOL. LXV

AN EXTREMAL SET OF UNIQUENESS?

ВY

DAVID E. GROW AND MATT INSALL (ROLLA, MISSOURI)

Let \mathbb{T} denote the group [0, 1) with addition modulo one, let \mathbb{Z} denote the integers, and let E be a subset of \mathbb{T} . E is a set of uniqueness if the only trigonometric series $\sum_{n=-\infty}^{\infty} c(n)e^{2\pi i n x}$ on \mathbb{T} which converges to zero for all x outside E is the zero series; E is an H-set if there exists a nonempty open interval I in \mathbb{T} such that $N(E; I) = \{n \in \mathbb{Z} \mid nx \notin I \text{ for all } x \in E\}$ is infinite; E is a Dirichlet set if $N(E; (\varepsilon, 1 - \varepsilon))$ is infinite for all $\varepsilon > 0$. Let $E^{(0)} = E$ and inductively define $E^{(n)}$ as the set of limit points of $E^{(n-1)}$. If there exists a positive integer n such that $E^{(n)}$ is empty then E has finite (Cantor-Bendixson) rank; in this case, the least such integer n is the rank of E.

Every finite subset of \mathbb{T} is a Dirichlet set [3], every Dirichlet set is clearly an *H*-set, and every *H*-set is a set of uniqueness [5]. Cantor [2] showed that any set of finite rank is a set of uniqueness, and a similar argument shows that every countable closed set *E* in \mathbb{T} is a set of uniqueness [4, p. 32]. By a result of W. H. Young [7], the hypothesis that *E* is closed can be deleted without changing the conclusion. For an introduction to the vast literature on sets of uniqueness see [1], [8], and [4].

The purpose of this note is an elementary construction of a closed set S of rational numbers in \mathbb{T} which necessarily is a set of uniqueness, but which cannot be expressed as the union of two H-sets. We conjecture, moreover, that S is not the union of a finite number of H-sets. In this case, S would be extremal among the closed subsets of \mathbb{T} which are expressible as a countable union of H-sets. (By a nonconstructive argument [4, pp. 127–128], it is known that possibly uncountable extremal sets of this type exist.) The extremality of S, consequently, would provide insight into the long-standing problem of characterizing the closed sets of uniqueness in \mathbb{T} .

Given x in \mathbb{T} , let $x = \sum_{k=0}^{\infty} x_k 2^{-k}$, $x_k \in \{0, 1\}$, denote its binary expansion, and write $x = x_0.x_1x_2x_3...$; this expression for x is unique if the terminating expansion is chosen whenever possible. Let $S_{-1} = \{0\}$ and, for each nonnegative integer n, let S_n signify the set of all $x = x_0.x_1x_2x_3...$ in \mathbb{T} such that $\sum_{i=0}^{\infty} x_j = n + 1$ and $x_j = 0$ if $0 \le j \le n$.

THEOREM. The set $S = \bigcup_{n=-1}^{\infty} S_n$ is a closed set of rational numbers in \mathbb{T} whose rank is infinite and which cannot be expressed as the union of two *H*-sets.

Proof. By construction, S consists of rational points. To see that it is closed, let $\{x^{(k)}\}$ be a sequence of points from S with $x^{(k)} \to x$ as $k \to \infty$. If there exists a positive integer n such that infinitely many points of $\{x^{(k)}\}$ belong to $\bigcup_{j=-1}^{n} S_j$, then x belongs to this closed set; if no such integer n exists then x = 0. In either case, x belongs to S.

It is not hard to see that S has infinite rank; for this purpose, corresponding to each nonnegative integer n, define a mapping Π_n from \mathbb{T} into \mathbb{T} by $\Pi_n(x_0.x_1x_2x_3...) = y_0.y_1y_2y_3...$ where $y_j = 0$ if $0 \leq j \leq n$ and $y_j = x_j$ if $j \geq n + 1$. By convention, $\Pi_{-1} = 0$. It is easy to verify that $S_n^{(1)} = \bigcup_{j=-1}^{n-1} \Pi_n(S_j)$ and $(\Pi_n(S_k))^{(1)} = \Pi_n(S_k^{(1)})$ for all $n \geq k \geq 0$. Induction then yields $S_n^{(n)} = \{0\} \cup \Pi_n(S_0)$, and consequently $S^{(n)} \supseteq S_n^{(n)} \neq \emptyset$, for each $n \geq 0$.

Suppose, by way of contradiction, that $S = E \cup F$ where E and F are H-sets. Then there exist integers r, μ , and ν , where $r \geq 2$ and $\mu, \nu \in [1, 2^r - 1)$, and infinite sequences of positive integers $m_1 < n_1 < m_2 < n_2 < \ldots$, with $n_k/m_k \to \infty$ as $k \to \infty$, such that $m_k x \notin (\mu 2^{-r}, (\mu + 1)2^{-r})$ and $n_k y \notin (\nu 2^{-r}, (\nu + 1)2^{-r})$ for all $x \in E$, $y \in F$, and integers $k \geq 1$. Fix a positive integer k and let r_k be the nonnegative integer such that $2^{r_k} \leq m_k < 2^{r_k+1}$; without loss of generality, $r_k \geq 3r + 4$. Let l = l(k) denote the smallest positive integer such that the real number $t_*^{(k)} = (4\mu + l)2^{-(r_k+r+3)}$ belongs to $(\mu 2^{-r}m_k^{-1}, (\mu + 1)2^{-r}m_k^{-1})$, and let $T(k; t_*^{(k)})$ denote the set of all points in \mathbb{T} of the form

$$t_*^{(k)} + \sum_{j=r_k+r+4}^{\infty} t_j 2^{-j}$$

where $t_j \in \{0,1\}$ for all j and $\sum_{j=r_k+r+4}^{\infty} t_j \leq r_k - r - 2$. Note that $T(k; t_*^{(k)})$ is contained in $S \cap (\mu 2^{-r} m_k^{-1}, (\mu+1)2^{-r} m_k^{-1})$; since $E \cap (\mu 2^{-r} m_k^{-1}, (\mu+1)2^{-r} m_k^{-1})$; since $E \cap (\mu 2^{-r} m_k^{-1}, (\mu+1)2^{-r} m_k^{-1})$ is empty, it follows that $T(k; t_*^{(k)})$ is a subset of F. Observe that $\{t \in \mathbb{T} \mid n_j t \in (\alpha, \beta)\} \cap F$ is empty for all $j \geq 1$, where $\alpha = \nu 2^{-r}$ and $\beta = (\nu+1)2^{-r}$; in particular,

(1)
$$\{t \in \mathbb{T} \mid n_k t \in (\alpha, \beta)\} \cap T(k; t_*^{(k)}) = \emptyset$$

We assert that (1) implies

(2)
$$n_k/2^{r_k} < 2^{r+7}$$

in contradiction to $n_k/m_k \to \infty$, which would establish the theorem. In order to prove (2), let λ_k be the nonnegative integer satisfying $2^{\lambda_k} \leq n_k < 2^{\lambda_k+1}$. Let m = m(k) denote the largest integer such that the real number

 $(\beta + m)n_k^{-1}$ does not exceed $t_*^{(k)}$, let m' = m'(k) denote the largest integer such that $(\alpha + m')2^{-(\lambda_k + r + 1)}$ is less than $(\beta + m)n_k^{-1}$, and let m'' = m''(k)denote the smallest integer such that $(\alpha + m' + m'')2^{-(\lambda_k + r + 1)}$ is greater than $(\alpha + m + 1)n_k^{-1}$. The definitions of m'' and λ_k yield

$$\begin{split} (\alpha+m+1)n_k^{-1} &< (\alpha+m'+m'')2^{-(\lambda_k+r+1)} \\ &= (\alpha+m'+m''-1+1)2^{-(\lambda_k+r+1)} \\ &< (\alpha+m+1)n_k^{-1}+2^{-r}n_k^{-1} = (\beta+m+1)n_k^{-1} \,, \end{split}$$

that is,

(3)
$$(\alpha + m' + m'')2^{-(\lambda_k + r + 1)} \in ((\alpha + m + 1)n_k^{-1}, (\beta + m + 1)n_k^{-1}).$$

The definition of *m* implies $(\beta + m)n_k^{-1} \leq t_*^{(k)} < (\beta + m + 1)n_k^{-1}$, and $t_*^{(k)} \notin ((\alpha + m + 1)n_k^{-1}, (\beta + m + 1)n_k^{-1})$ by (1); consequently,

(4)
$$(\beta + m)n_k^{-1} \le t_*^{(k)} \le (\alpha + m + 1)n_k^{-1}.$$

Using (4) and the definitions of m' and m'',

$$m' < \alpha + m' < 2^{\lambda_k + r + 1} (\beta + m) n_k^{-1} \le 2^{\lambda_k + r + 1} t_*^{(k)}$$
$$\le 2^{\lambda_k + r + 1} (\alpha + m + 1) n_k^{-1} < \alpha + m' + m'' < m' + m'' + 1$$

From the definitions of λ_k and m',

$$(\alpha + m' + 2^{r+1} + 1)2^{-(\lambda_k + r+1)} \ge (\beta + m)n_k^{-1} + 2^{-\lambda_k} \ge (\beta + m + 1)n_k^{-1} > (\alpha + m + 1)n_k^{-1},$$

and thus $m'' \leq 2^{r+1} + 1$. Again from the definitions of m' and m'',

$$(\alpha + m')2^{-(\lambda_k + r + 1)} < (\beta + m)n_k^{-1} < (\alpha + m + 1)n_k^{-1} < (\alpha + m' + m'')2^{-(\lambda_k + r + 1)}$$

so that m'' > 0. In summary,

$$2^{\lambda_k+r+1}t_*^{(k)} \in (m', m'+m''+1), \text{ and } m'' \in (0, 2^{r+1}+2)$$

Suppose that (2) is violated. Then the integer $2^{\lambda_k+r+1}t_*^{(k)}$ is equal to m'+s for some integer $s \in [1, m'']$. However,

$$(\alpha + m' + m'')2^{-(\lambda_k + r + 1)} = t_*^{(k)} + (\alpha + m'' - s)2^{-(\lambda_k + r + 1)}$$

where $(\alpha + m'' - s)2^{-(\lambda_k + r+1)}$ has at most 2r ones in its binary expansion and at least $\lambda_k - 2$ leading zeros, and it follows that $(\alpha + m' + m'')2^{-(\lambda_k + r+1)}$ belongs to $T(k; t_*^{(k)})$. But this, together with (3), contradicts (1).

The fact that S has infinite rank is necessary for our conjecture that S is not a finite union of H-sets. Indeed, by an argument of Salinger [6], if E is a subset of \mathbb{T} with finite rank n then E is the union of at most 2^n Dirichlet sets.

D. E. GROW AND M. INSALL

REFERENCES

- [1] N. Bary, A Treatise on Trigonometric Series, Macmillan, New York 1964.
- G. Cantor, Ueber die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen, Math. Ann. 5 (1872), 123–132.
- [3] G. Lejeune Dirichlet, Werke, Vol. 1, Chelsea, New York 1969, p. 635.
- [4] A. Kechris and A. Louveau, *Descriptive Set Theory and the Structure of Sets of Uniqueness*, Cambridge U. Press, Cambridge 1987.
- [5] A. Rajchman, Sur l'unicité du développement trigonométrique, Fund. Math. 3 (1922), 287–302.
- [6] D. Salinger, Sur les ensembles indépendants dénombrables, C. R. Acad. Sci. Paris 272 (1971), 786–788.
- [7] W. H. Young, A note on trigonometrical series, Messenger for Math. 38 (1909), 44–48.
- [8] A. Zygmund, Trigonometric Series, Cambridge U. Press, Cambridge 1979.

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MISSOURI ROLLA, MISSOURI 65401 U.S.A.

> Reçu par la Rédaction le 19.2.1992; en version modifiée le 15.10.1992

64