COLLOQUIUM MATHEMATICUM

VOL. LXV

1993

FASC. 1

FINITE UNION OF H-SETS AND COUNTABLE COMPACT SETS

BY SYLVAIN KAHANE (PARIS)

1. Introduction. In [2], D. E. Grow and M. Insall construct a countable compact set which is not the union of two H-sets. We make precise this result in two directions, proving such a set may be, but need not be, a finite union of H-sets. Descriptive set theory tools like Cantor-Bendixson ranks are used; they are developed in the book of A. S. Kechris and A. Louveau [6]. Two proofs are presented; the first one is elementary while the second one is more general and useful. Using the last one I prove in my thesis, directed by A. Louveau, the existence of a countable compact set which is not a finite union of Dirichlet sets. This result, quoted in [3], is weaker because all Dirichlet sets belong to H. Other new results about the class H and similar classes of thin sets can be found in [4], [1] and [5].

Let $\mathbb T$ be the torus $\mathbb R/\mathbb Z$ endowed with its structure of compact topological group.

A compact subset K of \mathbb{T} is an H-set if there exist a nonempty interval I of \mathbb{T} and a strictly increasing sequence n_k of integers such that $n_k K \cap I = \emptyset$ for each integer k. The class of all H-sets is denoted by H.

THEOREM 1.1. There exists a countable compact subset of \mathbb{T} which is not a finite union of H-sets.

THEOREM 1.2. For every integer n, there exists a countable compact subset of \mathbb{T} which is the union of n + 1 H-sets, but not of n.

2. Cantor-Bendixson ranks. For each compact metrizable space E we denote by $\mathcal{K}(E)$ (resp. $\mathcal{K}_{\omega}(E)$) the space of all compact (resp. countable compact) subsets of E.

A subset B of $\mathcal{K}(E)$ is said to be *hereditary* if for every $K \in B$ all compact subsets of K are also in B. Let B be an hereditary subset of $\mathcal{K}(E)$. We denote by B_f (resp. B_{σ}) the set of all compact subsets of E which are finite (resp. countable) unions of elements of B. For each $K \in \mathcal{K}(E)$ define the *B*-derivate by

$$d_B(K) = \{ x \in K : \forall \text{ open } V \ (x \in V \Rightarrow \overline{K \cap V} \notin B) \}$$

and then by induction, let

$$K_B^{(0)} = K, \quad K_B^{(<\alpha)} = \bigcap_{\beta < \alpha} K_B^{(\beta)} \text{ and } K_B^{(\alpha)} = d_B(K_B^{(<\alpha)}).$$

The sequence $K_B^{(\alpha)}$ is a decreasing sequence of compact sets in E, hence stabilizes at some countable ordinal. It is easy to verify that $K_B^{(\alpha)}$ stabilizes at \emptyset iff $K \in B_{\sigma}$. Hence we define the *Cantor-Bendixson rank* $\operatorname{rk}_B(K)$ to be the least α such that $K^{(\alpha)} = \emptyset$, if such an α exists, and ω_1 (the first uncountable ordinal) otherwise.

For $S = \emptyset \cup \{\text{singletons}\}, \operatorname{rk}_S$ is the classical Cantor–Bendixson rank on $\mathcal{K}_{\omega}(E)$.

PROPOSITION 2.1. Let n be an integer and $K \in \mathcal{K}(E)$. If K is the union of n B-sets, then $\operatorname{rk}_B(K) \leq n$.

The previous result can be easily deduced from the following lemma.

LEMMA 2.2. Let $(K_1, K_2) \in (B_{\sigma})^2$. We have

$$\operatorname{rk}_B(K_1 \cup K_2) \le \sup\{\operatorname{rk}_B(K_1), \operatorname{rk}_B(K_2)\} + \operatorname{rk}_B(K_1 \cap K_2)$$

Proof. If $x \in (K_1 \cup K_2) \setminus (K_1 \cap K_2) = (K_1 \setminus K_2) \cup (K_2 \setminus K_1)$, then there exist an open neighbourhood V of x and i = 1 or 2 such that $V \cap (K_1 \cup K_2) \subset K_i$, thus $x \in d_B(K_1 \cup K_2)$ iff $x \in d_B(K_i)$. It follows by induction that $(K_1 \cup K_2)_B^{(\alpha)} \subset K_1 \cap K_2$ with $\alpha = \sup\{\operatorname{rk}_B(K_1), \operatorname{rk}_B(K_2)\}$.

The following result is a simpler form of Theorem 6 of [6], p. 202.

LEMMA 2.3. Let A and B be two subsets of $\mathcal{K}(E)$ which are closed under translations. Suppose that $A \subset B$, B is hereditary and there exists $K_1 \in A$ with $d_B(K_1) \neq \emptyset$. Then rk_B is unbounded on A_{σ} .

Proof. We can assume, by translating K_1 if necessary, that $0 \in d_B(K_1)$. We construct by induction on α a compact set $K_{\alpha} \in A_{\sigma}$ with $\operatorname{rk}_B(K_{\alpha}) \geq \alpha + 1$. Let D be a countable dense subset of $K_1 \setminus \{0\}$. If α is a limit ordinal, choose $\alpha_n \nearrow \alpha$, and if $\alpha = \beta + 1$, set $\alpha_n = \beta$ for each n. Now put

$$K_{\alpha} = \{0\} \cup \bigcup_{n} ([K_{\alpha_{n}} \cap \mathbf{B}(0, \varepsilon_{n})] + t_{n})$$

where the sequence t_n enumerates infinitely many times each element of Dand the sequence ε_n decreases to 0. It can be easily verified that K_{α} is compact, $K_{\alpha} \in A_{\sigma}$ and $0 \in (K_{\alpha})_B^{(\alpha)}$. Thus rk_B is unbounded on A_{σ} .

3. Elementary proof

FACT 3.1. There is a countable compact set L with $d_H(L) \neq \emptyset$. In particular, $L \notin H$.

Proof ([6], p. 38). Enumerate all the rational intervals of \mathbb{T} in a sequence I_n . For each n and each i = 1, ..., n, choose a point $r_i^n \in [0, 1/n]$ with $nr_i^n \in I_i$. Let finally $x_1, x_2, ...$ enumerate the r_i^n 's. Clearly $L = \{0\} \cup \{x_1, x_2, ...\}$ is compact and $0 \in d_H(L)$.

FACT 3.2. H is closed under translations.

Proof. Let $K \in H$; let n_k be a sequence and I an interval witnessing that. Let $x \in \mathbb{T}$; we prove that $K + x \in H$. By compactness of \mathbb{T} we can assume that $n_k x \to y$ for some $y \in \mathbb{T}$. Let J be the interval with the same center as I and half its length. Then $n_k(K + x) \cap (J + y) = \emptyset$ for k large enough.

Proof of Theorem 1.1. Using Lemma 2.2 and Lemma 2.3 with A = S, B = H and $K_1 = L$ we deduce that the countable compact set K_{ω} (where ω is the first infinite ordinal) is not a finite union of *H*-sets.

R e m a r k. Salinger [8] proved that every countable compact set of finite classical Cantor-Bendixson rank n is the union of 2^{n-1} *H*-sets.

Proof of Theorem 1.2. Let us return to the proof of Lemma 2.3 with A = S, B = H and $K_1 = L$. The ε_n 's can be chosen such that $B(t_n, \varepsilon_n) \cap B(t_m, \varepsilon_m) = \emptyset$ if $t_n \neq t_m$, because all elements of $L \setminus \{0\}$ are isolated, so K_α has classical Cantor-Bendixson rank equal to $\alpha + 1$.

Let *n* be an integer. By Salinger's Theorem, K_n is the union of 2^n *H*-sets. By Proposition 2.1, K_n cannot be the union of *n H*-sets. So there is a compact subset of K_n which is the union of n + 1 *H*-sets, but not of *n*.

4. Descriptive set theory proof. For each compact metrizable space E, the space $\mathcal{K}(E)$ with the Hausdorff topology generated by the sets $\{K \in \mathcal{K}(E) : K \subset V\}$ and $\{K \in \mathcal{K}(E) : K \cap V \neq \emptyset\}$, where V is open in E, is compact and metrizable.

Let B be a Borel hereditary subset of $\mathcal{K}(E)$.

FACT 4.1. B_f is an analytic subset of $\mathcal{K}(E)$.

Proof. The function $\Phi : \mathcal{K}(E) \times \mathcal{K}(E) \to \mathcal{K}(E), (K, L) \mapsto K \cup L$, is continuous and $B_f = \bigcup B_n$ with $B_0 = B$ and $B_{n+1} = \Phi(B_n \times B_n)$.

FACT 4.2 ([6], pp. 140, 194, 198). B_{σ} is a coanalytic subset of $\mathcal{K}(E)$ and rk_{B} is a coanalytic rank on B_{σ} .

S. KAHANE

Let us recall the Boundedness Theorem: if C is a coanalytic set with a coanalytic rank and A is an analytic subset of C, then the rank of elements of A is uniformly bounded by a countable ordinal.

The following result can be deduced immediately from the Boundedness Theorem and Lemma 2.3.

LEMMA 4.3. Let A and B be two subsets of $\mathcal{K}(E)$ which are closed under translations. Suppose that $A \subset B$, B is Borel and hereditary and there exists $K \in A$ with $d_B(K) \neq \emptyset$. Then there is no analytic set P with $A_{\sigma} \subset P \subset B_{\sigma}$.

FACT 4.4 ([7]). H is a $\mathcal{K}_{\sigma\delta}$ subset of $\mathcal{K}(\mathbb{T})$.

Proof. A compact subset K of \mathbb{T} belongs to H if there exists an open rational interval I of \mathbb{T} such that for every integer k, there exists an integer $n \geq k$ such that $nK \cap I = \emptyset$. The last condition is clearly closed in $\mathcal{K}(\mathbb{T})$.

Using both previous results we have:

THEOREM 4.5. There is no analytic set P with $\mathcal{K}_{\omega}(\mathbb{T}) \subset P \subset H_{\sigma}$.

Theorem 1.1 can now be easily deduced. Indeed, H_f is an analytic subset of H_{σ} , whence $\mathcal{K}_{\omega}(\mathbb{T}) \not\subset H_f$.

REFERENCES

- [1] H. Becker, S. Kahane and A. Louveau, Natural Σ_2^1 sets in harmonic analysis, Trans. Amer. Math. Soc., to appear.
- [2] D. Grow and M. Insall, An extremal set of uniqueness?, this volume, 61-64.
- [3] S. Kahane, Ensembles de convergence absolue, ensembles de Dirichlet faibles et ↑-idéaux, C. R. Acad. Sci. Paris 310 (1990), 335–337.
- [4] —, Antistable classes of thin sets, Illinois J. Math. 37 (1) (1993).
- [5] —, On the complexity of sums of Dirichlet measures, Ann. Inst. Fourier (Grenoble) 43 (1) (1993).
- [6] A. Kechris and A. Louveau, Descriptive Set Theory and the Structure of Sets of Uniqueness, London Math. Soc. Lecture Note Ser. 128, Cambridge Univ. Press, 1987.
- [7] A. Kechris and R. Lyons, Ordinal ranking on measures annihilating thin sets, Trans. Amer. Math. Soc. 310 (1988), 747-758.
- [8] D. Salinger, Sur les ensembles indépendants dénombrables, C. R. Acad. Sci. Paris Sér. A-B 272 (1981), A786–788.

ÉQUIPE D'ANALYSE UNIVERSITÉ PARIS 6 75252 PARIS CEDEX 05, FRANCE

Reçu par la Rédaction le 25.11.1992

86