MORE TOPOLOGICAL CARDINAL INEQUALITIES

BY

O. T. ALAS (SÃO PAULO)

A new topological cardinal invariant is defined; it may be considered as a weaker form of the Lindelöf degree.

NOTATIONS. If X is a set, |X| denotes the cardinality of X. For any cardinal number κ , κ^+ stands for the cardinal successor of κ and κ is the set of all ordinal numbers smaller than κ . If X is a set and κ is a cardinal number, $[X]^{\leq \kappa}$ is the set of all subsets of X whose cardinality is not greater than κ .

Let X be a Hausdorff space. If $A \subset X$, \overline{A} denotes the closure of A. By L(X), $\omega L(X)$, c(X), $\chi(X)$, $\psi(X)$ we denote the Lindelöf degree, the weak Lindelöf degree, the cellularity, the character and pseudo-character of X respectively. X is a Urysohn space if any two distinct points have disjoint closed neighborhoods.

DEFINITION. $\omega L_c(X)$ is the infimum of all infinite cardinal numbers α such that for every closed subset F of X and every open (in X) cover of F, say \mathcal{C} , there is a $\mathcal{C}_* \subset \mathcal{C}$, $|\mathcal{C}_*| \leq \alpha$, such that $\Box \mathcal{C}_* \supset F$.

The following inequalities are immediate.

- 1) $\omega L(X) \leq \omega L_c(X) \leq L(X);$
- 2) $\omega L(X) = \omega L_c(X)$ if X is a normal space;
- 3) $\omega L_c(X) \le c(X);$
- 4) $\omega L_c(X) = \aleph_0$ and $L(X) \ge \aleph_1$ if X is a non-Lindelöf S-space.

THEOREM 1. If X is a Urysohn space, then $|X| \leq 2^{\omega L_c(X)\chi(X)}$.

Proof. Bella and Cammaroto [2] introduced the notion of θ -closure of a subset A of X and proved that

$$|[A]_{\theta}| \le |A|^{\chi(X)}$$

¹⁹⁹¹ Mathematics Subject Classification: Primary 54A05.

 $Key\ words\ and\ phrases:$ topological cardinal invariant, weak Lindelöf degree, cardinal inequality.

O. T. ALAS

(where $[A]_{\theta}$ denotes the θ -closure of A in X). According to these authors, if $B \subset X$ and $y \in X$, y is said to be a θ -adherent point of B if every closed neighborhood of y meets B; B is said to be θ -closed if every θ -adherent point of B belongs to B, and $[B]_{\theta}$ is the smallest θ -closed set which contains B.

For each $x \in X$ let \mathcal{V}_x denote a fundamental system of open neighborhoods of x, with $|\mathcal{V}_x| \leq \chi(X)$. Define $\kappa = \omega L_c(X)\chi(X)$ and construct an increasing family $(A_\alpha)_{\alpha < \kappa^+}$ of θ -closed sets such that

- 1) $|A_{\alpha}| \leq 2^{\kappa}$, $\forall \alpha < \kappa^{+}$ and A_{0} is any fixed θ -closed set;
- 2) $A_{\beta} = [\bigsqcup_{\alpha < \beta} A_{\alpha}]_{\theta}$ if β is a limit ordinal;

3) for each $\alpha < \kappa^+$, if $\mathcal{C} \in [\bigsqcup \{\mathcal{V}_x \mid x \in A_\alpha\}]^{\leq \omega L_c(X)}$ and $X \setminus \bigsqcup \mathcal{C} \neq \emptyset$, then $A_{\alpha+1} \setminus \bigsqcup \mathcal{C} \neq \emptyset$.

The proof uses the classical Pol–Shapirovskii's technique. Finally, put $A = \bigsqcup_{\alpha < \kappa^+} A_{\alpha}$, hence $|A| \leq 2^{\kappa}$. We prove that A is θ -closed and it is equal to X. Indeed, if $z \in X$ is θ -adherent to A, then $\overline{V} \cap A \neq \emptyset$, $\forall V \in \mathcal{V}_z$. For each $V \in \mathcal{V}_z$ fix a smallest $\alpha_V < \kappa^+$ so that $\overline{V} \cap A_{\alpha_V} \neq \emptyset$. If $\beta = \sup\{\alpha_V \mid V \in \mathcal{V}_z\}$, then $\beta < \kappa^+$ and $\overline{V} \cap A_{\beta} \neq \emptyset$, $\forall V \in \mathcal{V}_z$, which implies $z \in A_{\beta}$ (because A_{β} is θ -closed). If $y \in X \setminus A$, there is a $W \in \mathcal{V}_y$ so that $\overline{W} \cap A = \emptyset$ (because A is θ -closed); for each $x \in A$, fix $V_x \in \mathcal{V}_x$ so that $V_x \subset X \setminus \overline{W}$. Then $\{V_x \mid x \in A\}$ is an open (in X) cover of the closed set A and there is an $A_* \subset A$ with $|A_*| \leq \omega L_c(X)$ and $\bigsqcup_{x \in A_*} V_x \supset A$. But $A_* \subset A_{\beta}$ for a suitable $\beta < \kappa^+$, hence $A_{\beta+1} \setminus \bigsqcup_{x \in A_*} V_x$ would be non-empty (contradiction).

COROLLARY ([3], p. 38). If X is a normal space, then $|X| \leq 2^{\omega L_c(X)\chi(X)}$.

THEOREM 2. If X is a regular space with a dense subset of isolated points, then

$$|X| \le 2^{\omega L_c(X)\psi(X)t(X)}$$

where t(X) denotes the tightness of X.

As a matter of fact a more general result may be proved. If X is a Hausdorff space let $\psi_c(X)$ denote the smallest infinite cardinal number α such that for each $x \in X$, there is a collection \mathcal{V} of *closed* neighborhoods, with $|\mathcal{V}| \leq \alpha$, whose intersection is $\{x\}$. (If X is regular, then $\psi(X) = \psi_c(X)$.)

THEOREM 3. If X is a Hausdorff space with a dense subset of isolated points, then $|X| \leq 2^{\omega L_c(X)\psi_c(X)t(X)}$.

Proof. First of all, for each $x \in X$, fix \mathcal{V}_x , a collection of open neighborhoods of x, such that $|\mathcal{V}_x| \leq \psi_c(X)$ and $\bigcap \{\overline{V} \mid V \in \mathcal{V}_x\} = \{x\}$. If $A \subset X$, then $|\overline{A}| \leq |A|^{t(X)} \cdot 2^{\psi_c(X)t(X)} \leq |A|^{t(X)\psi_c(X)}$. Define $\kappa = \omega L_c(X)\psi_c(X)t(X)$.

167

We now construct an increasing family $(A_{\alpha})_{\alpha < \kappa^+}$ of closed subsets of X satisfying

- 1) $|A_{\alpha}| \leq 2^{\kappa}, \ \forall \alpha < \kappa^+;$
- 2) $A_{\beta} = \bigsqcup_{\alpha < \beta} \overline{A_{\alpha}}$ if β is a limit ordinal;

3) for any $\alpha < \kappa^+$ and $\mathcal{C} \in [\bigsqcup \{\mathcal{V}_x \mid x \in A_\alpha\}]^{\leq \omega L_c(X)}$, if $X \setminus \bigsqcup \mathcal{C} \neq \emptyset$, then $A_{\alpha+1} \setminus \bigsqcup \mathcal{C} \neq \emptyset$.

Once again the proof uses the Pol–Shapirovskii's technique. Finally, define $A = \bigsqcup_{\alpha < \kappa^+} A_{\alpha}$, which is closed (because $t(X) \le \kappa$) and $|A| \le 2^{\kappa}$. We prove that X = A; indeed, if $y \in X \setminus A$ is isolated, for each $a \in A$ there is a $W_a \in \mathcal{V}_a$ so that $y \notin \overline{W}_a$. Then $\{W_a \mid a \in A\}$ is an open (in X) cover of the closed set A, hence there is an $A_* \subset A$ with $|A_*| \le \omega L_c(X)$ and $\bigsqcup_{a \in A_*} W_a \supset A$. Since $A_* \subset A_\beta$ for a suitable $\beta < \kappa^+$ and $y \notin \bigsqcup_{a \in A_*} W_a$, $A_{\beta+1} \setminus \bigsqcup_{a \in A_*} W_a$ would be non-empty by 3), which is a contradiction.

THEOREM 4. If X is a Hausdorff countably compact space with a dense subset of points of countable character, then $|X| \leq 2^{\omega L_c(X)\psi_c(X)t(X)}$.

Proof. Proceed as in the proof of Theorem 3. To show that X = A, assume on the contrary that there is a $y \in X \setminus A$ of countable character. Let (V_n) be a decreasing fundamental system of open neighborhoods of y such that $V_1 \cap A = \emptyset$. For each $a \in A$, there is a $W_a \in \mathcal{V}_a$ so that $y \notin \overline{W}_a$. Fix n_a such that $V_{n_a} \cap \overline{W}_a = \emptyset$. For each $n = 1, 2, \ldots$ put $\mathcal{U}_n = \bigsqcup \{W_a \mid n_a \leq n\}$; then $\bigsqcup_{n=1}^{\infty} \mathcal{U}_n \supset A$ and, since A is closed and countably compact, there is an n_* so that $\mathcal{U}_{n_*} \supset A$.

Consider $C = \{W_a \mid n_a \leq n_*\}$, which is an open (in X) cover of A; there is an $A_* \subset A$ with $|A_*| \leq \omega L_c(X)$ such that

$$y \notin \bigsqcup \{ W_a \mid a \in A_* \} \supset A \,,$$

because V_{n_*} does not intersect $\bigsqcup \{ \overline{W_a \mid a \in A_* } \}$, which completes the proof.

THEOREM 5. If X is a Hausdorff initially κ -compact space with a dense subset of points of character $\leq \kappa$, then $|X| \leq 2^{\omega L_c(X)\psi_c(X)t(X)}$.

EXAMPLES. I. This example appears in [1]. Let κ be any uncountable cardinal, \mathbb{Q} be the set of rational numbers and let A be any countable dense subset of the space of irrational numbers. Define $X = (\mathbb{Q} \times \kappa) \cup A$ and consider the following topology τ on X:

1) each point $(q,\alpha)\in\mathbb{Q}\times\kappa$ has a fundamental system of neighborhoods of type

$$\{(r, \alpha) \mid |r - q| < 1/n, \ r \in \mathbb{Q}\}$$
 where $n = 1, 2, ...;$

2) each $a \in A$ has a fundamental system of neighborhoods of type

$$\{b \in A \mid |b-a| < 1/n\} \cup \{(q,\alpha) \in \mathbb{Q} \times \kappa \mid |q-a| < 1/n\}$$

where n = 1, 2, ...

Then (X, τ) is first countable, Hausdorff, non-Urysohn, $\omega L(X) = \aleph_0$ and $\omega L_c(X) = \kappa = |X|$.

II. Let X be the set $\{0,1\}^{2^{\aleph_0}}$ and let D be a countable dense subset of the topological product space $\{0,1\}^{2^{\aleph_0}}$. A new topology τ on X will be considered:

1) $\{x\}$ is open, $\forall x \in D$;

2) for $x \in X \setminus D$ a neighborhood of x must contain a set $\{x\} \cup (V \cap D)$ where V is a neighborhood of x in the product topology.

Then (X, τ) is Urysohn, $\omega L_c(X) = \aleph_0$, $\aleph(X) = 2^{\aleph_0}$, $\psi(X) = \aleph_0$ and $t(X) = \aleph_0$. This example shows that Theorem 2 cannot be extended to Urysohn spaces.

REFERENCES

- [1] M. Bell, J. Ginsburg and G. Woods, *Cardinal inequalities for topological spaces involving the weak Lindelöf number*, Pacific J. Math. 79 (1978), 37–45.
- [2] A. Bella and F. Cammaroto, On the cardinality of Urysohn spaces, Canad. Math. Bull. 31 (1988), 153-158.
- [3] I. Juhász, Cardinal Functions in Topology—Ten Years Later, Math. Centre Tracts 123, Amsterdam 1983.

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO SÃO PAULO, BRAZIL

Reçu par la Rédaction le 13.5.1992