COLLOQUIUM MATHEMATICUM

VOL. LXV

1993

FACTORIZATION PROBLEMS IN CLASS NUMBER TWO

ВY

FRANZ HALTER-KOCH (GRAZ)

Introduction. Let K be an algebraic number field, R its ring of integers, G its ideal class group and N = #G > 1 its class number. For $k \ge 1$ and $x \in \mathbb{R}_{>0}$, let $F_k(x)$ be the number of elements $\alpha \in R$ (up to associates) having at most k different factorizations into irreducible elements of R. W. Narkiewicz [9] obtained the asymptotic expression

$$F_k(x) \sim c_k x \, (\log x)^{-1+1/N} (\log \log x)^{a_k}$$

where $c_k \in \mathbb{R}_{>0}$ depends on k and K, and $a_k \in \mathbb{N}$ depends only on k and G. In [4], this was generalized to abstract arithmetical formations, emphasizing applications to algebraic function fields and to arithmetical semigroups (e.g. Hilbert semigroups $1 + f\mathbb{N}_0$ and, more generally, ray class semigroups in algebraic number fields).

In this paper we give an explicit description of a_k and c_k in the simplest non-trivial case N = 2. For a_k , this is a purely combinatorial problem, settled in Theorems 2 and 3. For the calculation of c_k , it is necessary to handle some infinite sums and products involving primes, which might be of independent interest (Propositions 1 and 2). We formulate our investigations in the frame of arithmetical formations having zeta functions; the analytical main results are Theorems 1 and 4.

1. Arithmetical formations. We introduce the concept of an arithmetical formation following [6]. By a *semigroup* we always mean a commutative monoid satisfying the cancellation law; the identity element is denoted by 1.

DEFINITION. A formation consists of

1) a free abelian semigroup D with basis $P \neq \emptyset$, together with a congruence relation \sim on D such that $G = D/\sim$ is a finite abelian group (written additively) of order $N \ge 2$,

2) a completely multiplicative function $|\cdot|:D\to\mathbb{N}$ with the following three properties:

(i) |a| > 1 for all $a \in D \setminus \{1\}$;

(ii) there exist real numbers $\lambda > 0$ and $0 < \delta < 1$ such that, for all $g \in G$ and $x \in \mathbb{R}_{>0}$,

$$#\{a \in g \mid |a| \le x\} = \lambda x + O(x^{1-\delta});$$

(iii) Axiom (A^{**}) , to be explained below.

Let $G^* = \text{Hom}(G, \mathbb{C}^{\times})$ be the character group of G and $\chi_0 \in G^*$ the principal character. For $a \in D$, we denote by $[a] \in G$ the class of a, and for $\chi \in G^*$ we set $\chi(a) = \chi([a])$. We introduce the Hecke–Landau zeta functions

$$Z(s,\chi) = \sum_{a \in D} \chi(a) |a|^{-s};$$

the defining Dirichlet series converge for $\Re s>1$ and have an Euler product expansion

$$Z(s,\chi) = \prod_{p \in P} (1 - \chi(p)|p|^{-s})^{-1}$$

The functions $Z(s,\chi)$ have analytic continuations to meromorphic functions in the half-plane $\Re s > 1-\delta$. For $\chi \neq \chi_0$, $Z(s,\chi)$ is holomorphic in $\Re s > 1-\delta$, and $Z(s) = Z(s,\chi_0)$ has a simple pole at s = 1 with residue λ . We have $Z(1 + it, \chi) \neq 0$ for all $t \in \mathbb{R}$ and $\chi \in G^*$ unless t = 0 and $\chi^2 = \chi_0$; for this special case, we introduce

AXIOM (A^{**}). $Z(1, \chi) \neq 0$.

Taking logarithms in the Euler product of $Z(s, \chi)$ and applying the orthogonality relations for characters, we obtain for every $g \in G$ and $\Re s > 1$,

$$\sum_{p \in P \cap g} |p|^{-s} = \frac{1}{N} \log \frac{1}{s-1} + h_g(s) \,,$$

where

$$h_g(s) = \frac{1}{N} \log\{(s-1)Z(s)\} + \frac{1}{N} \sum_{\substack{\chi \in G^* \\ \chi \neq \chi_0}} \overline{\chi}(g) \log Z(s,\chi) - \sum_{p \in P \cap g} \sum_{\nu=2}^{\infty} |p|^{-\nu s}.$$

The functions $h_g(s)$ are regular in the closed half-plane $\Re s \ge 1$. Therefore an arithmetical formation as introduced above is a formation in the sense of [4], and the algebra of all complex functions which are analytic in $\Re s \ge 1$ is suitable for this formation.

For an arithmetical formation as introduced above, our main interest lies in the arithmetic of the semigroup

$$H = \{a \in D \mid a \sim 1\} = \{a \in D \mid [a] = 0 \in G\}.$$

The injection $H \hookrightarrow D$ is a divisor theory [4, Lemma 1], and therefore D and G are uniquely determined by H [2, Bemerkung 4]. In the sequel, we shall speak about the arithmetical formation [D, H], and we shall tacitly use the notations $P, |\cdot|, G, N, Z$ as above.

The most important examples of arithmetical formations to be considered in this paper are ray class semigroups in algebraic number fields (see [2, Beispiel 4] and [8, Ch. VI, §1]):

Let K be an algebraic number field, \mathfrak{c} a cycle of K, $\mathcal{I}(\mathfrak{c})$ the group of fractional ideals of K relatively prime to \mathfrak{c} , $\mathcal{I}_0(\mathfrak{c})$ the semigroup of integral ideals in $\mathcal{I}(\mathfrak{c})$, $K(\mathfrak{c}) = \{(\alpha) \in \mathcal{I}(\mathfrak{c}) \mid \alpha \in K^{\times}, \alpha \equiv 1 \mod^{\times} \mathfrak{c}\}, \mathcal{S}(\mathfrak{c}) = \mathcal{I}(\mathfrak{c})/K(\mathfrak{c})$ the ray class group modulo \mathfrak{c} and $\Gamma \subset \mathcal{S}(\mathfrak{c})$ a subgroup. Then

$$\mathcal{I}^{\Gamma}(\mathfrak{c}) = \{\mathfrak{a} \in \mathcal{I}_0(\mathfrak{c}) \mid \mathfrak{a} K(\mathfrak{c}) \in \Gamma\}$$

is a subsemigroup of $\mathcal{I}_0(\mathfrak{c})$. We set $D = \mathcal{I}_0(\mathfrak{c})$, $H = \mathcal{I}^{\Gamma}(\mathfrak{c})$ and $|\mathfrak{a}| = \mathfrak{N}(\mathfrak{a})$; then [D, H] becomes a formation with divisor class group $G \simeq \mathcal{S}(\mathfrak{c})/\Gamma$ (see [7, Sätze LXIV, XCVI] and [8, Ch. XIII, §3]).

Every character $\chi \in G^*$ induces a (not necessarily primitive) ideal character $\chi_1 \mod \mathfrak{c}$ by

$$\chi_1(\mathfrak{a}) = \begin{cases} \chi(\mathfrak{a}K(\mathfrak{c})\Gamma) & \text{if } \mathfrak{a} \in \mathcal{I}(\mathfrak{c}), \\ 0 & \text{if } \mathfrak{a} \notin \mathcal{I}(\mathfrak{c}), \end{cases}$$

and

$$Z(s,\chi) = \zeta_K(s,\chi_1)$$

is the classical Hecke zeta function for χ_1 . If $\mathfrak{c} = 1$, then $\mathcal{S}(\mathfrak{c})$ is the usual ideal class group, and if $\Gamma = \{1\}$, then $H = \mathcal{I}^{\Gamma}(\mathfrak{c})$ is the semigroup of non-zero principal ideals of K (which reflects the arithmetic in the ring of integers in K).

The following special case will be dealt with in detail: Let φ be a (primitive) Hecke character of order 2 with conductor \mathfrak{c} , identify φ with the induced homomorphism $\varphi : \mathcal{S}(\mathfrak{c}) \to \{\pm 1\}$, set $\Gamma = \operatorname{Ker}(\varphi) \subset \mathcal{S}(\mathfrak{c})$ and $H_{\varphi} = \mathcal{I}^{\Gamma}(\mathfrak{c})$. Then $[\mathcal{I}_0(\mathfrak{c}), H_{\varphi}]$ is an arithmetical formation whose class group G is of order N = 2, and φ induces the non-trivial character on G. Associated with this arithmetical formation, there are two zeta functions, Z(s) and $Z(s, \varphi)$, and we obtain

$$Z(s) = \zeta_K(s) \prod_{\mathfrak{p} \mid \mathfrak{c}} (1 - \mathfrak{N}(\mathfrak{p})^{-s}) \quad \text{and} \quad Z(s, \varphi) = L(s, \varphi);$$

here ζ_K is the Dedekind zeta function of K, $L(s, \varphi)$ is the usual *L*-series, and consequently $\zeta_{K(\varphi)}(s) = \zeta_K(s)L(s,\varphi)$, where $K(\varphi)$ is the quadratic extension field of K attached to φ by class field theory. The following examples will be reconsidered at the end of §4. EXAMPLE 1. $K = \mathbb{Q}, \mathfrak{c} = 4\infty, \mathcal{I}_0(\mathfrak{c}) = \{a \in \mathbb{N} \mid a \equiv 1 \mod 2\}, \varphi = \left(\frac{-4}{\bullet}\right), H_{\varphi} = 1 + 4\mathbb{N}_0, Z(s) = (1 - 2^{-s})\zeta(s), Z(s, \varphi) = L(s, \varphi) \text{ and } K(\varphi) = \mathbb{Q}(\sqrt{-1}).$

EXAMPLE 2. $K = \mathbb{Q}, \ \mathfrak{c} = 5, \ \mathcal{I}_0(\mathfrak{c}) = \{a \in \mathbb{N} \mid a \neq 0 \mod 5\}, \ \varphi = \left(\frac{5}{\bullet}\right), \ H_{\varphi} = \{a \in \mathbb{N} \mid a \equiv \pm 1 \mod 5\}, \ Z(s) = (1 - 5^{-s})\zeta(s), \ Z(s,\varphi) = L(s,\varphi) \text{ and } K(\varphi) = \mathbb{Q}(\sqrt{5}).$

EXAMPLE 3. $K = \mathbb{Q}(\sqrt{-5})$, $\mathfrak{c} = (1)$, $\mathcal{I}_0(\mathfrak{c})$ is the semigroup of all nonzero ideals of $\mathbb{Z}[\sqrt{-5}]$, H_{φ} is the semigroup of all non-zero principal ideals of $\mathbb{Z}[\sqrt{-5}]$, φ is the non-trivial character on the ideal class group of K, $Z(s) = \zeta_K(s)$ and $K(\varphi) = \mathbb{Q}(\sqrt{5}, \sqrt{-5})$.

2. Factorizations and types. Let [D, H] be an arithmetical formation. For H, we use the notions of divisibility theory as introduced in $[1, \S6]$. We are interested in the number $\mathbf{f}(\alpha)$ of distinct factorizations of an element $\alpha \in H$ into irreducibles (two factorizations are called distinct if they differ not only in the order of their factors). For $k \in \mathbb{N}$, we consider the function

$$F_k(x) = \#\{\alpha \in H \mid |\alpha| \le x, \ \mathbf{f}(\alpha) \le k\}.$$

For the determination of its asymptotic behaviour, we introduce the notion of types (cf. [9], [4] and [3] for a more systematical treatment of this concept).

DEFINITION. A type is a sequence

$$t = ((t_{g,\nu})_{\nu \in \mathbb{N}})_{0 \neq g \in G},$$

where $t_{g,\nu} \in \mathbb{N}_0$, $t_{g,\nu} = 0$ for almost all indices (g,ν) , and

$$\sum_{0 \neq g \in G} \sum_{\nu \ge 1} t_{g,\nu} g = 0 \in G;$$

the number

$$\delta(t) = \#\{(g,\nu) \mid t_{g,\nu} = 1\} \in \mathbb{N}_0$$

is called the *depth* of t. Under componentwise addition, the set of types is a semigroup $\mathcal{T}(G)$, and we adopt the notions of divisibility theory also for $\mathcal{T}(G)$. Every $t \in \mathcal{T}(G)$ has a factorization into irreducible elements of $\mathcal{T}(G)$, and we denote by $\mathbf{f}(t)$ the number of distinct such factorizations.

A type $t = ((t_{g,\nu})_{\nu \ge 1})_{0 \ne g \in G} \in \mathcal{T}(G)$ is called *normalized* if for every $0 \ne g \in G$ there exists an integer $\lambda_g \in \mathbb{N}_0$ such that $1 \le t_{g,1} \le t_{g,2} \le \ldots \le t_{g,\lambda_g}$ and $t_{g,\nu} = 0$ for $\nu > \lambda_g$; in this case we write $t = ((t_{g,\nu})_{\nu \le \lambda_g})_{0 \ne g \in G}$.

Now let [D, H] be an arbitrary arithmetical formation. We are going to describe factorizations in H by means of $\mathcal{T}(G)$. For $\alpha \in H$, we set

$$\alpha = \prod_{g \in G} \prod_{\nu=1}^{\lambda_g} p_{g,\nu}^{t_{g,\nu}}$$

where $\lambda_g \in \mathbb{N}_0, p_{g,1}, \dots, p_{g,\lambda_g} \in P \cap g$ are distinct, $t_{g,\nu} \in \mathbb{N}$ and $1 \leq t_{g,1} \leq t_{g,2} \leq \dots \leq t_{g,\lambda_g}$; we call

$$\boldsymbol{\tau}(\alpha) = ((t_{g,\nu})_{\nu \le \lambda_g})_{0 \ne g \in G} \in \mathcal{T}(G)$$

the type of α . It is not difficult to see that $\mathbf{f}(\alpha) = \mathbf{f}(\boldsymbol{\tau}(\alpha))$ (cf. [3] for details).

For $k \in \mathbb{N}$, we set

$$\mathcal{T}_k(G) = \left\{ t \in \mathcal{T}(G) \mid \mathbf{f}(t) \le k \right\};$$

then we obviously have, for $x \in \mathbb{R}_{>0}$,

$$F_k(x) = \#\{\alpha \in H \mid |\alpha| \le x, \ \boldsymbol{\tau}(\alpha) \in \mathcal{T}_k(G)\},\$$

and it was proved in [9] (see also [4], [3]) that

$$a_k = a_k(G) = \sup\{\delta(t) \mid t \in \mathcal{T}_k(G)\}$$

is a positive integer. Now we are able to state the theorem concerning the asymptotic behaviour of $F_k(x)$ in arithmetical formations.

THEOREM 1. Let [D, H] be an arithmetical formation, $k \in \mathbb{N}$ and $a_k = a_k(G)$. Then we have, as $x \to \infty$,

$$F_k(x) \sim c_k x \, (\log x)^{-1+1/N} (\log \log x)^{a_k}$$

where

$$c_k = \frac{G(1)}{N^d \Gamma(1/N)} \sum_t \kappa_t C_t \,;$$

here we have

$$G(s) = (s-1)^{-1/N} \prod_{p \in P \cap H} (1-|p|^{-s})^{-1},$$

the sum is over all normalized types $t \in \mathcal{T}_k(G)$ such that $\delta(t) = a_k$, and for a normalized type $t = ((t_{g,\nu})_{\nu \leq \lambda_g})_{0 \neq g \in G}$ the quantities κ_t and C_t are defined as follows:

$$\kappa_t = \prod_{0 \neq g \in G} \# \{ \pi \in \mathfrak{S}_{\lambda_t} \mid t_{g,\pi(\nu)} = t_{g,\nu} \text{ for all } \nu \leq \lambda_g \}^{-1},$$

and if $d_g \in \mathbb{N}_0$ are integers defined by $t_{g,\nu} = 1$ for $1 \leq \nu \leq d_g$ and $t_{g,\nu} > 1$ for $d_g < \nu \leq \lambda_g$, then

$$C_t = \prod_{0 \neq g \in G} \sum_{(\mathbf{q};g)} \prod_{\nu=d_g+1}^{\lambda_g} |q_{\nu}|^{-t_{g,\nu}}$$

where $(\mathbf{q}; g)$ denotes the sum over all tuples $(q_{d_g+1}, \ldots, q_{\lambda_g})$ of distinct primes $q_j \in P \cap g$.

Proof. See [4, Theorem 1]; there the constant c_k is not given explicitly, but it can be reconstructed from the proof.

F. HALTER-KOCH

Remark. Using the methods of [5], the assertion of Theorem 1 can be refined by giving further terms of the asymptotic expansion of $F_k(x)$ if [D, H] arises from a ray class semigroup in an algebraic number field.

To make Theorem 1 more explicit, it is necessary to calculate $a_k(G)$, determine all normalized types $t \in \mathcal{T}_k(G)$ with $\delta(t) = a_k(G)$ and manage the calculation of the infinite series occurring in the definition of C_t . In this paper we shall solve these problems for the simplest non-trivial case, where $G = C_2$ is a group of 2 elements.

3. Combinatorial theory of types over C_2 . Let $G = C_2$ be a group of two elements. Then $\mathcal{T}(C_2)$ consists of all sequences $(t_{\nu})_{\nu\geq 1}$, where $t_{\nu} \in \mathbb{N}_0, t_{\nu} = 0$ for almost all $\nu \geq 1$ and $\sum_{\nu\geq 1} t_{\nu} \equiv 0 \mod 2$; the normalized types are finite sequences $(t_1, \ldots, t_{\lambda})$ in \mathbb{N} satisfying $t_1 + \ldots + t_{\lambda} \equiv 0 \mod 2$.

For $n, k \in \mathbb{N}_0$, n + k > 0, $n + k \equiv 0 \mod 2$, we set

$$t^{(n,k)} = (\underbrace{1, \dots, 1}_{n}, k) \in \mathcal{T}(C_2)$$
 and $C(n,k) = \mathbf{f}(t^{(n,k)}).$

THEOREM 2. For $n, k \in \mathbb{N}_0$, n + k > 0, $n + k \equiv 0 \mod 2$, we have

$$C(n,k) = \sum_{\nu=0}^{\lfloor k/2 \rfloor} \binom{n}{k-2\nu} (n-k+2\nu-1)!!,$$

where

$$l \, !! = \begin{cases} 1 \cdot 3 \cdot 5 \cdot \ldots \cdot l & \text{if } l \in \mathbb{N} \text{ is odd,} \\ 1 & \text{otherwise.} \end{cases}$$

Proof. For $n \ge 1$, every factorization of $t^{(n,k)}$ into irreducible types contains exactly one irreducible factor of the form $(1, 0, \ldots, 0, 1, 0, \ldots, 0)$. Therefore the numbers C(n, k) satisfy the following recursion formulas:

$$C(1,k) = C(0,k) = 1 \quad \text{for } k \ge 0;$$

$$C(n+1,0) = C(n,1) \quad \text{for } n \ge 1;$$

$$C(n,0) = (n-1)C(n-2,0) \quad \text{for } n \ge 2;$$

$$C(n,k) = (n-1)C(n-2,k) + C(n-1,k-1) \quad \text{for } n \ge 2, \ k \ge 1$$

These are satisfied by the expression given in Theorem 1. \blacksquare

THEOREM 3. For $k \in \mathbb{N}$, let $n \in \mathbb{N}$ be maximal such that $(2n-1)!! \leq k$. Then

$$a_k(C_2) = 2n\,,$$

and

$$\{t \in \mathcal{T}_k(C_2) \mid t \text{ normalized, } \delta(t) = 2n\} = \{t^{(2n,2j)} \mid j \in J_k\},\$$

where J_k is given as follows:

 $J_k = \{0\} \text{ if } k = 1, \ 3 \le k \le 8, \ 15 \le k \le 59, \ 105 \le k \le 524, \ 945 \le k \le 5669, \ 10395 \le k \le 72764 \text{ or } n \ge 7, \ (2n-1)!! \le k < (2n-1)!! \ (n+1);$

 $J_k = \{0, 1\}$ if $k = 9, 60 \le k \le 74, 525 \le k \le 734, 5670 \le k \le 8819,$ $72765 \le k \le 124739$ or $n \ge 7, (2n-1)!! (n+1) \le k < (2n+1)!!;$

 $J_k = \{0, 1, 2\}$ if $k = 75, 735 \le k \le 762, 8820 \le k \le 9449$ or $124740 \le k \le 135134;$

 $J_k = \{0, 1, 2, 3\}$ if k = 763 or $9450 \le k \le 9494$;

 $J_k = \{0, 1, 2, 3, 4\}$ if k = 9495;

 $J_k = \mathbb{N}_0$ if k = 2, $10 \le k \le 14$, $76 \le k \le 104$, $764 \le k \le 944$ or $9496 \le k \le 10394$.

Proof. Let $k \in \mathbb{N}$ be given, and let $n \in \mathbb{N}$ be maximal such that $(2n-1)!! \leq k$.

By Theorem 2, $\mathbf{f}(t^{(2n,0)}) = (2n-1)!!$ and $\delta(t^{(2n,0)}) = 2n$. Therefore we must prove that $\delta(t) > 2n$ implies $\mathbf{f}(t) > k$ for every normalized type t; but if $\delta(t) > 2n$, then $t^{(2n+2,0)}$ divides t, and therefore $\mathbf{f}(t) \ge \mathbf{f}(t^{(2n+2,0)}) = (2n+1)!! > k$.

By the same argument, every normalized type $t \in \mathcal{T}(C_2)$ satisfying $\mathbf{f}(t) \leq k$ and $\delta(t) = 2n$ is of the form $t = t^{(2n,2l)}$ for some $l \in \mathbb{N}_0$. In order to finish the proof of Theorem 3, we must determine all $l \in \mathbb{N}_0$ satisfying $C(2n, 2l) \leq k$.

 $n = 1 : k \leq 2, C(2,0) = 1, C(2,2l) = 2$ for all $l \geq 1$; therefore $J_1 = \{0\}$ and $J_2 = \mathbb{N}_0$.

 $n = 2: 3 \le k \le 14, \ C(4,0) = 3, \ C(4,2) = 9, \ C(4,2l) = 10 \ \text{for all} \ l \ge 2;$ therefore $J_k = \{0\}$ for $3 \le k \le 8, \ J_9 = \{0,1\}$ and $J_k = \mathbb{N}_0$ for $10 \le k \le 14$. $n = 3: 15 \le k \le 104, \ C(6,0) = 15, \ C(6,2) = 60, \ C(6,4) = 75, \ C(6,2l) = 76 \ \text{for all} \ l \ge 3;$ therefore $J_k = \{0\}$ for $15 \le k \le 59, \ J_k = \{0,1\}$ for $60 \le k \le 74, \ J_k = \{0,1,2\}$ for k = 75 and $J_k = \mathbb{N}_0$ for $76 \le k \le 104$. n = 4, 5, 6: Similar.

 $n \geq 7: C(2n,2) = (2n-1)!! (n+1) < (2n+1)!!, \text{ and } C(2n,4) = (2n-1)!! (n^2+5n+6)/6 \geq (2n+1)!!;$ therefore we obtain $J_k = \{0\}$ for $(2n-1)!! \leq k < (2n-1)!! (n+1),$ and $J_k = \{0,1\}$ for $(2n-1)!! (n+1) \leq k < (2n+1)!!.$

4. Analytical theory of factorizations in class number two. From Theorems 1 and 3 we deduce:

THEOREM 4. Let [D, H] be an arithmetical formation with class group of order N = 2, and $k \in \mathbb{N}$. Let $n \in \mathbb{N}$ be maximal with $(2n - 1)!! \leq k$. Then we have, as $k \to \infty$,

$$F_k(x) \sim c_k \frac{x}{\sqrt{\log x}} (\log \log x)^{2n}$$
,

where

$$c_k = \frac{G(1)}{2^{2n}(2n)!\sqrt{\pi}} \sum_{j \in J_k} S_{2j},$$

$$S_0 = 1, \quad S_l = \sum_{p \in P \setminus H} |p|^{-l} \quad \text{for } l \ge 2,$$

and

$$G(s) = (s-1)^{1/2} \prod_{p \in P \cap H} (1-|p|^{-s})^{-1}$$

Though c_k is given explicitly in Theorem 4, G(1) cannot be calculated from the definition of G(s), and for small j the series defining S_{2j} converge very slowly. Therefore we shall now describe techniques which allow us to compute c_k in specific examples.

Let [D, H] be an arithmetical formation whose class group G is of order N = 2, and let χ be the non-trivial character of G. Then the formation has two zeta functions, Z(s) and $Z(s, \chi)$, and we define its *total zeta function* by

$$Z^*(s) = Z(s)Z(s,\chi)\,.$$

 $Z^*(s)$ is a meromorphic function in the half-plane $\Re s > 1 - \delta$, having a simple pole at s = 1, and we set

$$K = \operatorname{Res}\{Z^*(s) : s = 1\}.$$

If

$$G_0(s) = \prod_{p \in P \cap H} (1 - |p|^{-s})^{-1},$$

then the following formulas permit a calculation of G(1).

PROPOSITION 1. Let notations be as above and $m \in \mathbb{N}$. Then we have

$$G(1) = \sqrt{\frac{K}{Z(2)}} \prod_{p \in P \cap H} \frac{|p|}{\sqrt{|p|^2 - 1}} = \sqrt{K} \prod_{p \in P \setminus H} \frac{\sqrt{|p|^2 - 1}}{|p|}$$
$$= \sqrt{\frac{K}{Z(2)}} \prod_{j=1}^{m-1} \left\{ \frac{Z^*(2^j)}{Z(2^{j+1})} \right\}^{2^{-j-1}} G_0(2^m)^{2^{-m}},$$

and moreover

$$G(1) = \sqrt{\frac{K}{Z(2)}} \prod_{j=1}^{\infty} \left\{ \frac{Z^*(2^j)}{Z(2^{j+1})} \right\}^{2^{-j-1}}.$$

Proof. From the identity

$$G_0(s)^2 = \frac{Z^*(s)}{Z(2s)}G_0(2s)$$

we obtain

$$G(1) = \lim_{s \to 1} (s-1)^{1/2} G_0(s) = \sqrt{\frac{K}{Z(2)}} G_0(2) \,,$$

which implies the first formula. The second one follows by induction on m; for the third one observe that

$$\lim_{m \to \infty} G_0(2^m)^{2^{-m}} = 1. \blacksquare$$

For the calculation of S_l for $l \ge 2$ we introduce the function

$$H(s) = \sum_{n=1}^{\infty} \frac{\mu(n)}{n} \log \frac{Z(ns, \chi)}{Z(ns)} \,,$$

where μ denotes the Möbius function. It is connected with the sums S_l by the following formulas.

PROPOSITION 2. Let notations be as above.

(i) For l > 1, we have

$$H(l) = S_{2l} - 2S_l;$$

(ii) For l > 1 and $m \in \mathbb{N}$,

$$S_l = -\sum_{\nu=0}^{m-1} 2^{-\nu-1} H(2^{\nu}l) + 2^{-m} S_{2^m l},$$

and

$$S_l = -\sum_{\nu=0}^{\infty} 2^{-\nu-1} H(2^l \nu) \,.$$

Proof. (i) From

$$\frac{Z(ns,\chi)}{Z(ns)} = \prod_{p \in P \setminus H} \frac{(1+|p|^{-ns})^{-1}}{(1-|p|^{-ns})^{-1}}$$

we obtain

$$\log \frac{Z(ns,\chi)}{Z(ns)} = \sum_{p \in P \setminus H} \sum_{\substack{k \equiv 1 \ \text{mod } 2}}^{\infty} \frac{-2}{k} |p|^{-kns},$$

and consequently

$$\sum_{n=1}^{\infty} \frac{\mu(n)}{n} \log \frac{Z(ns,\chi)}{Z(ns)} = \sum_{p \in P \setminus H} \sum_{m=1}^{\infty} \frac{-2}{m} |p|^{-ms} \sum_{\substack{1 \le k \mid m \\ k \equiv 1 \mod 2}} \mu\left(\frac{m}{k}\right).$$

It is easily checked that

$$\sum_{\substack{1 \le k \mid m \\ k \equiv 1 \mod 2}} \mu\left(\frac{m}{k}\right) = \begin{cases} 1 & \text{if } m = 1, \\ -1 & \text{if } m = 2, \\ 0 & \text{if } m > 2, \end{cases}$$

which gives the result.

(ii) follows from (i) by induction on m, observing that $\lim_{m\to\infty} 2^{-m}S_{2^ml}=0.$ \blacksquare

Remark. The infinite product in Proposition 1 and the infinite series in Proposition 2 turn out to converge very rapidly. They have been used for the calculations in the subsequent examples.

EXAMPLE 1. $H = 1 + 4\mathbb{N}_0$, $D = 1 + 2\mathbb{N}_0$, $\varphi = \begin{pmatrix} -4 \\ \bullet \end{pmatrix}$, $Z(s) = (1 - 2^{-s})\zeta(s)$, $Z(s,\varphi) = L(s,\varphi)$ and $Z^*(s) = (1 - 2^{-s})\zeta_{\mathbb{Q}(\sqrt{-1})}(s)$; $K = \frac{\pi}{8}$.

G(1)	S_2	S_4	S_6	S_8
0.5798	0.1484	0.0128	0.0014	0.0002

EXAMPLE 2. $H = \{a \in \mathbb{N} \mid a \equiv \pm 1 \mod 5\}, D = \{a \in \mathbb{N} \mid a \not\equiv 0 \mod 5\}, \varphi = \left(\frac{5}{\bullet}\right), Z(s) = (1 - 5^{-s})\zeta(s), Z(s,\varphi) = L(s,\varphi) \text{ and } Z^*(s) = (1 - 5^{-s})\zeta_{\mathbb{Q}(\sqrt{r})}(s); K = \frac{2}{5\sqrt{5}}\log\frac{1+\sqrt{5}}{2}.$

G(1)	S_2	S_4	S_6	S_8	S_{10}	S_{12}
0.2353	0.3965	0.0753	0.0170	0.0041	0.0010	0.0002

EXAMPLE 3. *H* is the semigroup of non-zero principal ideals of $\mathbb{Z}[\sqrt{-5}]$, *D* is the semigroup of all non-zero ideals of $\mathbb{Z}[\sqrt{-5}]$, *G* is the ideal class group of $\mathbb{Z}[\sqrt{-5}]$ and φ is the non-trivial ideal class character, $\varphi : D \to \{\pm 1\}$, $H = \varphi^{-1}(1); Z(s) = \zeta_{\mathbb{Q}(\sqrt{-5})}(s) = \zeta(s)L(s,\chi)$, where $\chi = \begin{pmatrix} -20 \\ \bullet \end{pmatrix}$; we set $\psi = \begin{pmatrix} \frac{5}{\bullet} \end{pmatrix}, \theta = \begin{pmatrix} -4 \\ \bullet \end{pmatrix}$ and obtain

$$Z^*(s) = \zeta_{\mathbb{Q}(\sqrt{5},\sqrt{-5})}(s) = \zeta(s)L(s,\chi)L(s,\psi)L(s,\theta),$$

whence $Z(s,\varphi) = L(s,\psi)L(s,\theta); K = \frac{1}{5}\log\frac{1+\sqrt{5}}{2}.$

G(1)	S_2	S_4	S_6	S_8
0.2331	0.1353	0.0128	0.0014	0.0002

REFERENCES

- [1] R. Gilmer, Commutative Semigroup Rings, Univ. of Chicago Press, Chicago 1984.
- F. Halter-Koch, Halbgruppen mit Divisorentheorie, Exposition. Math. 8 (1990), 29-66.
- [3] —, Typenhalbgruppen und Faktorisierungsprobleme, Resultate Math. 22 (1992), 545– 559.
- [4] F. Halter-Koch and W. Müller, *Quantitative aspects of non-unique factorization:* A general theory with applications to algebraic function fields, J. Reine Angew. Math. 421 (1991), 159–188.
- J. Kaczorowski, Some remarks on factorizations in algebraic number fields, Acta Arith. 43 (1983), 53–68.
- [6] J. Knopfmacher, Abstract Analytic Number Theory, North-Holland, 1975.
- [7] E. Landau, Über Ideale und Primideale in Idealklassen, Math. Z. 2 (1918), 52–154.
- [8] S. Lang, Algebraic Number Theory, Addison-Wesley, 1970.
- W. Narkiewicz, Numbers with unique factorization in an algebraic number field, Acta Arith. 21 (1972), 313-322.

INSTITUT FÜR MATHEMATIK KARL-FRANZENS-UNIVERSITÄT HEINRICHSTRASSE 36/IV A-8010 GRAZ, ÖSTERREICH

> Reçu par la Rédaction le 17.6.1992; en version modifiée le 25.1.1993