VOL. LXV	1993	FASC. 1

FINITE UNION OF H-SETS
AND COUNTABLE COMPACT SETS
BY
SYLVAIN KAHANE (PARIS)

1. Introduction. In [2], D. E. Grow and M. Insall construct a countable compact set which is not the union of two H-sets. We make precise this result in two directions, proving such a set may be, but need not be, a finite union of H-sets. Descriptive set theory tools like Cantor-Bendixson ranks are used; they are developed in the book of A. S. Kechris and A. Louveau [6]. Two proofs are presented; the first one is elementary while the second one is more general and useful. Using the last one I prove in my thesis, directed by A. Louveau, the existence of a countable compact set which is not a finite union of Dirichlet sets. This result, quoted in [3], is weaker because all Dirichlet sets belong to H. Other new results about the class H and similar classes of thin sets can be found in [4], [1] and [5].

Let \mathbb{T} be the torus \mathbb{R} / \mathbb{Z} endowed with its structure of compact topological group.

A compact subset K of \mathbb{T} is an H-set if there exist a nonempty interval I of \mathbb{T} and a strictly increasing sequence n_{k} of integers such that $n_{k} K \cap I=\emptyset$ for each integer k. The class of all H-sets is denoted by H.

Theorem 1.1. There exists a countable compact subset of \mathbb{T} which is not a finite union of H-sets.

Theorem 1.2. For every integer n, there exists a countable compact subset of \mathbb{T} which is the union of $n+1 H$-sets, but not of n.
2. Cantor-Bendixson ranks. For each compact metrizable space E we denote by $\mathcal{K}(E)\left(\right.$ resp. $\left.\mathcal{K}_{\omega}(E)\right)$ the space of all compact (resp. countable compact) subsets of E.

A subset B of $\mathcal{K}(E)$ is said to be hereditary if for every $K \in B$ all compact subsets of K are also in B. Let B be an hereditary subset of $\mathcal{K}(E)$. We denote by B_{f} (resp. B_{σ}) the set of all compact subsets of E which are finite (resp. countable) unions of elements of B.

For each $K \in \mathcal{K}(E)$ define the B-derivate by

$$
\mathrm{d}_{B}(K)=\{x \in K: \forall \text { open } V(x \in V \Rightarrow \overline{K \cap V} \notin B)\}
$$

and then by induction, let

$$
K_{B}^{(0)}=K, \quad K_{B}^{(<\alpha)}=\bigcap_{\beta<\alpha} K_{B}^{(\beta)} \quad \text { and } \quad K_{B}^{(\alpha)}=\mathrm{d}_{B}\left(K_{B}^{(<\alpha)}\right)
$$

The sequence $K_{B}^{(\alpha)}$ is a decreasing sequence of compact sets in E, hence stabilizes at some countable ordinal. It is easy to verify that $K_{B}^{(\alpha)}$ stabilizes at \emptyset iff $K \in B_{\sigma}$. Hence we define the Cantor-Bendixson $\operatorname{rank} \mathrm{rk}_{B}(K)$ to be the least α such that $K^{(\alpha)}=\emptyset$, if such an α exists, and ω_{1} (the first uncountable ordinal) otherwise.

For $S=\emptyset \cup\{$ singletons $\}, \mathrm{rk}_{S}$ is the classical Cantor-Bendixson rank on $\mathcal{K}_{\omega}(E)$.

Proposition 2.1. Let n be an integer and $K \in \mathcal{K}(E)$. If K is the union of $n B$-sets, then $\operatorname{rk}_{B}(K) \leq n$.

The previous result can be easily deduced from the following lemma.
Lemma 2.2. Let $\left(K_{1}, K_{2}\right) \in\left(B_{\sigma}\right)^{2}$. We have

$$
\operatorname{rk}_{B}\left(K_{1} \cup K_{2}\right) \leq \sup \left\{\operatorname{rk}_{B}\left(K_{1}\right), \operatorname{rk}_{B}\left(K_{2}\right)\right\}+\operatorname{rk}_{B}\left(K_{1} \cap K_{2}\right)
$$

Proof. If $x \in\left(K_{1} \cup K_{2}\right) \backslash\left(K_{1} \cap K_{2}\right)=\left(K_{1} \backslash K_{2}\right) \cup\left(K_{2} \backslash K_{1}\right)$, then there exist an open neighbourhood V of x and $i=1$ or 2 such that $V \cap\left(K_{1} \cup K_{2}\right) \subset$ K_{i}, thus $x \in \mathrm{~d}_{B}\left(K_{1} \cup K_{2}\right)$ iff $x \in \mathrm{~d}_{B}\left(K_{i}\right)$. It follows by induction that $\left(K_{1} \cup K_{2}\right)_{B}^{(\alpha)} \subset K_{1} \cap K_{2}$ with $\alpha=\sup \left\{\operatorname{rk}_{B}\left(K_{1}\right), \mathrm{rk}_{B}\left(K_{2}\right)\right\}$.

The following result is a simpler form of Theorem 6 of [6], p. 202.
Lemma 2.3. Let A and B be two subsets of $\mathcal{K}(E)$ which are closed under translations. Suppose that $A \subset B, B$ is hereditary and there exists $K_{1} \in A$ with $\mathrm{d}_{B}\left(K_{1}\right) \neq \emptyset$. Then rk_{B} is unbounded on A_{σ}.

Proof. We can assume, by translating K_{1} if necessary, that $0 \in \mathrm{~d}_{B}\left(K_{1}\right)$. We construct by induction on α a compact set $K_{\alpha} \in A_{\sigma}$ with $\operatorname{rk}_{B}\left(K_{\alpha}\right) \geq$ $\alpha+1$. Let D be a countable dense subset of $K_{1} \backslash\{0\}$. If α is a limit ordinal, choose $\alpha_{n} \nearrow \alpha$, and if $\alpha=\beta+1$, set $\alpha_{n}=\beta$ for each n. Now put

$$
K_{\alpha}=\{0\} \cup \bigcup_{n}\left(\left[K_{\alpha_{n}} \cap \mathrm{~B}\left(0, \varepsilon_{n}\right)\right]+t_{n}\right)
$$

where the sequence t_{n} enumerates infinitely many times each element of D and the sequence ε_{n} decreases to 0 . It can be easily verified that K_{α} is compact, $K_{\alpha} \in A_{\sigma}$ and $0 \in\left(K_{\alpha}\right)_{B}^{(\alpha)}$. Thus rk_{B} is unbounded on A_{σ}.

3. Elementary proof

Fact 3.1. There is a countable compact set L with $\mathrm{d}_{H}(L) \neq \emptyset$. In particular, $L \notin H$.

Proof ([6], p. 38). Enumerate all the rational intervals of \mathbb{T} in a sequence I_{n}. For each n and each $i=1, \ldots, n$, choose a point $r_{i}^{n} \in[0,1 / n]$ with $n r_{i}^{n} \in$ I_{i}. Let finally x_{1}, x_{2}, \ldots enumerate the r_{i}^{n} 's. Clearly $L=\{0\} \cup\left\{x_{1}, x_{2}, \ldots\right\}$ is compact and $0 \in \mathrm{~d}_{H}(L)$.

FACT 3.2. H is closed under translations.
Proof. Let $K \in H$; let n_{k} be a sequence and I an interval witnessing that. Let $x \in \mathbb{T}$; we prove that $K+x \in H$. By compactness of \mathbb{T} we can assume that $n_{k} x \rightarrow y$ for some $y \in \mathbb{T}$. Let J be the interval with the same center as I and half its length. Then $n_{k}(K+x) \cap(J+y)=\emptyset$ for k large enough.

Proof of Theorem 1.1. Using Lemma 2.2 and Lemma 2.3 with $A=S, B=H$ and $K_{1}=L$ we deduce that the countable compact set K_{ω} (where ω is the first infinite ordinal) is not a finite union of H-sets.

Remark. Salinger [8] proved that every countable compact set of finite classical Cantor-Bendixson rank n is the union of $2^{n-1} H$-sets.

Proof of Theorem 1.2. Let us return to the proof of Lemma 2.3 with $A=S, B=H$ and $K_{1}=L$. The ε_{n} 's can be chosen such that $\mathrm{B}\left(t_{n}, \varepsilon_{n}\right) \cap \mathrm{B}\left(t_{m}, \varepsilon_{m}\right)=\emptyset$ if $t_{n} \neq t_{m}$, because all elements of $L \backslash\{0\}$ are isolated, so K_{α} has classical Cantor-Bendixson rank equal to $\alpha+1$.

Let n be an integer. By Salinger's Theorem, K_{n} is the union of 2^{n} H-sets. By Proposition 2.1, K_{n} cannot be the union of $n H$-sets. So there is a compact subset of K_{n} which is the union of $n+1 H$-sets, but not of n.
4. Descriptive set theory proof. For each compact metrizable space E, the space $\mathcal{K}(E)$ with the Hausdorff topology generated by the sets $\{K \in$ $\mathcal{K}(E): K \subset V\}$ and $\{K \in \mathcal{K}(E): K \cap V \neq \emptyset\}$, where V is open in E, is compact and metrizable.

Let B be a Borel hereditary subset of $\mathcal{K}(E)$.
FAct 4.1. B_{f} is an analytic subset of $\mathcal{K}(E)$.
Proof. The function $\Phi: \mathcal{K}(E) \times \mathcal{K}(E) \rightarrow \mathcal{K}(E),(K, L) \mapsto K \cup L$, is continuous and $B_{f}=\bigcup B_{n}$ with $B_{0}=B$ and $B_{n+1}=\Phi\left(B_{n} \times B_{n}\right)$.

FACT 4.2 ([6], pp. 140, 194, 198). B_{σ} is a coanalytic subset of $\mathcal{K}(E)$ and rk_{B} is a coanalytic rank on B_{σ}.

Let us recall the Boundedness Theorem: if C is a coanalytic set with a coanalytic rank and A is an analytic subset of C, then the rank of elements of A is uniformly bounded by a countable ordinal.

The following result can be deduced immediately from the Boundedness Theorem and Lemma 2.3.

Lemma 4.3. Let A and B be two subsets of $\mathcal{K}(E)$ which are closed under translations. Suppose that $A \subset B, B$ is Borel and hereditary and there exists $K \in A$ with $\mathrm{d}_{B}(K) \neq \emptyset$. Then there is no analytic set P with $A_{\sigma} \subset P \subset B_{\sigma}$.

Fact $4.4([7]) . H$ is a $\mathcal{K}_{\sigma \delta}$ subset of $\mathcal{K}(\mathbb{T})$.
Proof. A compact subset K of \mathbb{T} belongs to H if there exists an open rational interval I of \mathbb{T} such that for every integer k, there exists an integer $n \geq k$ such that $n K \cap I=\emptyset$. The last condition is clearly closed in $\mathcal{K}(\mathbb{T})$.

Using both previous results we have:
THEOREM 4.5. There is no analytic set P with $\mathcal{K}_{\omega}(\mathbb{T}) \subset P \subset H_{\sigma}$.
Theorem 1.1 can now be easily deduced. Indeed, H_{f} is an analytic subset of H_{σ}, whence $\mathcal{K}_{\omega}(\mathbb{T}) \not \subset H_{f}$.

REFERENCES

[1] H. Becker, S. Kahane and A. Louveau, Natural Σ_{2}^{1} sets in harmonic analysis, Trans. Amer. Math. Soc., to appear.
[2] D. Grow and M. Insall, An extremal set of uniqueness?, this volume, 61-64.
[3] S. Kahane, Ensembles de convergence absolue, ensembles de Dirichlet faibles et \uparrow-idéaux, C. R. Acad. Sci. Paris 310 (1990), 335-337.
[4] -, Antistable classes of thin sets, Illinois J. Math. 37 (1) (1993).
[5] -, On the complexity of sums of Dirichlet measures, Ann. Inst. Fourier (Grenoble) 43 (1) (1993).
[6] A. Kechris and A. Louveau, Descriptive Set Theory and the Structure of Sets of Uniqueness, London Math. Soc. Lecture Note Ser. 128, Cambridge Univ. Press, 1987.
[7] A. Kechris and R. Lyons, Ordinal ranking on measures annihilating thin sets, Trans. Amer. Math. Soc. 310 (1988), 747-758.
[8] D. Salinger, Sur les ensembles indépendants dénombrables, C. R. Acad. Sci. Paris Sér. A-B 272 (1981), A786-788.

ÉQUIPE D'ANALYSE
UNIVERSITÉ PARIS 6
75252 PARIS CEDEX 05, FRANCE

