COLLOQUIUM MATHEMATICUM

VOL. LXV

SMOOTH POINTS OF MUSIELAK-ORLICZ SEQUENCE SPACES EQUIPPED WITH THE LUXEMBURG NORM

by HENRYK HUDZIK and ZENON ZBĄSZYNIAK (POZNAŃ)

Introduction. In the sequel \mathbb{N} denotes the set of natural numbers, \mathbb{R} the reals and \mathbb{R}_+ the nonnegative reals. By a *Musielak–Orlicz function* Φ we understand a sequence $(\Phi_i)_{i=1}^{\infty}$ of Orlicz functions Φ_i , i.e. $\Phi_i : \mathbb{R} \to [0, \infty]$ and Φ_i vanishes and is continuous at zero, left-continuous on the whole \mathbb{R}_+ , convex and even on \mathbb{R} , and not identically zero. For any Musielak–Orlicz function $\Phi = (\Phi_i)_{i=1}^{\infty}$ we denote by Φ^* its *complementary function* in the sense of Young, i.e. $\Phi^* = (\Phi_i^*)_{i=1}^{\infty}$, where

$$\mathbb{P}_i^*(u) = \sup_{v>0} \{ |u|v - \Phi_i(v) \} \quad (\forall u \in \mathbb{R}) \,.$$

If Ψ is an Orlicz function and $u \in \mathbb{R}$, we denote by $\Psi^{-}(u)$ and $\Psi^{+}(u)$ the left and the right derivatives of Ψ at u, respectively. Moreover, for any Orlicz function Ψ , we define

$$b(\Psi) = \sup\{u \in \mathbb{R}_{+} : \Psi(u) < \infty\},\$$

$$\partial \Psi(u) = \begin{cases} \left[\Psi^{-}(u), \Psi^{+}(u)\right] & \text{if } -b(\Psi) < u < b(\Psi),\\ \left[\Psi^{-}(u), \infty\right) & \text{if } u = b(\Psi) \text{ and } \Psi^{-}(b(\Psi)) < \infty,\\ \left(-\infty, \Psi^{+}(u)\right] & \text{if } u = -b(\Psi) \text{ and } \Psi^{+}(-b(\Psi)) > -\infty,\\ \left\{\infty\} & \text{if } u > b(\Psi), \text{ or } u = b(\Psi) \text{ and } \Psi^{-}(b(\Psi)) = \infty,\\ \left\{-\infty\} & \text{if } u < -b(\Psi), \text{ or } u = -b(\Psi)\\ & \text{and } \Psi^{+}(-b(\Psi)) = -\infty. \end{cases}$$

It is easy to show that for any $u \in \mathbb{R}$, we have

$$\partial \Phi(u) = \left\{ v \in \mathbb{R} : \Psi(u) + \Psi^*(v) = uv \right\}.$$

Let us denote by ℓ^0 the space of all sequences of reals, and for any $x = (x_i)_{i=1}^{\infty} \in \ell^0$ and $A \subset \mathbb{N}$, define $x^A = \sum_{i \in A} x_i e_i$, where e_i is the *i*th basic sequence, i.e. $e_i = (0, \ldots, 0, 1, 0, \ldots)$, where 1 stands in the *i*th place. For any $x \in \ell^0$ define

¹⁹⁹¹ Mathematics Subject Classification: Primary 46E30; Secondary 45B20.

 $Key\ words\ and\ phrases:$ Musielak–Orlicz function, Musielak–Orlicz space, support functional, smooth point.

$$x^{(n)} = (x_1, \ldots, x_n, 0, \ldots).$$

If $\Phi = (\Phi_i)_{i=1}^{\infty}$ is a Musielak–Orlicz function and $x = (x_i)_{i=1}^{\infty} \in \ell^0$, we define $\partial \Phi(x) = (\partial \Phi_i(x_i))_{i=1}^{\infty}$. Moreover, we define

$$b_i = b(\Phi_i), \quad a_i = a_i(\Phi_i) = \begin{cases} b_i & \text{if } \Phi_i(b_i) \le 1, \\ \Phi_i^{-1}(1) & \text{if } \Phi_i(b_i) > 1. \end{cases}$$

Given a Musielak–Orlicz function $\Phi = (\Phi_i)_{i=1}^{\infty}$, we define on ℓ^0 a convex functional I_{Φ} by the formula

$$I_{\varPhi}(x) = \sum_{i=1}^{\infty} \varPhi_i(x_i) \qquad (\forall x = (x_i) \in \ell^0) \,.$$

The *Musielak–Orlicz space* ℓ^{Φ} generated by a Musielak–Orlicz function Φ is defined in the following way:

$$\ell^{\Phi} = \{ x \in \ell^0 : I_{\Phi}(\lambda x) < \infty \text{ for some } \lambda > 0 \}.$$

This space endowed with the Luxemburg norm

$$||x||_{\Phi} = \inf\{\lambda > 0 : I_{\Phi}(x/\lambda) \le 1\}$$

is a Banach space (see [5]-[7] and [10]).

For any Musielak–Orlicz function Φ we define h^{Φ} to be the norm closure in ℓ^{Φ} of the set h of all sequences in ℓ^0 with a finite number of coordinates different from zero. This space will be considered with the norm $\| \|_{\Phi}$ induced from ℓ^{Φ} .

In the case when all the Φ_i , $i = 1, 2, \ldots$, are finite-valued, we have

$$\mathfrak{h}^{\Phi} = \{ x \in \ell^0 : I_{\Phi}(\lambda x) < \infty \text{ for any } \lambda > 0 \}.$$

If $d(x, \mathfrak{h}^{\Phi}) = \inf\{\|x - y\| : y \in \mathfrak{h}^{\Phi}\}$ for $x \in \ell^{\Phi}$, then we have

$$d(x, \mathbf{h}^{\Phi}) = \inf\left\{\lambda > 0 : \sum_{i=j}^{\infty} \Phi_i(\lambda^{-1}x_i) < \infty \text{ for some } j \in \mathbb{N}\right\} \quad (\text{see } [4]).$$

For any Banach space X denote by S(X) its unit sphere and by X^* its dual space. If $x \in X \setminus \{0\}$ then $x^* \in X^*$ is said to be a support functional at x if $||x^*|| = 1$ and $x^*(x) = ||x||$.

For any $x \in X \setminus \{0\}$, we denote by $\operatorname{Grad}(x)$ the set of all support functionals at x. We say that $x \in X \setminus \{0\}$ is a *smooth point* if $\operatorname{Card}(\operatorname{Grad}(x)) = 1$. A Banach space X is said to be *smooth* if any point $x \in S(X)$ is smooth (see [2] and [8]).

For any Musielak–Orlicz space ℓ^{Φ} equipped with the Luxemburg norm, any $x^* \in X^*$ is uniquely represented in the form

$$(*) x^* = x_1^* + x_2^* \,,$$

where x_1^* is a regular (= order continuous) functional, i.e. a functional represented by an element $y \in \ell^{\Phi^*}$, i.e.

$$x_1^*(x) = \sum_{i=1}^{\infty} x_i y_i \quad (\forall x = (x_i) \in \ell^{\Phi}),$$

and x_2^* is a singular functional, i.e. $x_2^*(x) = 0$ for any $x \in h^{\Phi}$. Moreover,

$$||x^*|| = ||x_1^*|| + ||x_2^*||$$

(see [4] and in the case of Orlicz spaces also [1]).

Auxiliary results. In this section we recall some results from [3] and [4] which will be applied to obtain our main results.

LEMMA 1. If $x \in S(\ell^{\Phi})$ and $d(x, h^{\Phi}) < 1$ then every support functional x^* at x is regular.

LEMMA 2. Suppose that $x \in S(\ell^{\Phi})$, $x^* \in \text{Grad}(x)$ is regular and x^* corresponds to $\lambda = (\lambda_i)_{i=1}^{\infty} \in \ell^{\Phi^*}$. Then

(i) $\lambda_i x_i \geq 0$ for any $i \in \mathbb{N}$,

(ii) if $\lambda_{i_0} x_{i_0} > 0$ and $|x_{i_0}| < a_{i_0}$ for some $i_0 \in \operatorname{supp} x^* = \{i \in \mathbb{N} : \lambda_i \neq 0\}$, then $I_{\varPhi}(x) = \sup\{I_{\varPhi}(y) : \operatorname{supp} y \subset \operatorname{supp} x^*, \|y\|_{\varPhi} \leq 1\}$.

LEMMA 3. Let $x \in S(\ell^{\Phi})$ and let $x^* \in \operatorname{Grad}(x)$ be regular. Then $\operatorname{supp} x^* \subset A_x = \{i \in \mathbb{N} : |x_i| = a_i\}$ whenever $I_{\Phi}(x) < \sup\{I_{\Phi}(y) : ||y||_{\Phi} \leq 1\}.$

LEMMA 4. (i) Let Φ and $x \in S(\ell^{\Phi})$ be such that $A_x = \{i \in \mathbb{N} : |x_i| = a_i\} \neq \emptyset$. Let $(\lambda_i)_{i \in A_x}$ be a family of nonnegative numbers such that $\sum_{i \in A_x} \lambda_i = 1$. Then the functional x^* defined by the formula

$$x^*(y) = \sum_{i \in A_x} \lambda_i y_i / x_i \quad (\forall y = (y_i) \in \ell^{\Phi})$$

is a support functional at x.

(ii) If additionally $A_x^{\infty} = \{i \in A_x : |x_i| = b_i\}$ and $\partial \Phi_i(x_i) = \{\pm \infty\}$ for some $i \in A_x^{\infty}$, then every regular functional $x^* \in \text{Grad}(x)$ has its support in A_x^{∞} and it is of the form

$$x^*(y) = \sum_{i \in A_x^{\infty}} \lambda_i y_i / x_i \quad (\forall y = (y_i) \in \ell^{\Phi}),$$

where $\lambda_i \geq 0$ for any $i \in A_x^{\infty}$ and $\sum_{i \in A_x^{\infty}} \lambda_i = 1$.

LEMMA 5. Let $x \in S(\ell^{\Phi})$, suppose $I_{\Phi}(x) = \sup\{I_{\Phi}(y) : ||y||_{\Phi} \leq 1$, $\operatorname{supp} y \subset \operatorname{supp} x\}$ and let $x^* \in (\ell^{\Phi})^*$ be defined by the formula

(1)
$$x^*(y) = \left(\sum_{i=1}^{\infty} z_i y_i\right) / \left(\sum_{i=1}^{\infty} z_i x_i\right) \quad (\forall y = (y_i) \in \ell^{\Phi}),$$

where $z_i \in \partial \Phi_i(x_i)$ and $\Phi_i^-(|x_i|) < \infty$ for any $i \in \mathbb{N}$, and $0 < \sum_{i=1}^{\infty} z_i x_i < \infty$. Then x^* is a support functional at x.

If $|x_i| < b_i$ for any $i \in \mathbb{N}$ then any $x^* \in \text{Grad}(x)$ is represented by formula (1).

The proof proceeds in the same way as the proof of Theorem 1.9 of [4].

LEMMA 6. Let $x \in S(\ell^{\Phi})$ be such that $\Phi_i^-(|x_i|) < \infty$ for any $i \in \operatorname{supp} x$, let $x^* \in (\ell^{\Phi})^*$ be regular and $A = \operatorname{supp} x^*$. Then $x^* \in \operatorname{Grad}(x)$ if and only if

(i) $I_{\varPhi}(x) = \sup\{I_{\varPhi}(y) : ||y||_{\varPhi} \le 1, \operatorname{supp} y \subset A\},\$

(ii) $x^*(y) = (\sum_{i \in A} d_i y_i) / (\sum_{i \in A} d_i x_i) \quad (\forall y = (y_i) \in \ell^{\Phi}), where$ (iii) $d_i \in \partial \Phi_i(x_i) \text{ for any } i \in A \text{ and } 0 < \sum_{i \in A} d_i x_i < \infty.$

Main results. We start with the following result.

PROPOSITION 1. Assume that $x \in S(\ell^{\Phi})$ and $d(x, h^{\Phi}) = 1$, *i.e.*

(2)
$$\sum_{i=m}^{\infty} \Phi_i(\lambda x_i) = \infty \quad \text{for any } \lambda > 1 \text{ and any } m \in \mathbb{N}.$$

Then x = y + z, where $\operatorname{supp} y \cap \operatorname{supp} z = \emptyset$ and $y, z \in S(\ell^{\Phi})$.

Proof. Take a sequence $(\lambda_i)_{i=1}^{\infty}$ of positive reals such that $\lambda_1 > \lambda_2 > \ldots$ and $\lambda_i \to 1$ as $i \to \infty$. Define $m_1 = 1$. There is an $n_1 \in \mathbb{N}$ such that

$$\sum_{i=1}^{n_1-1} \Phi_i(\lambda_1 x_i) \ge 1.$$

Since in view of (2) we have $\sum_{i=n_1}^{\infty} \Phi_i(\lambda_1 x_i) = \infty$, there is an $m_2 > n_1$ such that $\sum_{i=n_1}^{m_2-1} \Phi_i(\lambda_1 x_i) \ge 1$. We have $\sum_{i=m_2}^{\infty} \Phi_i(\lambda_2 x_i) = \infty$, so again we can find natural numbers m_3 , n_2 such that $m_3 > n_2 > m_2$ and

$$\sum_{i=m_2}^{n_2-1} \Phi_i(\lambda_2 x_i) \ge 1 \text{ and } \sum_{i=n_2}^{m_3-1} \Phi_i(\lambda_2 x_i) \ge 1.$$

Continuing this process we find sequences (m_k) and (n_k) of natural numbers such that

(3)
$$n_{k+1} > m_{k+1} > n_k > m_k$$
 $(k = 1, 2, ...),$

(4)
$$\sum_{i=m_k}^{m_k-1} \Phi_i(\lambda_k x_i) \ge 1,$$

(5)
$$\sum_{i=n_k}^{m_{k+1}-1} \Phi_i(\lambda_k x_i) \ge 1.$$

Define

$$y = \sum_{k=1}^{\infty} \sum_{i=m_k}^{n_k - 1} x_i e_i, \qquad z = \sum_{k=1}^{\infty} \sum_{i=n_k}^{m_{k+1} - 1} x_i e_i$$

We have $I_{\Phi}(y) \leq I_{\Phi}(x) \leq 1$ and $I_{\Phi}(z) \leq I_{\Phi}(x) \leq 1$. Moreover, for any $\lambda > 1$, we can find $k \in \mathbb{N}$ such that $\lambda \geq \lambda_k$. Hence, by (4) and (5) we get

$$I_{\Phi}(\lambda y) \ge I_{\Phi}(\lambda_k y) \ge \sum_{i=m_k}^{n_k-1} \Phi_i(\lambda_k x_i) \ge 1,$$

$$I_{\Phi}(\lambda z) \ge I_{\Phi}(\lambda_k z) \ge \sum_{i=n_k}^{m_{k+1}-1} \Phi_i(\lambda_k x_i) \ge 1.$$

These inequalities prove that $||y||_{\Phi} = ||z||_{\Phi} = 1$. The other assertions are obvious, so the proof is finished.

PROPOSITION 2. Let $x \in S(\ell^{\Phi})$ and $\operatorname{Card}(\{i \in \mathbb{N} : |x_i| = a_i\}) \geq 2$. Then there are $y, z \in S(\ell^{\Phi})$ such that $\operatorname{supp} y \cap \operatorname{supp} z = \emptyset$ and x = y + z.

Proof. By the assumption there are $j, k \in \mathbb{N}, j \neq k$, such that $|x_j| = a_j$, $|x_k| = a_k$. Defining

$$y = x_k e_k$$
, $z = x_j e_j + \sum_{i \neq j, i \neq k} x_i e_i$,

we have supp $y \cap$ supp $z = \emptyset$, $I_{\Phi}(y) \leq I_{\Phi}(x) \leq 1$ and $I_{\Phi}(z) \leq I_{\Phi}(x) \leq 1$. Moreover, $I_{\Phi}(\lambda y) > 1$ and $I_{\Phi}(\lambda z) > 1$ for any $\lambda > 1$, which yields $||y||_{\Phi} = ||z||_{\Phi} = 1$.

Now, we are in a position to prove the main result of this paper. We first formulate, for any $x \in S(\ell^{\Phi})$, two pairs of excluding cases. The first pair is

- I. $|x_i| < b_i$ for any $i \in \mathbb{N}$,
- II. $|x_i| = b_i$ for some $i \in \mathbb{N}$.

The second one is

(i)
$$I_{\Phi}(x) = \alpha$$
, where $\alpha = \sup\{I_{\Phi}(y) : ||y||_{\Phi} = 1$, $\operatorname{supp} y \subset \operatorname{supp} x\}$,
(ii) $I_{\Phi}(x) < \alpha$.

THEOREM 1. Let $x \in S(\ell^{\Phi})$. Then

- 1. If x satisfies condition I, then x is smooth if and only if:
 - (a) $d(x, \mathbf{h}^{\Phi}) < 1$, *i.e.* $I_{\Phi}(\lambda x) < \infty$ for some $\lambda > 1$,
 - (b) $x_i \in \text{Smooth}(\Phi)$ for any $i \in \mathbb{N}$ or $\text{Card}(\{i \in \mathbb{N} : \partial \Phi_i(x_i) \neq \{0\}\} = 1$.
- 2. If x satisfies conditions II and (i), then x is smooth if and only if:
 (a) there is only one i₀ ∈ N such that |x_{i₀}| = a_{i₀},

- (b) $\Phi^{-}(a_{i_0}) = \infty$ or $\partial \Phi_i(x_i) = \{0\}$ for any $i \in \mathbb{N}, i \neq i_0$, or $v \notin \ell^{\Phi^*}$ for any $v = (v_i)$ such that $v_i \in \partial \Phi_i(x_i)$ for $i = 1, 2, \ldots$, (c) $d(x, \mathbf{h}^{\Phi}) < 1$.
- 3. If x satisfies conditions II and (ii), then x is smooth if and only if:
 (a) there is only one i₀ ∈ N such that |x_{i₀}| = a_{i₀},
 (b) d(x, h^Φ) < 1.

Proof. 1. Assume that $x \in S(\ell^{\Phi})$ satisfies (a) and (b). By (a) and Lemma 1 every support functional x^* at x is regular. Therefore, in view of Lemmas 5 and 6, $\operatorname{Card}(\operatorname{Grad}(x)) = 1$ (the only support functional at x is given by (1)), i.e. x is smooth.

We now prove that (a) and (b) are necessary for x to be smooth. Assume first that (a) is not satisfied, i.e. $d(x, h^{\Phi}) = 1$. Then in view of Proposition 1 there are $y, z \in S(\ell^{\Phi})$ with disjoint supports such that x = y + z and $y - z \in S(\ell^{\Phi})$. By the Hahn–Banach theorem there exist $y^* \in \text{Grad}(y)$, $z^* \in \text{Grad}(z)$, i.e.

$$||y^*|| = y^*(y) = 1$$
 and $||z^*|| = z^*(z) = 1$.

We have $y^*(y \pm z) \leq ||y^*|| ||y \pm z|| = 1$, whence $y^*(y) \pm y^*(z) \leq 1$, i.e. $1 \pm y^*(z) \leq 1$, which yields $y^*(z) = 0$. In the same way we obtain $z^*(y) = 0$. This means that $y^* \neq z^*$. We also have

$$y^{*}(x) = y^{*}(y+z) = y^{*}(y) + y^{*}(z) = y^{*}(y) = 1$$

$$z^{*}(x) = z^{*}(y+z) = z^{*}(y) + z^{*}(z) = z^{*}(z) = 1.$$

This means that $y^*, z^* \in \text{Grad}(x)$, i.e. x is not smooth.

Assume now that (a) is satisfied but (b) is not. By (a) any $x^* \in \text{Grad}(x)$ is regular. Since (b) is not satisfied, formula (1) of Lemma 5 defines at least two different functionals, i.e. x is not smooth.

2. By Lemma 1 condition (c) implies that any $x^* \in \text{Grad}(x)$ is regular. Next, (b) and Lemmas 4, 5 and 6 imply that $\text{supp } x^* = \{i_0\}$. Now, Lemma 4 implies that the functional x^* defined by

$$x^*(y) = y_{i_0}/x_{i_0}$$
 $(\forall y = (y_i) \in \ell^{\Phi})$

is the only support functional at x, i.e. x is smooth.

Now, we prove the necessity of (a)–(c). If (a) or (c) is not satisfied, then by Propositions 1 and 2 there are $y, z \in S(\ell^{\Phi})$ such that x = y + z and $||y - z||_{\Phi} = 1$. Now, we can repeat the proof of condition (a) in 1 to deduce that x is not smooth. Assume that (a) and (c) are satisfied but (b) is not. Since $\Phi^{-}(a_{i_0}) < \infty$, supp x^* need not coincide with $\{i_0\}$. By the assumption there is a sequence $v = (v_i) \in \ell^{\Phi^*}$ with $v_i \in \partial \Phi_i(x_i)$ for any $i \in \mathbb{N}$ such that $v_{i_1} \neq 0$ for some $i_1 \neq i_0$. In view of Lemma 4(i), the functional

$$x^*(y) = y_{i_0}/x_{i_0}$$
 $(\forall y = (y_i) \in \ell^{\Phi})$

belongs to $\operatorname{Grad}(x)$. Now, by Lemma 5 the functional

$$y^*(y) = \left(\sum_{i=1}^{\infty} v_i y_i\right) \Big/ \left(\sum_{i=1}^{\infty} v_i x_i\right) \quad (\forall y = (y_i) \in \ell^{\Phi})$$

is also a support functional at x, different from x^* (because $\partial \Phi_{i_1}(x_{i_1}) \neq \{0\}$). Thus, x is not smooth.

3. By (b) any $x^* \in \text{Grad}(x)$ is regular. Next, supp $x^* = \{i_0\}$ by Lemma 3 and (a). Now, Lemma 4 shows that the functional

$$x^*(y) = y_{i_0}/x_{i_0} \quad (\forall y = (y_i) \in \ell^{\Phi})$$

is the only support functional at x.

We now prove the necessity. For (b), it can be proved in the same way as in cases 1 and 2. So, assume (b) is satisfied but (a) is not. By (b) any $x^* \in \text{Grad}(x)$ is regular. Since (a) is not satisfied there are distinct $i_0, i_1 \in \mathbb{N}$ such that $|x_{i_0}| = a_{i_0}$ and $|x_{i_1}| = a_{i_1}$. This implies that the functionals

$$x_0^*(y) = y_{i_0}/x_{i_0}, \quad x_1^*(y) = y_{i_1}/x_{i_1} \quad (\forall y = (y_i) \in \ell^{\Phi})$$

are two different elements of $\operatorname{Grad}(x)$.

Remark 1. The criterion for smoothness of $x \in S(h^{\Phi})$ is almost the same as for smoothness of $x \in S(\ell^{\Phi})$. The only difference is that the condition $d(x, h^{\Phi}) < 1$ need not be assumed because it is always satisfied for $x \in S(h^{\Phi})$.

Note. Criteria for smoothness of Musielak–Orlicz sequence spaces ℓ^{Φ} were given in [9] (under some restrictions on Φ) and in [4] (in the general case).

REFERENCES

- [1] T. Ando, *Linear functionals on Orlicz spaces*, Nieuw Arch. Wisk. 3 (8) (1960), 1–16.
- [2] J. Diestel, Geometry of Banach Spaces—Selected Topics, Lecture Notes in Math. 481, Springer, 1975.
- [3] R. Grząślewicz and H. Hudzik, Smooth points of Orlicz spaces equipped with the Luxemburg norm, Math. Nachr. 155 (1991), 31–45.
- [4] H. Hudzik and Y. Ye, Support functionals and smoothness in Musielak-Orlicz sequence spaces endowed with the Luxemburg norm, Comment. Math. Univ. Carolinae 31 (4) (1990), 661–684.
- [5] M. A. Krasnoselskiĭ and Ya. B. Rutickiĭ, Convex Functions and Orlicz Spaces, Noordhoff, Groningen 1961 (translated from Russian).
- [6] W. A. J. Luxemburg, Banach function spaces, thesis, Delft 1955.
- [7] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, 1983.
- [8] R. Phelps, Convex Functions, Monotone Operators and Differentiability, Lecture Notes in Math. 1364, Springer, 1989.

H. HUDZIK AND Z. ZBĄSZYNIAK

- R. Płuciennik and Y. Ye, Differentiability of Musielak-Orlicz sequence spaces, Comment. Math. Univ. Carolinae 30 (1989), 699-711.
- [10] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Dekker, New York 1991.

Henryk HudzikZenon ZbąszyniakINSTITUTE OF MATHEMATICSINSTITUTE OF MATHEMATICSA. MICKIEWICZ UNIVERSITYTECHNICAL UNIVERSITY OF POZNAŃMATEJKI 48/49PIOTROWO 3a60-769 POZNAŃ, POLAND60-965 POZNAŃ, POLAND

Reçu par la Rédaction le 5.5.1992

164