# COLLOQUIUM MATHEMATICUM 

# FACTORIZATION PROBLEMS IN CLASS NUMBER TWO <br> BY <br> FRANZ HALTER-KOCH (GRAZ) 

Introduction. Let $K$ be an algebraic number field, $R$ its ring of integers, $G$ its ideal class group and $N=\# G>1$ its class number. For $k \geq 1$ and $x \in \mathbb{R}_{>0}$, let $F_{k}(x)$ be the number of elements $\alpha \in R$ (up to associates) having at most $k$ different factorizations into irreducible elements of $R$. W. Narkiewicz [9] obtained the asymptotic expression

$$
F_{k}(x) \sim c_{k} x(\log x)^{-1+1 / N}(\log \log x)^{a_{k}}
$$

where $c_{k} \in \mathbb{R}_{>0}$ depends on $k$ and $K$, and $a_{k} \in \mathbb{N}$ depends only on $k$ and $G$. In [4], this was generalized to abstract arithmetical formations, emphasizing applications to algebraic function fields and to arithmetical semigroups (e.g. Hilbert semigroups $1+f \mathbb{N}_{0}$ and, more generally, ray class semigroups in algebraic number fields).

In this paper we give an explicit description of $a_{k}$ and $c_{k}$ in the simplest non-trivial case $N=2$. For $a_{k}$, this is a purely combinatorial problem, settled in Theorems 2 and 3. For the calculation of $c_{k}$, it is necessary to handle some infinite sums and products involving primes, which might be of independent interest (Propositions 1 and 2). We formulate our investigations in the frame of arithmetical formations having zeta functions; the analytical main results are Theorems 1 and 4.

1. Arithmetical formations. We introduce the concept of an arithmetical formation following [6]. By a semigroup we always mean a commutative monoid satisfying the cancellation law; the identity element is denoted by 1 .

Definition. A formation consists of

1) a free abelian semigroup $D$ with basis $P \neq \emptyset$, together with a congruence relation $\sim$ on $D$ such that $G=D / \sim$ is a finite abelian group (written additively) of order $N \geq 2$,
2) a completely multiplicative function $|\cdot|: D \rightarrow \mathbb{N}$ with the following three properties:
(i) $|a|>1$ for all $a \in D \backslash\{1\} ;$
(ii) there exist real numbers $\lambda>0$ and $0<\delta<1$ such that, for all $g \in G$ and $x \in \mathbb{R}_{>0}$,

$$
\#\left\{a \in g||a| \leq x\}=\lambda x+O\left(x^{1-\delta}\right) ;\right.
$$

(iii) Axiom $\left(\mathrm{A}^{* *}\right)$, to be explained below.

Let $G^{*}=\operatorname{Hom}\left(G, \mathbb{C}^{\times}\right)$be the character group of $G$ and $\chi_{0} \in G^{*}$ the principal character. For $a \in D$, we denote by $[a] \in G$ the class of $a$, and for $\chi \in G^{*}$ we set $\chi(a)=\chi([a])$. We introduce the Hecke-Landau zeta functions

$$
Z(s, \chi)=\sum_{a \in D} \chi(a)|a|^{-s} ;
$$

the defining Dirichlet series converge for $\Re s>1$ and have an Euler product expansion

$$
Z(s, \chi)=\prod_{p \in P}\left(1-\chi(p)|p|^{-s}\right)^{-1}
$$

The functions $Z(s, \chi)$ have analytic continuations to meromorphic functions in the half-plane $\Re s>1-\delta$. For $\chi \neq \chi_{0}, Z(s, \chi)$ is holomorphic in $\Re s>1-\delta$, and $Z(s)=Z\left(s, \chi_{0}\right)$ has a simple pole at $s=1$ with residue $\lambda$. We have $Z(1+i t, \chi) \neq 0$ for all $t \in \mathbb{R}$ and $\chi \in G^{*}$ unless $t=0$ and $\chi^{2}=\chi_{0}$; for this special case, we introduce

Axiom $\left(\mathrm{A}^{* *}\right) . \quad Z(1, \chi) \neq 0$.
Taking logarithms in the Euler product of $Z(s, \chi)$ and applying the orthogonality relations for characters, we obtain for every $g \in G$ and $\Re s>1$,

$$
\sum_{p \in P \cap g}|p|^{-s}=\frac{1}{N} \log \frac{1}{s-1}+h_{g}(s)
$$

where

$$
\begin{aligned}
h_{g}(s)= & \frac{1}{N} \log \{(s-1) Z(s)\} \\
& +\frac{1}{N} \sum_{\substack{\chi \in G^{*} \\
\chi \neq \chi_{0}}} \bar{\chi}(g) \log Z(s, \chi)-\sum_{p \in P \cap g} \sum_{\nu=2}^{\infty}|p|^{-\nu s} .
\end{aligned}
$$

The functions $h_{g}(s)$ are regular in the closed half-plane $\Re s \geq 1$. Therefore an arithmetical formation as introduced above is a formation in the sense of [4], and the algebra of all complex functions which are analytic in $\Re s \geq 1$ is suitable for this formation.

For an arithmetical formation as introduced above, our main interest lies in the arithmetic of the semigroup

$$
H=\{a \in D \mid a \sim 1\}=\{a \in D \mid[a]=0 \in G\}
$$

The injection $H \hookrightarrow D$ is a divisor theory [4, Lemma 1], and therefore $D$ and $G$ are uniquely determined by $H[2$, Bemerkung 4]. In the sequel, we shall speak about the arithmetical formation $[D, H]$, and we shall tacitly use the notations $P,|\cdot|, G, N, Z$ as above.

The most important examples of arithmetical formations to be considered in this paper are ray class semigroups in algebraic number fields (see [2, Beispiel 4] and [8, Ch. VI, §1]):

Let $K$ be an algebraic number field, $\mathfrak{c}$ a cycle of $K, \mathcal{I}(\mathfrak{c})$ the group of fractional ideals of $K$ relatively prime to $\mathfrak{c}, \mathcal{I}_{0}(\mathfrak{c})$ the semigroup of integral ideals in $\mathcal{I}(\mathfrak{c}), K(\mathfrak{c})=\left\{(\alpha) \in \mathcal{I}(\mathfrak{c}) \mid \alpha \in K^{\times}, \alpha \equiv 1 \bmod ^{\times} \mathfrak{c}\right\}, \mathcal{S}(\mathfrak{c})=$ $\mathcal{I}(\mathfrak{c}) / K(\mathfrak{c})$ the ray class group modulo $\mathfrak{c}$ and $\Gamma \subset \mathcal{S}(\mathfrak{c})$ a subgroup. Then

$$
\mathcal{I}^{\Gamma}(\mathfrak{c})=\left\{\mathfrak{a} \in \mathcal{I}_{0}(\mathfrak{c}) \mid \mathfrak{a} K(\mathfrak{c}) \in \Gamma\right\}
$$

is a subsemigroup of $\mathcal{I}_{0}(\mathfrak{c})$. We set $D=\mathcal{I}_{0}(\mathfrak{c}), H=\mathcal{I}^{\Gamma}(\mathfrak{c})$ and $|\mathfrak{a}|=\mathfrak{N}(\mathfrak{a})$; then $[D, H]$ becomes a formation with divisor class group $G \simeq \mathcal{S}(\mathfrak{c}) / \Gamma$ (see [7, Sätze LXIV, XCVI] and [8, Ch. XIII, §3]).

Every character $\chi \in G^{*}$ induces a (not necessarily primitive) ideal character $\chi_{1} \bmod \mathfrak{c}$ by

$$
\chi_{1}(\mathfrak{a})= \begin{cases}\chi(\mathfrak{a} K(\mathfrak{c}) \Gamma) & \text { if } \mathfrak{a} \in \mathcal{I}(\mathfrak{c}), \\ 0 & \text { if } \mathfrak{a} \notin \mathcal{I}(\mathfrak{c})\end{cases}
$$

and

$$
Z(s, \chi)=\zeta_{K}\left(s, \chi_{1}\right)
$$

is the classical Hecke zeta function for $\chi_{1}$. If $\mathfrak{c}=1$, then $\mathcal{S}(\mathfrak{c})$ is the usual ideal class group, and if $\Gamma=\{1\}$, then $H=\mathcal{I}^{\Gamma}(\mathfrak{c})$ is the semigroup of non-zero principal ideals of $K$ (which reflects the arithmetic in the ring of integers in $K$ ).

The following special case will be dealt with in detail: Let $\varphi$ be a (primitive) Hecke character of order 2 with conductor $\mathfrak{c}$, identify $\varphi$ with the induced homomorphism $\varphi: \mathcal{S}(\mathfrak{c}) \rightarrow\{ \pm 1\}$, set $\Gamma=\operatorname{Ker}(\varphi) \subset \mathcal{S}(\mathfrak{c})$ and $H_{\varphi}=\mathcal{I}^{\Gamma}(\mathfrak{c})$. Then $\left[\mathcal{I}_{0}(\mathfrak{c}), H_{\varphi}\right]$ is an arithmetical formation whose class group $G$ is of order $N=2$, and $\varphi$ induces the non-trivial character on $G$. Associated with this arithmetical formation, there are two zeta functions, $Z(s)$ and $Z(s, \varphi)$, and we obtain

$$
Z(s)=\zeta_{K}(s) \prod_{\mathfrak{p} \mid \mathfrak{c}}\left(1-\mathfrak{N}(\mathfrak{p})^{-s}\right) \quad \text { and } \quad Z(s, \varphi)=L(s, \varphi)
$$

here $\zeta_{K}$ is the Dedekind zeta function of $K, L(s, \varphi)$ is the usual $L$-series, and consequently $\zeta_{K(\varphi)}(s)=\zeta_{K}(s) L(s, \varphi)$, where $K(\varphi)$ is the quadratic extension field of $K$ attached to $\varphi$ by class field theory. The following examples will be reconsidered at the end of $\S 4$.

Example 1. $K=\mathbb{Q}, \mathfrak{c}=4 \infty, \mathcal{I}_{0}(\mathfrak{c})=\{a \in \mathbb{N} \mid a \equiv 1 \bmod 2\}, \varphi=\left(\frac{-4}{\bullet}\right)$, $H_{\varphi}=1+4 \mathbb{N}_{0}, Z(s)=\left(1-2^{-s}\right) \zeta(s), Z(s, \varphi)=L(s, \varphi)$ and $K(\varphi)=\mathbb{Q}(\sqrt{-1})$.

ExAMPLE 2. $K=\mathbb{Q}, \mathfrak{c}=5, \mathcal{I}_{0}(\mathfrak{c})=\{a \in \mathbb{N} \mid a \not \equiv 0 \bmod 5\}, \varphi=\left(\frac{5}{\bullet}\right)$, $H_{\varphi}=\{a \in \mathbb{N} \mid a \equiv \pm 1 \bmod 5\}, Z(s)=\left(1-5^{-s}\right) \zeta(s), Z(s, \varphi)=L(s, \varphi)$ and $K(\varphi)=\mathbb{Q}(\sqrt{5})$.

Example $3 . K=\mathbb{Q}(\sqrt{-5}), \mathfrak{c}=(1), \mathcal{I}_{0}(\mathfrak{c})$ is the semigroup of all nonzero ideals of $\mathbb{Z}[\sqrt{-5}], H_{\varphi}$ is the semigroup of all non-zero principal ideals of $\mathbb{Z}[\sqrt{-5}], \varphi$ is the non-trivial character on the ideal class group of $K$, $Z(s)=\zeta_{K}(s)$ and $K(\varphi)=\mathbb{Q}(\sqrt{5}, \sqrt{-5})$.
2. Factorizations and types. Let $[D, H]$ be an arithmetical formation. For $H$, we use the notions of divisibility theory as introduced in $[1, \S 6]$. We are interested in the number $\mathbf{f}(\alpha)$ of distinct factorizations of an element $\alpha \in H$ into irreducibles (two factorizations are called distinct if they differ not only in the order of their factors). For $k \in \mathbb{N}$, we consider the function

$$
F_{k}(x)=\#\{\alpha \in H| | \alpha \mid \leq x, \mathbf{f}(\alpha) \leq k\}
$$

For the determination of its asymptotic behaviour, we introduce the notion of types (cf. [9], [4] and [3] for a more systematical treatment of this concept).

Definition. A type is a sequence

$$
t=\left(\left(t_{g, \nu}\right)_{\nu \in \mathbb{N}}\right)_{0 \neq g \in G},
$$

where $t_{g, \nu} \in \mathbb{N}_{0}, t_{g, \nu}=0$ for almost all indices $(g, \nu)$, and

$$
\sum_{0 \neq g \in G} \sum_{\nu \geq 1} t_{g, \nu} g=0 \in G
$$

the number

$$
\delta(t)=\#\left\{(g, \nu) \mid t_{g, \nu}=1\right\} \in \mathbb{N}_{0}
$$

is called the depth of $t$. Under componentwise addition, the set of types is a semigroup $\mathcal{T}(G)$, and we adopt the notions of divisibility theory also for $\mathcal{T}(G)$. Every $t \in \mathcal{T}(G)$ has a factorization into irreducible elements of $\mathcal{T}(G)$, and we denote by $\mathbf{f}(t)$ the number of distinct such factorizations.

A type $t=\left(\left(t_{g, \nu}\right)_{\nu \geq 1}\right)_{0 \neq g \in G} \in \mathcal{T}(G)$ is called normalized if for every $0 \neq$ $g \in G$ there exists an integer $\lambda_{g} \in \mathbb{N}_{0}$ such that $1 \leq t_{g, 1} \leq t_{g, 2} \leq \ldots \leq t_{g, \lambda_{g}}$ and $t_{g, \nu}=0$ for $\nu>\lambda_{g}$; in this case we write $t=\left(\left(t_{g, \nu}\right)_{\nu \leq \lambda_{g}}\right)_{0 \neq g \in G}$.

Now let $[D, H]$ be an arbitrary arithmetical formation. We are going to describe factorizations in $H$ by means of $\mathcal{T}(G)$. For $\alpha \in H$, we set

$$
\alpha=\prod_{g \in G} \prod_{\nu=1}^{\lambda_{g}} p_{g, \nu}^{t_{g, \nu}}
$$

where $\lambda_{g} \in \mathbb{N}_{0}, p_{g, 1}, \ldots, p_{g, \lambda_{g}} \in P \cap g$ are distinct, $t_{g, \nu} \in \mathbb{N}$ and $1 \leq t_{g, 1} \leq$ $t_{g, 2} \leq \ldots \leq t_{g, \lambda_{g}}$; we call

$$
\boldsymbol{\tau}(\alpha)=\left(\left(t_{g, \nu}\right)_{\nu \leq \lambda_{g}}\right)_{0 \neq g \in G} \in \mathcal{T}(G)
$$

the type of $\alpha$. It is not difficult to see that $\mathbf{f}(\alpha)=\mathbf{f}(\boldsymbol{\tau}(\alpha))$ (cf. [3] for details).

For $k \in \mathbb{N}$, we set

$$
\mathcal{T}_{k}(G)=\{t \in \mathcal{T}(G) \mid \mathbf{f}(t) \leq k\}
$$

then we obviously have, for $x \in \mathbb{R}_{>0}$,

$$
F_{k}(x)=\#\left\{\alpha \in H| | \alpha \mid \leq x, \boldsymbol{\tau}(\alpha) \in \mathcal{T}_{k}(G)\right\}
$$

and it was proved in [9] (see also [4], [3]) that

$$
a_{k}=a_{k}(G)=\sup \left\{\delta(t) \mid t \in \mathcal{T}_{k}(G)\right\}
$$

is a positive integer. Now we are able to state the theorem concerning the asymptotic behaviour of $F_{k}(x)$ in arithmetical formations.

Theorem 1. Let $[D, H]$ be an arithmetical formation, $k \in \mathbb{N}$ and $a_{k}=$ $a_{k}(G)$. Then we have, as $x \rightarrow \infty$,

$$
F_{k}(x) \sim c_{k} x(\log x)^{-1+1 / N}(\log \log x)^{a_{k}}
$$

where

$$
c_{k}=\frac{G(1)}{N^{d} \Gamma(1 / N)} \sum_{t} \kappa_{t} C_{t}
$$

here we have

$$
G(s)=(s-1)^{-1 / N} \prod_{p \in P \cap H}\left(1-|p|^{-s}\right)^{-1},
$$

the sum is over all normalized types $t \in \mathcal{T}_{k}(G)$ such that $\delta(t)=a_{k}$, and for a normalized type $t=\left(\left(t_{g, \nu}\right)_{\nu \leq \lambda_{g}}\right)_{0 \neq g \in G}$ the quantities $\kappa_{t}$ and $C_{t}$ are defined as follows:

$$
\kappa_{t}=\prod_{0 \neq g \in G} \#\left\{\pi \in \mathfrak{S}_{\lambda_{t}} \mid t_{g, \pi(\nu)}=t_{g, \nu} \text { for all } \nu \leq \lambda_{g}\right\}^{-1}
$$

and if $d_{g} \in \mathbb{N}_{0}$ are integers defined by $t_{g, \nu}=1$ for $1 \leq \nu \leq d_{g}$ and $t_{g, \nu}>1$ for $d_{g}<\nu \leq \lambda_{g}$, then

$$
C_{t}=\prod_{0 \neq g \in G} \sum_{(\mathbf{q} ; g)} \prod_{\nu=d_{g}+1}^{\lambda_{g}}\left|q_{\nu}\right|^{-t_{g, \nu}}
$$

where $(\mathbf{q} ; g)$ denotes the sum over all tuples $\left(q_{d_{g}+1}, \ldots, q_{\lambda_{g}}\right)$ of distinct primes $q_{j} \in P \cap g$.

Proof. See [4, Theorem 1]; there the constant $c_{k}$ is not given explicitly, but it can be reconstructed from the proof.

Remark. Using the methods of [5], the assertion of Theorem 1 can be refined by giving further terms of the asymptotic expansion of $F_{k}(x)$ if [ $D, H$ ] arises from a ray class semigroup in an algebraic number field.

To make Theorem 1 more explicit, it is necessary to calculate $a_{k}(G)$, determine all normalized types $t \in \mathcal{T}_{k}(G)$ with $\delta(t)=a_{k}(G)$ and manage the calculation of the infinite series occurring in the definition of $C_{t}$. In this paper we shall solve these problems for the simplest non-trivial case, where $G=C_{2}$ is a group of 2 elements.
3. Combinatorial theory of types over $C_{2}$. Let $G=C_{2}$ be a group of two elements. Then $\mathcal{T}\left(C_{2}\right)$ consists of all sequences $\left(t_{\nu}\right)_{\nu \geq 1}$, where $t_{\nu} \in \mathbb{N}_{0}, t_{\nu}=0$ for almost all $\nu \geq 1$ and $\sum_{\nu \geq 1} t_{\nu} \equiv 0 \bmod 2$; the normalized types are finite sequences $\left(t_{1}, \ldots, t_{\lambda}\right)$ in $\mathbb{N}$ satisfying $t_{1}+\ldots+t_{\lambda} \equiv 0 \bmod 2$.

For $n, k \in \mathbb{N}_{0}, n+k>0, n+k \equiv 0 \bmod 2$, we set

$$
t^{(n, k)}=(\underbrace{1, \ldots, 1}_{n}, k) \in \mathcal{T}\left(C_{2}\right) \quad \text { and } \quad C(n, k)=\mathbf{f}\left(t^{(n, k)}\right) .
$$

Theorem 2. For $n, k \in \mathbb{N}_{0}, n+k>0, n+k \equiv 0 \bmod 2$, we have

$$
C(n, k)=\sum_{\nu=0}^{[k / 2]}\binom{n}{k-2 \nu}(n-k+2 \nu-1)!!,
$$

where

$$
l!!= \begin{cases}1 \cdot 3 \cdot 5 \cdot \ldots \cdot l & \text { if } l \in \mathbb{N} \text { is odd } \\ 1 & \text { otherwise }\end{cases}
$$

Proof. For $n \geq 1$, every factorization of $t^{(n, k)}$ into irreducible types contains exactly one irreducible factor of the form $(1,0, \ldots, 0,1,0, \ldots, 0)$. Therefore the numbers $C(n, k)$ satisfy the following recursion formulas:

$$
\begin{array}{rlrl}
C(1, k) & =C(0, k)=1 & & \text { for } k \geq 0 ; \\
C(n+1,0) & =C(n, 1) & & \text { for } n \geq 1 ; \\
C(n, 0) & =(n-1) C(n-2,0) & & \text { for } n \geq 2 ; \\
C(n, k) & =(n-1) C(n-2, k)+C(n-1, k-1) \quad & \text { for } n \geq 2, k \geq 1 .
\end{array}
$$

These are satisfied by the expression given in Theorem 1.
Theorem 3. For $k \in \mathbb{N}$, let $n \in \mathbb{N}$ be maximal such that $(2 n-1)!!\leq k$. Then

$$
a_{k}\left(C_{2}\right)=2 n
$$

and

$$
\left\{t \in \mathcal{T}_{k}\left(C_{2}\right) \mid t \text { normalized, } \delta(t)=2 n\right\}=\left\{t^{(2 n, 2 j)} \mid j \in J_{k}\right\}
$$

where $J_{k}$ is given as follows:
$J_{k}=\{0\}$ if $k=1,3 \leq k \leq 8,15 \leq k \leq 59,105 \leq k \leq 524,945 \leq k \leq$ $5669,10395 \leq k \leq 72764$ or $n \geq 7,(2 n-1)!!\leq k<(2 n-1)!!(n+1)$;
$J_{k}=\{0,1\}$ if $k=9,60 \leq k \leq 74,525 \leq k \leq 734,5670 \leq k \leq 8819$, $72765 \leq k \leq 124739$ or $n \geq 7,(2 n-1)!!(n+1) \leq k<(2 n+1)!$ !;
$J_{k}=\{0,1,2\}$ if $k=75,735 \leq k \leq 762,8820 \leq k \leq 9449$ or $124740 \leq$ $k \leq 135134$;
$J_{k}=\{0,1,2,3\}$ if $k=763$ or $9450 \leq k \leq 9494 ;$
$J_{k}=\{0,1,2,3,4\}$ if $k=9495$;
$J_{k}=\mathbb{N}_{0}$ if $k=2,10 \leq k \leq 14,76 \leq k \leq 104,764 \leq k \leq 944$ or $9496 \leq k \leq 10394$.

Proof. Let $k \in \mathbb{N}$ be given, and let $n \in \mathbb{N}$ be maximal such that $(2 n-1)!!\leq k$.

By Theorem 2, $\mathbf{f}\left(t^{(2 n, 0)}\right)=(2 n-1)!!$ and $\delta\left(t^{(2 n, 0)}\right)=2 n$. Therefore we must prove that $\delta(t)>2 n$ implies $\mathbf{f}(t)>k$ for every normalized type $t$; but if $\delta(t)>2 n$, then $t^{(2 n+2,0)}$ divides $t$, and therefore $\mathbf{f}(t) \geq \mathbf{f}\left(t^{(2 n+2,0)}\right)=$ $(2 n+1)!!>k$.

By the same argument, every normalized type $t \in \mathcal{T}\left(C_{2}\right)$ satisfying $\mathbf{f}(t) \leq k$ and $\delta(t)=2 n$ is of the form $t=t^{(2 n, 2 l)}$ for some $l \in \mathbb{N}_{0}$. In order to finish the proof of Theorem 3, we must determine all $l \in \mathbb{N}_{0}$ satisfying $C(2 n, 2 l) \leq k$.
$n=1: k \leq 2, C(2,0)=1, C(2,2 l)=2$ for all $l \geq 1 ;$ therefore $J_{1}=\{0\}$ and $J_{2}=\mathbb{N}_{0}$.
$n=2: 3 \leq k \leq 14, C(4,0)=3, C(4,2)=9, C(4,2 l)=10$ for all $l \geq 2 ;$ therefore $J_{k}=\{0\}$ for $3 \leq k \leq 8, J_{9}=\{0,1\}$ and $J_{k}=\mathbb{N}_{0}$ for $10 \leq k \leq 14$.
$n=3: 15 \leq k \leq 104, C(6,0)=15, C(6,2)=60, C(6,4)=75$, $C(6,2 l)=76$ for all $l \geq 3$; therefore $J_{k}=\{0\}$ for $15 \leq k \leq 59, J_{k}=\{0,1\}$ for $60 \leq k \leq 74, J_{k}=\{0,1,2\}$ for $k=75$ and $J_{k}=\mathbb{N}_{0}$ for $76 \leq k \leq 104$.
$n=4,5,6:$ Similar.
$n \geq 7: C(2 n, 2)=(2 n-1)!!(n+1)<(2 n+1)!!$, and $C(2 n, 4)=$ $(2 n-1)!!\left(n^{2}+5 n+6\right) / 6 \geq(2 n+1)!!$; therefore we obtain $J_{k}=\{0\}$ for $(2 n-1)!!\leq k<(2 n-1)!!(n+1)$, and $J_{k}=\{0,1\}$ for $(2 n-1)!!(n+1) \leq$ $k<(2 n+1)!!$.
4. Analytical theory of factorizations in class number two. From Theorems 1 and 3 we deduce:

Theorem 4. Let $[D, H]$ be an arithmetical formation with class group of order $N=2$, and $k \in \mathbb{N}$. Let $n \in \mathbb{N}$ be maximal with $(2 n-1)!!\leq k$. Then we have, as $k \rightarrow \infty$,

$$
F_{k}(x) \sim c_{k} \frac{x}{\sqrt{\log x}}(\log \log x)^{2 n}
$$

where

$$
\begin{gathered}
c_{k}=\frac{G(1)}{2^{2 n}(2 n)!\sqrt{\pi}} \sum_{j \in J_{k}} S_{2 j}, \\
S_{0}=1, \quad S_{l}=\sum_{p \in P \backslash H}|p|^{-l} \text { for } l \geq 2,
\end{gathered}
$$

and

$$
G(s)=(s-1)^{1 / 2} \prod_{p \in P \cap H}\left(1-|p|^{-s}\right)^{-1} .
$$

Though $c_{k}$ is given explicitly in Theorem $4, G(1)$ cannot be calculated from the definition of $G(s)$, and for small $j$ the series defining $S_{2 j}$ converge very slowly. Therefore we shall now describe techniques which allow us to compute $c_{k}$ in specific examples.

Let $[D, H]$ be an arithmetical formation whose class group $G$ is of order $N=2$, and let $\chi$ be the non-trivial character of $G$. Then the formation has two zeta functions, $Z(s)$ and $Z(s, \chi)$, and we define its total zeta function by

$$
Z^{*}(s)=Z(s) Z(s, \chi)
$$

$Z^{*}(s)$ is a meromorphic function in the half-plane $\Re s>1-\delta$, having a simple pole at $s=1$, and we set

$$
K=\operatorname{Res}\left\{Z^{*}(s): s=1\right\}
$$

If

$$
G_{0}(s)=\prod_{p \in P \cap H}\left(1-|p|^{-s}\right)^{-1}
$$

then the following formulas permit a calculation of $G(1)$.
Proposition 1. Let notations be as above and $m \in \mathbb{N}$. Then we have

$$
\begin{aligned}
G(1) & =\sqrt{\frac{K}{Z(2)}} \prod_{p \in P \cap H} \frac{|p|}{\sqrt{|p|^{2}-1}}=\sqrt{K} \prod_{p \in P \backslash H} \frac{\sqrt{|p|^{2}-1}}{|p|} \\
& =\sqrt{\frac{K}{Z(2)}} \prod_{j=1}^{m-1}\left\{\frac{Z^{*}\left(2^{j}\right)}{Z\left(2^{j+1}\right)}\right\}^{2^{-j-1}} G_{0}\left(2^{m}\right)^{2^{-m}}
\end{aligned}
$$

and moreover

$$
G(1)=\sqrt{\frac{K}{Z(2)}} \prod_{j=1}^{\infty}\left\{\frac{Z^{*}\left(2^{j}\right)}{Z\left(2^{j+1}\right)}\right\}^{2^{-j-1}}
$$

Proof. From the identity

$$
G_{0}(s)^{2}=\frac{Z^{*}(s)}{Z(2 s)} G_{0}(2 s)
$$

we obtain

$$
G(1)=\lim _{s \rightarrow 1}(s-1)^{1 / 2} G_{0}(s)=\sqrt{\frac{K}{Z(2)} G_{0}(2)}
$$

which implies the first formula. The second one follows by induction on $m$; for the third one observe that

$$
\lim _{m \rightarrow \infty} G_{0}\left(2^{m}\right)^{2^{-m}}=1
$$

For the calculation of $S_{l}$ for $l \geq 2$ we introduce the function

$$
H(s)=\sum_{n=1}^{\infty} \frac{\mu(n)}{n} \log \frac{Z(n s, \chi)}{Z(n s)}
$$

where $\mu$ denotes the Möbius function. It is connected with the sums $S_{l}$ by the following formulas.

Proposition 2. Let notations be as above.
(i) For $l>1$, we have

$$
H(l)=S_{2 l}-2 S_{l} ;
$$

(ii) For $l>1$ and $m \in \mathbb{N}$,

$$
S_{l}=-\sum_{\nu=0}^{m-1} 2^{-\nu-1} H\left(2^{\nu} l\right)+2^{-m} S_{2^{m} l}
$$

and

$$
S_{l}=-\sum_{\nu=0}^{\infty} 2^{-\nu-1} H\left(2^{l} \nu\right)
$$

Proof. (i) From

$$
\frac{Z(n s, \chi)}{Z(n s)}=\prod_{p \in P \backslash H} \frac{\left(1+|p|^{-n s}\right)^{-1}}{\left(1-|p|^{-n s}\right)^{-1}}
$$

we obtain

$$
\log \frac{Z(n s, \chi)}{Z(n s)}=\sum_{p \in P \backslash H} \sum_{\substack{k=1 \\ k \equiv 1 \bmod 2}}^{\infty} \frac{-2}{k}|p|^{-k n s},
$$

and consequently

$$
\sum_{n=1}^{\infty} \frac{\mu(n)}{n} \log \frac{Z(n s, \chi)}{Z(n s)}=\sum_{p \in P \backslash H} \sum_{m=1}^{\infty} \frac{-2}{m}|p|^{-m s} \sum_{\substack{1 \leq k \mid m \\ k \equiv 1 \bmod 2}} \mu\left(\frac{m}{k}\right)
$$

It is easily checked that

$$
\sum_{\substack{1 \leq k \mid m \\ k \equiv 1 \bmod 2}} \mu\left(\frac{m}{k}\right)= \begin{cases}1 & \text { if } m=1, \\ -1 & \text { if } m=2 \\ 0 & \text { if } m>2\end{cases}
$$

which gives the result.
(ii) follows from (i) by induction on $m$, observing that $\lim _{m \rightarrow \infty} 2^{-m} S_{2^{m} l}$ $=0$.

Remark. The infinite product in Proposition 1 and the infinite series in Proposition 2 turn out to converge very rapidly. They have been used for the calculations in the subsequent examples.

Example 1. $H=1+4 \mathbb{N}_{0}, D=1+2 \mathbb{N}_{0}, \varphi=\left(\frac{-4}{\bullet}\right), Z(s)=\left(1-2^{-s}\right) \zeta(s)$, $Z(s, \varphi)=L(s, \varphi)$ and $Z^{*}(s)=\left(1-2^{-s}\right) \zeta_{\mathbb{Q}(\sqrt{-1})}(s) ; K=\frac{\pi}{8}$.

| $G(1)$ | $S_{2}$ | $S_{4}$ | $S_{6}$ | $S_{8}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0.5798 | 0.1484 | 0.0128 | 0.0014 | 0.0002 |

Example 2. $H=\{a \in \mathbb{N} \mid a \equiv \pm 1 \bmod 5\}, D=\{a \in \mathbb{N} \mid a \not \equiv 0$ $\bmod 5\}, \varphi=\left(\frac{5}{6}\right), Z(s)=\left(1-5^{-s}\right) \zeta(s), Z(s, \varphi)=L(s, \varphi)$ and $Z^{*}(s)=$ $\left(1-5^{-s}\right) \zeta_{\mathbb{Q}(\sqrt{r})}(s) ; K=\frac{2}{5 \sqrt{5}} \log \frac{1+\sqrt{5}}{2}$.

| $G(1)$ | $S_{2}$ | $S_{4}$ | $S_{6}$ | $S_{8}$ | $S_{10}$ | $S_{12}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.2353 | 0.3965 | 0.0753 | 0.0170 | 0.0041 | 0.0010 | 0.0002 |

Example 3. $H$ is the semigroup of non-zero principal ideals of $\mathbb{Z}[\sqrt{-5}]$, $D$ is the semigroup of all non-zero ideals of $\mathbb{Z}[\sqrt{-5}], G$ is the ideal class group of $\mathbb{Z}[\sqrt{-5}]$ and $\varphi$ is the non-trivial ideal class character, $\varphi: D \rightarrow\{ \pm 1\}$, $H=\varphi^{-1}(1) ; Z(s)=\zeta_{\mathbb{Q}(\sqrt{-5})}(s)=\zeta(s) L(s, \chi)$, where $\chi=\left(\frac{-20}{\bullet}\right) ;$ we set $\psi=\left(\frac{5}{\bullet}\right), \theta=\left(\frac{-4}{\bullet}\right)$ and obtain

$$
Z^{*}(s)=\zeta_{\mathbb{Q}(\sqrt{5}, \sqrt{-5})}(s)=\zeta(s) L(s, \chi) L(s, \psi) L(s, \theta),
$$

whence $Z(s, \varphi)=L(s, \psi) L(s, \theta) ; K=\frac{1}{5} \log \frac{1+\sqrt{5}}{2}$.

| $G(1)$ | $S_{2}$ | $S_{4}$ | $S_{6}$ | $S_{8}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0.2331 | 0.1353 | 0.0128 | 0.0014 | 0.0002 |

## REFERENCES

[1] R. Gilmer, Commutative Semigroup Rings, Univ. of Chicago Press, Chicago 1984.
[2] F. Halter-Koch, Halbgruppen mit Divisorentheorie, Exposition. Math. 8 (1990), 29-66.
[3] -, Typenhalbgruppen und Faktorisierungsprobleme, Resultate Math. 22 (1992), 545559.
[4] F. Halter-Koch and W. Müller, Quantitative aspects of non-unique factorization: A general theory with applications to algebraic function fields, J. Reine Angew. Math. 421 (1991), 159-188.
[5] J. Kaczorowski, Some remarks on factorizations in algebraic number fields, Acta Arith. 43 (1983), 53-68.
[6] J. Knopfmacher, Abstract Analytic Number Theory, North-Holland, 1975.
[7] E. Landau, Über Ideale und Primideale in Idealklassen, Math. Z. 2 (1918), 52-154.
[8] S. Lang, Algebraic Number Theory, Addison-Wesley, 1970.
[9] W. Narkiewicz, Numbers with unique factorization in an algebraic number field, Acta Arith. 21 (1972), 313-322.

INSTITUT FÜR MATHEMATIK
KARL-FRANZENS-UNIVERSITÄT
HEINRICHSTRASSE 36/IV
A-8010 GRAZ, ÖSTERREICH

