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SMOOTH POINTS OF MUSIELAK–ORLICZ SEQUENCE SPACES
EQUIPPED WITH THE LUXEMBURG NORM

BY

HENRYK H U D Z I K AND ZENON Z B A̧ S Z Y N I A K (POZNAŃ)

Introduction. In the sequel N denotes the set of natural numbers, R
the reals and R+ the nonnegative reals. By a Musielak–Orlicz function Φ we
understand a sequence (Φi)∞i=1 of Orlicz functions Φi, i.e. Φi : R → [0,∞]
and Φi vanishes and is continuous at zero, left-continuous on the whole R+,
convex and even on R, and not identically zero. For any Musielak–Orlicz
function Φ = (Φi)∞i=1 we denote by Φ∗ its complementary function in the
sense of Young, i.e. Φ∗ = (Φ∗i )

∞
i=1, where

Φ∗i (u) = sup
v>0

{|u|v − Φi(v)} (∀u ∈ R) .

If Ψ is an Orlicz function and u ∈ R, we denote by Ψ−(u) and Ψ+(u)
the left and the right derivatives of Ψ at u, respectively. Moreover, for any
Orlicz function Ψ , we define

b(Ψ) = sup{u ∈ R+ : Ψ(u) < ∞} ,

∂Ψ(u) =



[Ψ−(u), Ψ+(u)] if −b(Ψ) < u < b(Ψ),
[Ψ−(u),∞) if u = b(Ψ) and Ψ−(b(Ψ)) < ∞,
(−∞, Ψ+(u)] if u = −b(Ψ) and Ψ+(−b(Ψ)) > −∞,
{∞} if u > b(Ψ), or u = b(Ψ) and Ψ−(b(Ψ)) = ∞,
{−∞} if u < −b(Ψ), or u = −b(Ψ)

and Ψ+(−b(Ψ)) = −∞.

It is easy to show that for any u ∈ R, we have

∂Φ(u) = {v ∈ R : Ψ(u) + Ψ∗(v) = uv} .

Let us denote by `0 the space of all sequences of reals, and for any
x = (xi)∞i=1 ∈ `0 and A ⊂ N, define xA =

∑
i∈A xiei, where ei is the ith

basic sequence, i.e. ei = (0, . . . , 0, 1, 0, . . .), where 1 stands in the ith place.
For any x ∈ `0 define
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x(n) = (x1, . . . , xn, 0, . . .) .

If Φ = (Φi)∞i=1 is a Musielak–Orlicz function and x = (xi)∞i=1 ∈ `0, we
define ∂Φ(x) = (∂Φi(xi))∞i=1. Moreover, we define

bi = b(Φi) , ai = ai(Φi) =
{

bi if Φi(bi) ≤ 1,
Φ−1

i (1) if Φi(bi) > 1.

Given a Musielak–Orlicz function Φ = (Φi)∞i=1, we define on `0 a convex
functional IΦ by the formula

IΦ(x) =
∞∑

i=1

Φi(xi) (∀x = (xi) ∈ `0) .

The Musielak–Orlicz space `Φ generated by a Musielak–Orlicz function
Φ is defined in the following way:

`Φ = {x ∈ `0 : IΦ(λx) < ∞ for some λ > 0} .

This space endowed with the Luxemburg norm

‖x‖Φ = inf{λ > 0 : IΦ(x/λ) ≤ 1}

is a Banach space (see [5]–[7] and [10]).
For any Musielak–Orlicz function Φ we define hΦ to be the norm closure

in `Φ of the set h of all sequences in `0 with a finite number of coordi-
nates different from zero. This space will be considered with the norm ‖ ‖Φ

induced from `Φ.
In the case when all the Φi, i = 1, 2, . . . , are finite-valued, we have

hΦ = {x ∈ `0 : IΦ(λx) < ∞ for any λ > 0} .

If d(x,hΦ) = inf{‖x− y‖ : y ∈ hΦ} for x ∈ `Φ, then we have

d(x,hΦ) = inf
{

λ > 0 :
∞∑

i=j

Φi(λ−1xi) < ∞ for some j ∈ N
}

(see [4]) .

For any Banach space X denote by S(X) its unit sphere and by X∗ its
dual space. If x ∈ X\{0} then x∗ ∈ X∗ is said to be a support functional at
x if ‖x∗‖ = 1 and x∗(x) = ‖x‖.

For any x ∈ X\{0}, we denote by Grad(x) the set of all support func-
tionals at x. We say that x ∈ X\{0} is a smooth point if Card(Grad(x)) = 1.
A Banach space X is said to be smooth if any point x ∈ S(X) is smooth
(see [2] and [8]).

For any Musielak–Orlicz space `Φ equipped with the Luxemburg norm,
any x∗ ∈ X∗ is uniquely represented in the form

(∗) x∗ = x∗1 + x∗2 ,



MUSIELAK–ORLICZ SPACES 159

where x∗1 is a regular (= order continuous) functional , i.e. a functional
represented by an element y ∈ `Φ∗ , i.e.

x∗1(x) =
∞∑

i=1

xiyi (∀x = (xi) ∈ `Φ) ,

and x∗2 is a singular functional , i.e. x∗2(x) = 0 for any x ∈ hΦ. Moreover,

‖x∗‖ = ‖x∗1‖+ ‖x∗2‖
(see [4] and in the case of Orlicz spaces also [1]).

Auxiliary results. In this section we recall some results from [3] and
[4] which will be applied to obtain our main results.

Lemma 1. If x ∈ S(`Φ) and d(x,hΦ) < 1 then every support functional
x∗ at x is regular.

Lemma 2. Suppose that x ∈ S(`Φ), x∗ ∈ Grad(x) is regular and x∗

corresponds to λ = (λi)∞i=1 ∈ `Φ∗ . Then

(i) λixi ≥ 0 for any i ∈ N,
(ii) if λi0xi0 > 0 and |xi0 | < ai0 for some i0 ∈ suppx∗ = {i ∈ N :

λi 6= 0}, then IΦ(x) = sup{IΦ(y) : supp y ⊂ suppx∗, ‖y‖Φ ≤ 1}.
Lemma 3. Let x ∈ S(`Φ) and let x∗ ∈ Grad(x) be regular. Then suppx∗

⊂ Ax = {i ∈ N : |xi| = ai} whenever IΦ(x) < sup{IΦ(y) : ‖y‖Φ ≤ 1}.
Lemma 4. (i) Let Φ and x ∈ S(`Φ) be such that Ax = {i ∈ N : |xi| =

ai} 6= ∅. Let (λi)i∈Ax be a family of nonnegative numbers such that
∑

i∈Ax
λi

= 1. Then the functional x∗ defined by the formula

x∗(y) =
∑
i∈Ax

λiyi/xi (∀y = (yi) ∈ `Φ)

is a support functional at x.
(ii) If additionally A∞x = {i ∈ Ax : |xi| = bi} and ∂Φi(xi) = {±∞} for

some i ∈ A∞x , then every regular functional x∗ ∈ Grad(x) has its support in
A∞x and it is of the form

x∗(y) =
∑

i∈A∞x

λiyi/xi (∀y = (yi) ∈ `Φ) ,

where λi ≥ 0 for any i ∈ A∞x and
∑

i∈A∞x
λi = 1.

Lemma 5. Let x ∈ S(`Φ), suppose IΦ(x) = sup{IΦ(y) : ‖y‖Φ ≤ 1,
supp y ⊂ suppx} and let x∗ ∈ (`Φ)∗ be defined by the formula

(1) x∗(y) =
( ∞∑

i=1

ziyi

)/( ∞∑
i=1

zixi

)
(∀y = (yi) ∈ `Φ) ,
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where zi ∈ ∂Φi(xi) and Φ−i (|xi|) < ∞ for any i ∈ N, and 0 <
∑∞

i=1 zixi <
∞. Then x∗ is a support functional at x.

If |xi| < bi for any i ∈ N then any x∗ ∈ Grad(x) is represented by
formula (1).

The proof proceeds in the same way as the proof of Theorem 1.9 of [4].

Lemma 6. Let x ∈ S(`Φ) be such that Φ−i (|xi|) < ∞ for any i ∈ suppx,
let x∗ ∈ (`Φ)∗ be regular and A = suppx∗. Then x∗ ∈ Grad(x) if and only if

(i) IΦ(x) = sup{IΦ(y) : ‖y‖Φ ≤ 1, supp y ⊂ A},
(ii) x∗(y) = (

∑
i∈A diyi)/(

∑
i∈A dixi) (∀y = (yi) ∈ `Φ), where

(iii) di ∈ ∂Φi(xi) for any i ∈ A and 0 <
∑

i∈A dixi < ∞.

Main results. We start with the following result.

Proposition 1. Assume that x ∈ S(`Φ) and d(x,hΦ) = 1, i.e.

(2)
∞∑

i=m

Φi(λxi) = ∞ for any λ > 1 and any m ∈ N .

Then x = y + z, where supp y ∩ supp z = ∅ and y, z ∈ S(`Φ).

P r o o f. Take a sequence (λi)∞i=1 of positive reals such that λ1 > λ2 > . . .
and λi → 1 as i →∞. Define m1 = 1. There is an n1 ∈ N such that

n1−1∑
i=1

Φi(λ1xi) ≥ 1 .

Since in view of (2) we have
∑∞

i=n1
Φi(λ1xi) = ∞, there is an m2 > n1 such

that
∑m2−1

i=n1
Φi(λ1xi) ≥ 1. We have

∑∞
i=m2

Φi(λ2xi) = ∞, so again we can
find natural numbers m3, n2 such that m3 > n2 > m2 and

n2−1∑
i=m2

Φi(λ2xi) ≥ 1 and
m3−1∑
i=n2

Φi(λ2xi) ≥ 1 .

Continuing this process we find sequences (mk) and (nk) of natural numbers
such that

(3) nk+1 > mk+1 > nk > mk (k = 1, 2, . . .) ,

(4)
nk−1∑
i=mk

Φi(λkxi) ≥ 1 ,

(5)
mk+1−1∑

i=nk

Φi(λkxi) ≥ 1 .
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Define

y =
∞∑

k=1

nk−1∑
i=mk

xiei , z =
∞∑

k=1

mk+1−1∑
i=nk

xiei .

We have IΦ(y) ≤ IΦ(x) ≤ 1 and IΦ(z) ≤ IΦ(x) ≤ 1. Moreover, for any
λ > 1, we can find k ∈ N such that λ ≥ λk. Hence, by (4) and (5) we get

IΦ(λy) ≥ IΦ(λky) ≥
nk−1∑
i=mk

Φi(λkxi) ≥ 1 ,

IΦ(λz) ≥ IΦ(λkz) ≥
mk+1−1∑

i=nk

Φi(λkxi) ≥ 1 .

These inequalities prove that ‖y‖Φ = ‖z‖Φ = 1. The other assertions are
obvious, so the proof is finished.

Proposition 2. Let x ∈ S(`Φ) and Card({i ∈ N : |xi| = ai}) ≥ 2. Then
there are y, z ∈ S(`Φ) such that supp y ∩ supp z = ∅ and x = y + z.

P r o o f. By the assumption there are j, k ∈ N, j 6= k, such that |xj | = aj ,
|xk| = ak. Defining

y = xkek , z = xjej +
∑

i 6=j,i 6=k

xiei ,

we have supp y ∩ supp z = ∅, IΦ(y) ≤ IΦ(x) ≤ 1 and IΦ(z) ≤ IΦ(x) ≤ 1.
Moreover, IΦ(λy) > 1 and IΦ(λz) > 1 for any λ > 1, which yields ‖y‖Φ =
‖z‖Φ = 1.

Now, we are in a position to prove the main result of this paper. We first
formulate, for any x ∈ S(`Φ), two pairs of excluding cases. The first pair is

I. |xi| < bi for any i ∈ N,
II. |xi| = bi for some i ∈ N.

The second one is

(i) IΦ(x) = α, where α = sup{IΦ(y) : ‖y‖Φ = 1, supp y ⊂ suppx},
(ii) IΦ(x) < α.

Theorem 1. Let x ∈ S(`Φ). Then

1. If x satisfies condition I, then x is smooth if and only if :
(a) d(x,hΦ) < 1, i.e. IΦ(λx) < ∞ for some λ > 1,
(b) xi ∈ Smooth(Φ) for any i ∈ N or Card({i ∈ N : ∂Φi(xi) 6=

{0}} = 1.
2. If x satisfies conditions II and (i), then x is smooth if and only if :

(a) there is only one i0 ∈ N such that |xi0 | = ai0 ,
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(b) Φ−(ai0) = ∞ or ∂Φi(xi) = {0} for any i ∈ N, i 6= i0, or v 6∈ `Φ∗

for any v = (vi) such that vi ∈ ∂Φi(xi) for i = 1, 2, . . . ,
(c) d(x,hΦ) < 1.

3. If x satisfies conditions II and (ii), then x is smooth if and only if :
(a) there is only one i0 ∈ N such that |xi0 | = ai0 ,
(b) d(x,hΦ) < 1.

P r o o f. 1. Assume that x ∈ S(`Φ) satisfies (a) and (b). By (a) and
Lemma 1 every support functional x∗ at x is regular. Therefore, in view of
Lemmas 5 and 6, Card(Grad(x)) = 1 (the only support functional at x is
given by (1)), i.e. x is smooth.

We now prove that (a) and (b) are necessary for x to be smooth. Assume
first that (a) is not satisfied, i.e. d(x,hΦ) = 1. Then in view of Proposi-
tion 1 there are y, z ∈ S(`Φ) with disjoint supports such that x = y + z and
y − z ∈ S(`Φ). By the Hahn–Banach theorem there exist y∗ ∈ Grad(y),
z∗ ∈ Grad(z), i.e.

‖y∗‖ = y∗(y) = 1 and ‖z∗‖ = z∗(z) = 1 .

We have y∗(y ± z) ≤ ‖y∗‖‖y ± z‖ = 1, whence y∗(y) ± y∗(z) ≤ 1, i.e.
1±y∗(z) ≤ 1, which yields y∗(z) = 0. In the same way we obtain z∗(y) = 0.
This means that y∗ 6= z∗. We also have

y∗(x) = y∗(y + z) = y∗(y) + y∗(z) = y∗(y) = 1 ,

z∗(x) = z∗(y + z) = z∗(y) + z∗(z) = z∗(z) = 1 .

This means that y∗, z∗ ∈ Grad(x), i.e. x is not smooth.
Assume now that (a) is satisfied but (b) is not. By (a) any x∗ ∈ Grad(x)

is regular. Since (b) is not satisfied, formula (1) of Lemma 5 defines at least
two different functionals, i.e. x is not smooth.

2. By Lemma 1 condition (c) implies that any x∗ ∈ Grad(x) is regular.
Next, (b) and Lemmas 4, 5 and 6 imply that suppx∗ = {i0}. Now, Lemma 4
implies that the functional x∗ defined by

x∗(y) = yi0/xi0 (∀y = (yi) ∈ `Φ)

is the only support functional at x, i.e. x is smooth.
Now, we prove the necessity of (a)–(c). If (a) or (c) is not satisfied, then

by Propositions 1 and 2 there are y, z ∈ S(`Φ) such that x = y + z and
‖y− z‖Φ = 1. Now, we can repeat the proof of condition (a) in 1 to deduce
that x is not smooth. Assume that (a) and (c) are satisfied but (b) is not.
Since Φ−(ai0) < ∞, suppx∗ need not coincide with {i0}. By the assumption
there is a sequence v = (vi) ∈ `Φ∗ with vi ∈ ∂Φi(xi) for any i ∈ N such that
vi1 6= 0 for some i1 6= i0. In view of Lemma 4(i), the functional

x∗(y) = yi0/xi0 (∀y = (yi) ∈ `Φ)
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belongs to Grad(x). Now, by Lemma 5 the functional

y∗(y) =
( ∞∑

i=1

viyi

)/( ∞∑
i=1

vixi

)
(∀y = (yi) ∈ `Φ)

is also a support functional at x, different from x∗ (because ∂Φi1(xi1) 6= {0}).
Thus, x is not smooth.

3. By (b) any x∗ ∈ Grad(x) is regular. Next, suppx∗ = {i0} by Lemma 3
and (a). Now, Lemma 4 shows that the functional

x∗(y) = yi0/xi0 (∀y = (yi) ∈ `Φ)

is the only support functional at x.
We now prove the necessity. For (b), it can be proved in the same way

as in cases 1 and 2. So, assume (b) is satisfied but (a) is not. By (b) any
x∗ ∈ Grad(x) is regular. Since (a) is not satisfied there are distinct i0, i1 ∈ N
such that |xi0 | = ai0 and |xi1 | = ai1 . This implies that the functionals

x∗0(y) = yi0/xi0 , x∗1(y) = yi1/xi1 (∀y = (yi) ∈ `Φ)

are two different elements of Grad(x).

R e m a r k 1. The criterion for smoothness of x ∈ S(hΦ) is almost the
same as for smoothness of x ∈ S(`Φ). The only difference is that the con-
dition d(x,hΦ) < 1 need not be assumed because it is always satisfied for
x ∈ S(hΦ).

N o t e. Criteria for smoothness of Musielak–Orlicz sequence spaces `Φ

were given in [9] (under some restrictions on Φ) and in [4] (in the general
case).
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[3] R. Grz a̧ ś l ewicz and H. Hudz ik, Smooth points of Orlicz spaces equipped with the

Luxemburg norm, Math. Nachr. 155 (1991), 31–45.
[4] H. Hudz ik and Y. Ye, Support functionals and smoothness in Musielak–Orlicz se-

quence spaces endowed with the Luxemburg norm, Comment. Math. Univ. Carolinae
31 (4) (1990), 661–684.

[5] M. A. Krasnose l sk i ı̆ and Ya. B. Rut ick i ı̆, Convex Functions and Orlicz Spaces,
Noordhoff, Groningen 1961 (translated from Russian).

[6] W. A. J. Luxemburg, Banach function spaces, thesis, Delft 1955.
[7] J. Mus ie lak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034,

Springer, 1983.
[8] R. Phe lps, Convex Functions, Monotone Operators and Differentiability , Lecture

Notes in Math. 1364, Springer, 1989.



164 H. HUDZIK AND Z. ZBA̧SZYNIAK

[9] R. P luc iennik and Y. Ye, Differentiability of Musielak–Orlicz sequence spaces,
Comment. Math. Univ. Carolinae 30 (1989), 699–711.

[10] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Dekker, New York 1991.

Henryk Hudzik Zenon Zba̧szyniak
INSTITUTE OF MATHEMATICS INSTITUTE OF MATHEMATICS

A. MICKIEWICZ UNIVERSITY TECHNICAL UNIVERSITY OF POZNAŃ
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