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1. Introduction. The nth Bessel polynomial is

yn(x) =
n∑

j=0

(n + j)!
2j(n− j)!j!

xj .

In [3], E. Grosswald conjectured that yn(x) is irreducible over the rationals
for every positive integer n. In [1], the first author proved that almost
all yn(x) are irreducible and later [2] sharpened this by showing that the
number of n ≤ t for which yn(x) is reducible is � t/ log log log t. The object
of this paper is to give a further sharpening.

Theorem. The number of n ≤ t for which yn(x) is reducible is � t2/3.

The first author’s earlier work used the Chebotarev Density Theorem,
but the proof given here uses only elementary estimates. Our starting point
is the Corollary to Lemma 2 in [1], which states that if

(1)
( ∏

p|n(n+1)

p
)2( ∏

p|(n−1)
p odd

p
)( ∏

p|(n+2)
p>3

p
)

> n2(n + 1)2 ,

then yn(x) is irreducible. We shall show that (1) holds for most n by showing
that the non-squarefree part of (n−1)n(n+1)(n+2) is typically very small.

2. Preliminaries. For every positive integer n, we define

an =
∏

pα‖n
α odd

p and bn =
∏

pα‖n

p[α/2] ,

where pα‖n denotes, as usual, that pα is the highest power of p dividing n.
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We then have that n = anb2
n and

(2) an ≤
∏
p|n

p .

In the next lemma, we use (2) to state (1) in a more usable form.

Lemma 1. If yn(x) is reducible and t < n ≤ 2t then

bn−1b
2
nb2

n+1bn+2 > 1
3 t .

P r o o f. From (1) and (2), we see that if yn(x) is reducible, then

n− 1
b2
n−1

· n2

b4
n

· (n + 1)2

b4
n+1

· n + 2
b2
n+2

≤ 6n2(n + 1)2 .

The result now follows.

Lemma 2. If y is a positive real number , then

#{n ∈ (t, 2t] : bn > y} � t

y
+ t1/2 .

P r o o f. The left-hand side is at most∑
t<n≤2t

∑
b2|n
b>y

1 �
∑

y<b≤
√

2t

(
t

b2
+ 1

)
� t

y
+ t1/2 .

Lemma 3. If z ≥ 2 and y are real numbers, then

#{n ∈ (t, 2t] : bnbn+1 > z, bn ≤ y, and bn+1 ≤ y} � t log z

z
+ y2 .

P r o o f. The left-hand side is

≤
∑

t<n≤2t

∑
b2|n,c2|(n+1)
bc>z,b≤y,c≤y

1 �
∑
bc>z

b≤y,c≤y

(
t

b2c2
+ 1

)
(3)

� y2 +
∑
bc≥z

t

b2c2
.

Now the last sum in (3) is at most

(4) t
∑
r≥z

d(r)r−2 ,

where d(r) denotes the number of divisors of r. Using the elementary esti-
mate

∑
r≤x d(r) � x log x and partial summation, we find that (4) is

� t log z

z
.

This completes the proof.
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3. Proof of the theorem. We will bound

(5) #{n ∈ (t, 2t] : bn−1b
2
nb2

n+1bn+2 > 1
3 t} .

By Lemma 2, those n with any of bn−1, bn, bn+1, bn+2 greater than t1/3

contribute � t2/3. The remaining n all have bn+j ≤ t1/3 for −1 ≤ j ≤ 2.
By Lemma 3, those n with any of bn−1bn, bnbn+1, bn+1bn+2 greater than
t1/3 log t contribute � t2/3. The remaining n all have

bn−1bn, bnbn+1, bn+1bn+2 ≤ t1/3 log t .

Using the condition in (5), we see that

bn−1bn · bnbn+1 · bn+1bn+2 > 1
3 t ,

so in fact the remaining n satisfy the stronger conditions

(6) 1
3 t1/3 log−2 t ≤ bn−1bn, bnbn+1, bn+1bn+2 ≤ t1/3 log t .

Now consider those n satisfying (6) with bn > t2/9. Then bn−1, bn+1 <
t1/9 log t and bn+2 > 1

3 t2/9 log−3 t. In other words, these n have

bn ≤ t1/3, bn+2 ≤ t1/3 and bnbn+2 > 1
3 t4/9 log−3 t .

By an easy variant of the argument giving Lemma 3, these n contribute

� t5/9 log4 t + t2/3 � t2/3 .

A similar argument can be used to get the same bound for those n with
bn+1 > t2/9.

The remaining n have bn, bn+1 ≤ t2/9. By (6), bn−1 ≥ 1
3 t1/9 log−2 t and

1
9 t4/9 log−4 t ≤ bn−1bnbn+1 ≤ t5/9 log t .

The number of such n is

(7) �
∑

1
9 t4/9 log−4 t≤m≤t5/9 log t

(
t

m2
+ 1

)
d3(m)

where d3(m) denotes the number of ways of writing m as a product of three
factors. Using the trivial estimate

∑
m≤x d3(m) � x log2 x and partial

summation, we see that (7) is

� t5/9 log6 t � t2/3 .

This concludes the proof.
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