COLLOQUIUM MATHEMATICUM

VOL. LXV

1993

LOWER BOUNDS FOR THE SOLUTIONS IN THE SECOND CASE OF FERMAT'S EQUATION WITH PRIME POWER EXPONENTS

BY

MAOHUA LE (CHANGSHA)

Let p be an odd prime, and let n be a positive integer. Further, let x, y, z be integers satisfying

(1) $x^{p^n} + y^{p^n} = z^{p^n}, \quad p \mid xyz, \quad 0 < x < y < z, \quad \gcd(x, y) = 1.$

Recently, Zhong [2] proved that $y > p^{3np^n - n}/2$ and $z - x > p^{3np^n - n - 1}/4$. In this note we partly improve the above result as follows:

THEOREM. If $p \equiv 3 \pmod{4}$, then $y > p^{6np^n - 3n^2 - 2n + 3}/2^{1/p^n}$ and $z - x > p^{6np^n - 3n^2 - 3n + 3}/2^{1-1/p^n}$.

Proof. It is a well known fact that (1) is impossible for p = 3, so we may assume that p > 3.

We first deal with the case that $p \mid x$. Let $p^{\alpha} \parallel x$. Then from (1) we get

(2)
$$z - y = p^{\alpha p^n - n} x_0^{p^n},$$

(3)
$$\frac{z^{p^i} - y^{p^i}}{z^{p^{i-1}} - y^{p^{i-1}}} = px_i^{p^n}, \quad i = 1, \dots, n,$$

where x_0, x_1, \ldots, x_n are positive integers satisfying $p \nmid x_0 x_1 \ldots x_n$ and

(4)
$$x = p^{\alpha} x_0 x_1 \dots x_n \,.$$

For any coprime integers X, Y, by the proof of the Theorem in [1], we find that if $p \equiv 3 \pmod{4}$ then $(X^p - Y^p)/(X - Y) = A^2 + pB^2$, where A, B are integers satisfying gcd(A, B) = 1 and $A \equiv 0 \pmod{(X - Y)}$. Hence, by (3), we have

$$\frac{z^{p^i} - y^{p^i}}{z^{p^{i-1}} - y^{p^{i-1}}} = A_i^2 + pB_i^2 = px_i^{p^n}, \quad i = 1, \dots, n,$$

¹⁹⁹¹ Mathematics Subject Classification: Primary 11D41.

Supported by the National Natural Science Foundation of China.

whence we get

(5)
$$B_i^2 + p\left(\frac{A_i}{p}\right)^2 = x_i^{p^n}, \quad i = 1, \dots, n,$$

where A_i, B_i (i = 1, ..., n) are integers satisfying $gcd(A_i, B_i) = 1$ and

$$A_i \equiv 0 \pmod{(z^{p^{i-1}} - y^{p^{i-1}})}, \quad i = 1, \dots, n.$$

Further, by (2), A_i/p (i = 1, ..., n) are integers satisfying

(6)
$$\frac{A_i}{p} \equiv 0 \pmod{p^{\alpha p^n - n + i - 2}}, \quad i = 1, \dots, n.$$

Notice that p > 3 and the class number of the imaginary quadratic field $\mathbb{Q}(\sqrt{-p})$ is less than p. By an argument similar to the proof of the Theorem in [1], we see from (5) that there exist integers X_i, Y_i (i = 1, ..., n) satisfying

(7)
$$x_i = X_i^2 + pY_i^2$$
, $gcd(X_i, Y_i) = 1$, $i = 1, ..., n$,

and

(8)
$$B_i + \frac{A_i}{p}\sqrt{-p} = (X_i + Y_i\sqrt{-p})^{p^n}, \quad i = 1, \dots, n.$$

From (8),

(9)
$$\frac{A_i}{p} = p^n Y_i \sum_{j=0}^{(p^n-1)/2} (-1)^j {p^n \choose 2j+1} p^{j-n} X_i^{p^n-2j-1} Y_i^{2j}, \quad i = 1, \dots, n.$$

Notice that if p > 3 and j > 0, then $j > (\log(2j + 1)) / \log p$ and

$$\binom{p^n}{2j+1}p^{j-n} = \binom{p^n-1}{2j}\frac{p^j}{2j+1} \equiv 0 \pmod{p}.$$

Since $p \nmid x_i$ (i = 1, ..., n), we have $p \nmid X_i$ (i = 1, ..., n) by (7), and hence

(10)
$$Y_i \equiv 0 \pmod{p^{\alpha p^n - 2n + i - 2}}, \quad i = 1, \dots, n$$

by (6) and (9). Since $x_i > 1$ (i = 1, ..., n), we have $Y_i \neq 0$ (i = 1, ..., n) by (7). Thus, we obtain

$$x_i > p^{2\alpha p^n - 4n + 2i - 3}, \quad i = 1, \dots, n$$

by (7) and (10), and hence

(11)
$$x > p^{\alpha + \sum_{i=1}^{n} (2\alpha p^n - 4n + 2i - 3)} = p^{2\alpha n p^n - 3n^2 - 2n + \alpha}$$

by (4). Notice that $\alpha \geq 3$ by [2]. We get $x > p^{6np^n - 3n^2 - 2n + 3}$ by (11).

Using the same method, we can prove that $y > p^{6np^n - 3n^2 - 2n + 3}$ and $z > p^{6np^n - 3n^2 - 2n + 3}$ correspond to p | y and p | z respectively. Thus, y > z

229

 $p^{6np^n-3n^2-2n+3}/2^{1/p^n}$ since $2^{1/p^n}y > z$. Simultaneously, we have

$$z - x = \frac{y^{p^n}}{z^{p^n - 1} + xz^{p^n - 2} + \dots + x^{p^n - 1}} > \frac{y^{p^n}}{p^n z^{p^n - 1}}$$
$$> \frac{y^{p^n}}{p^n (2^{1/p^n} y)^{p^n - 1}} = \frac{y}{2^{1 - 1/p^n} p^n} > p^{6np^n - 3n^2 - 3n + 3}/2^{1 - 1/p^n}.$$

The theorem is proved.

REFERENCES

- M.-H. Le, Lower bounds for the solutions in the second case of Fermat's last theorem, Proc. Amer. Math. Soc. 111 (1991), 921–923.
- C.-X. Zhong, On Fermat's equation with prime power exponents, Acta Arith. 59 (1991), 83–86.

Current address:

RESEARCH DEPARTMENT	DEPARTMENT OF MATHEMATICS
CHANGSHA RAILWAY INSTITUTE	HUNAN NORMAL UNIVERSITY
CHANGSHA, HUNAN	P.O. BOX 410081
P.R. CHINA	CHANGSHA, HUNAN
	P.R. CHINA

Reçu par la Rédaction le 10.12.1992