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1. Introduction and definitions. Our set theoretic notation and ter-
minology is standard (see e.g. [4], [5]). Let ¢ denote |P(w)| (= the cardinality
of P(w)). Let X be a subset of w. The set {Y C X | |Y| = w} is denoted
by [X]¥. “X (¥~ X) denotes the family of w-sequences (finite sequences) of
elements in X, respectively. V*°n € X (...) means that {n € X | not ...}
is finite. 3°°n € X (...) means that {n € X | ...} is infinite. For f,¢ € “w,
g dominates f (denoted by f < g) if V°n < w (f(n) < g(n)). For F C “w,
F is called a dominating family of “w if Vg € “w 3f € F (g < f), and an
unbounded family of “w if Vg € “w 3f € F (notf < g). Denote by d (b) the
least cardinality of a dominating (unbounded) family of “w, respectively.

Let 1 < X <w. For X Cwand A C“X, I'xv(A,X) denotes the infinite
game between two players, I and II. At each step n < w, player I chooses
kn, < X if n € w\ X and player II chooses k, < X if n € X. Player I
wins if (k, | n < w) € A and player II wins in the opposite case. A strategy
is a function o : <“X — X. STRyx denotes the set of strategies. For
7,0 € STRy and X C w, 7 *x o denotes the resulting w-sequence of the
game [y (A, X) when player I follows the strategy 7 and II follows o, i.e.

rexom = ST ek
For f:w — X, we identify f with oy € STRx which is defined by

o¢(s) = f(length(s)), for any s € <“X.
Note that f (i.e. of) is a strategy which does not depend on the previous
movements of the players. For ¢ € STRy and X C w, STRy *xo denotes

the set of all results of the game determined by X, in which the second
player uses strategy o, i.e.

STRx #x0 ={7*x 0| 7€ STRx}.
The following fact is easily checked.

Facr 1.1. For any 0 € STRy, X Cw and f € “X, the following are
equivalent.
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(a) f € STRy xx0

(b) fe{gxxo|ge“X}.
(c) f=[f*xo0.

(d) Vn € X (o(fIn) = f(n)).

A strategy o is called a winning strategy for player II in the game
I'v(A, X) if (STRx *x0) N A = (). Denote by Vi1(X, X) the family of all
sets A C “X for which player II has a winning strategy in I'y(A, X) and
Vi (X, X) the family of all sets A C “X for which player IT has in 'y (4, X)
a winning strategy which does not depend on the movements of player I, i.e.

(X, X)={AC®X |30 € STRx (STRx*x0)NA=0)},
VX, X)={AC“X|3fe“X (STRx*xf)NA=0)}.
A family K C [w]® is said to be a normal system if for any X € K there

exist X1, X9 € K such that X7, X5 C X and X; N X5 = 0.
For any normal system /X, let

Mz = ) Vu(x,X)
XeKk

= {ACwX|\V/X € K o € STR» ((STRx*XO')ﬂA:@)},
and
My =[] Vii(X,X)
Xex
—{ACUX|VX €K If €“X (STRx#xf)NA=0)}.

These are o-ideals (called Mycielski ideals), introduced by Mycielski [6], and
generalized by Rostanowski [9, 10] and studied in [1, 3, 8-10]. The ideals
My )~ and M}’[W]w will be denoted by Cx and Py, respectively.

We shall consider “X with the product measure and the product topo-
logy. The o-ideals of null sets and meager sets are denoted by Ly and Ky,
respectively.

2. Orthogonality. Throughout this section, we assume that 1 < X <
w. Two ideals Z, J of P(“X) are called orthogonal if there exist sets A € Z
and B € J such that AUB = “X. We study conditions on a normal system
KC which imply the orthogonality of My x and Ly. For each X € [w]¥, let
ex denote the order isomorphism from w to X. Rostanowski [10] proved the
following two results:

THEOREM 2.1. If a normal system K satisfies
(2.1) VY € [w]Y 3IX e EVn <w (|ley(n),ey(n+1))NX|<1),

then Mx x and Ly are not orthogonal. m
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THEOREM 2.2. There exists a normal system KC (with cardinality c) such
that {ex | X € K} is unbounded in “w and Mx x and Lx are ortho-
gonal. m

He called a normal system X which satisfies the condition (2.1) dom-
inating. This condition is a little stronger than the condition that {ex |
X € K} is a dominating family of “w. In fact, it is easy to check that,
for any U C [w]¥, {ex | X € U} is a dominating family of “w if and
only if for each Y € [w]“ there exists an X € U such that V°n < w
(lley (n),ey(n + 1)) N X| < n). Using this and the fact that a small set
(I, Sp)n<w can be choosen which satisfies |S,|- X~!"l < xX=2" for any
n < w, a slight modification of Rostanowski’s proof of Theorem 2.1 yields a
proof of

THEOREM 2.3. For any normal system K, if {ex | X € K} is a domi-
nating family of “w, then My x and Ly are not orthogonal. m

The following theorem and corollary show that unboundedness is not a
sufficient condition for non-orthogonality.

THEOREM 2.4. Let k be an uncountable cardinal and P the notion of forc-
ing adjoining k Cohen reals. Then, in VT, M% x and Ly are orthogonal,
for any normal system KC C [w]|¥ with cardinality < k.

Proof. Let K € VP be a normal system with cardinality < x. Since
|K| < K, we may assume that K € V. From now on, we work in V.

CLAIM 1. There exists a sequence (S,, | n < w) such that

(H)Vn<m<w (S, Cw& |Su| >n& S,NS, =0),
(2) VX € K 3% < w (S, C X).

Proof of Claim 1. Take a Cohen generic subset U C w over V. For
each n < w, set S, = [ey(n?),ey((n+1)?)) NU. Then (S, | n < w) is as
required. m

Take a sequence (S, | n < w) which satisfies (1), (2) of Claim 1. Set
A={fe“X|3I*n<w (fIS,=0)} € Ly.
Since STRy xxConsty C A for all X € K, we conclude that “X \ A €
‘*X,’C' |

COROLLARY 2.5. It is consistent with b < d = c that “for any normal
system K with cardinality < ¢, My x and Ly are orthogonal”. m

Relating to orthogonality, Balcerzak and Rostanowski [1] proved that

THEOREM 2.6. For each A € Ky, there exists a normal system K such
that A € MY% .
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They asked whether a measure analogue of Theorem 2.6 holds. Le.,
does, for each A € Ly, exist a normal system K such that A € My x? The
following example gives a negative answer to this question.

EXAMPLE 2.7. Let s be the unique t < w such that 2t < X < 2(t + 1)
and set

A={fe“X|I*n<w ({k<n| f(k) >s} <n/4)}.

Then A is a Lebesgue measure zero set and, for any normal system IKC C [w]“,

A My k.

Proof. In order to show that A ¢ My x for all normal systems K C
[w]“, we need the following lemma.

LEMMA 2.8. Let X be a subset of w such that A € Vi1(X,X). Then
Ven <w (| X Nn| >n/4).
Proof. Take 7 € STRx such that (STRxy*xx7) N A = 0. Set f =

Constg *x 7. Since f ¢ A, we have V°n < w ([{k <n | f(k) > s}| > n/4).
The assertion follows from this and the fact that Vk € w\X (f(k) =0< s). m

By Lemma 2.8, for any disjoint subsets X; (for i < 5) of w, there is some
i < 5 such that A & Vi1(X, X;). So, A ¢ My x for all normal K.

We must show that A has Lebesgue measure zero. Let p denote the
Lebesgue measure on “X. For each n < w, define B,, = {f € “X |
[{k <n| f(k) > s} <n/4}. Since A =, ., Uim<new B, we have p(A) <
im0 (D <pew #(Bn))- So, it suffices to show

(C.1) Z w(By) < w.
n<w
4 n
LEMMA 2.9. An+1) < 4— foralll <n<w.
n 33
Proof. Since (?) = 8 < 41/33, it suffices to show that

4
dn+1) §4—- an forn>2.
n 3 n—1
Indeed,

(4(n+1)> 4 (4n+3)(4n—|—2)(4n+1)< dn ) e < dn ) .

n 3 n(3n+4)(3n +2) n—1) =3 \n-1
By Lemma 2.9, for any 0 < m < w,

(;)’"(;)“ > (") < () —men(E)
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Using this, we have
2\ /1\*" 4(m+1)
> () G) )
o<m<w k<m
(C.1) follows from this and from

(Bn) = X7 Z (& — s)IXT. gln\XTy < Z <§>'X|<;>n—x

Xe[n]<n/4 Xe[n]<n/4

n/4 3n/4
2 1 n
< <3) <2> g (k:)’ foranyn <w. m

k<n/4

Remark. In [3], the definition of the ideals Pr was generalized to
all functions X € “(w \ 2). A similar generalization is possible for the
ideals Mx x and M% i, for each X : w — (w + 1\ 2). By modifying
the construction of A in Example 2.7 a little, for each X € “(w \ 2) we
can construct a Lebesgue measure zero subset A of [],_ X(n) such that
A & My i for any normal system /C.

3. Cardinal coefficients. In this section, we study the cardinal coef-
ficients of the ideals Cx and Py. For an ideal Z of P(¥X), define

cof(Z) =min{|S| |SCIZ &VAe€Z3IBeS (ACB)},
non(Z) =min{|A| | AC“X & A& T},
(

covI)zmin{]SWSCI& US:“’X},
add(z):min{ysw:sCz& Us¢z}.

The following facts are well-known.

Fact 3.1. Let Z,J be o-ideals of P(“X) such that “X ¢ T and{f} € Z,
forall f e “X. Then

(1) non(Z),cov(Z) < cof (Z).

(2) wi <add(Z) < non(Z),cov(Z).

(3) If T and J are orthogonal and translation invariant, then cov(Z) <
non(J).

Fact 3.2. The cardinal coefficients of the ideals Ky and Ly do not
depend on the choice of X, i.e. for any 1 < X,Y <w, cof(Kx) = cof(Ky),
cof(Lx) = cof(Ly), ...

For the ideals Cx and Py, the following theorems are known.

THEOREM 3.3 [8, 10]. (1) non(Cx) = non(Px) = c.
(2) add(C,) = add(P,) = cov(C,,) = cov(Py) = wi.
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(3) cov(Px) = add(Px).

(4) cof(P,) > ¢ and cof(C,) > c.

(5) If cov(K) = c, then cof(Px) > ¢ and cof(Cx) > c.
(6) cov(Pz) < cof(L)*.

THEOREM 3.4 (I. Rectaw, see [8]). The proper forcing aziom (PFA)
implies that cov(Ps) > wy.

THEOREM 3.5 [3]. It is consistent with Martin’s Aziom and ¢ = wy that
cov(Py) = wy.

We shall show the following.

THEOREM 3.6. cof(Px) > ¢ and cof(Cx) > ¢, for any 1 < X < w.

THEOREM 3.7. PFA implies that add(Ca) > w;.

THEOREM 3.8. add(C2) < cof(L).

The case of X = 2 in Theorem 3.6 gives an affirmative answer to Problem
5.3.18(c) of [9].

Proof of Theorem 3.6. It suffices to show:

(¥)  For any {A, | @ < ¢} C Cx, there exists B € Py such that Vo < ¢
(B ¢ Aa).
In order to show (%), we need several definitions and two lemmas.
For any A C “X and X C w, the set {f[X | f € A} is denoted by A|X.
Note that Py = {A C“X | VX € [w]* (A]X # XX)}.
Take a nonempty A € Py such that

(3.1) Vee AVd e “X (Vn<w(c(n)=d(n))=decA).
For each X € [w]¥, take a sequence (¢, x | @ < ¢) such that
Ca,x € XX\A|X and cqo x #cpx if a# 3.
LEMMA 3.9. Suppose that F C ¢ X [w]¥ and Y € [w]|* satisfy
V(a,X) € F (X \Y is finite) & |F| < c.
Then there exists g € ¥ X such that
Vi, X) € F (cax[(XNY) Z g).
Proof. For each (o, X) € F, let do,x = ca,x[(X NY). By (3.1),
dox € A(XNY) forall (a,X) € F.
Then, since V(a, X) € F ({f € YX | do.x C f}) NA|Y =), we have
U {/€YX |dax C f}) NAlY =0.
(a,X)EF
Since A|Y # (), we can take g € A|Y. This g is as required. =
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Recall that X, Y € [w]¥ are almost disjoint if X NY is finite. A family
F C [w]¥ is said to be pairwise almost disjoint if any two distinct elements
of F are almost disjoint. A MAD-family is a maximal family (with the
inclusion order) which is pairwise almost disjoint. Take a MAD-family W C
[w]“ such that [W| = c. Take an enumeration (U, | a < c) of [y ¢y, [X]“.

To prove Theorem 3.6, let {A, | @ < ¢} C Cx. Take (To,.x | < c &
X € [w]¥) such that

Ta.x € STRy and (“Xxx 7o x)NAy=0 foralla<ec, X € [w]”.

LEMMA 3.10. There exist sequences (hq | @ < ¢) and (eq | o < ) which
satisfy the following

(1) he €“X\ Ay and e, € Vo X.
(2) ea € hg, for any o, B < c.

Proof. We shall show, by induction on « < ¢, that there exist h, €
“X\ A, and ey € {c,u, | 7 < c} which satisfy e ¢ h, and e, ¢ he for all
£ <a.

So, let o < c. Take X € W such that V¢ < a (Us N X is finite).
Set Y = w\ X. Then by Lemma 3.9, there exists ¢ € Y& such that
ecl(UeNY) ¢ g for all £ < a. Set hg = g *x Ta,x (€ “X\ Ay). Since
g C hq, we have eg ¢ hyg, for all £ < a. Take e € {¢,,v, | 7 < ¢} such that
eq €{helUs |E<a}. m

Let (hgq | @ < ¢) and (e, | @ < c) be sequences which satisfy (1) and
(2) of Lemma 3.10. Set B = {hy | @ < c}. Since Va < ¢ (hy € Aa), We
have B ¢ A, for all @ < c. To show B € Py, let X € [w]¥. Take Y ¢ W
such that X NY is infinite and « < ¢ such that U, = X NY. Then, since
ea & B|U,, it follows that B|X # XX. m

Proof of Theorem 3.7. In order to show Theorem 3.7, we need to
modify the notion of covering systems in [10].

DEFINITION. Let s be a cardinal, U € [w]*, and h : U — w \ {0}. A
double indexed sequence (fo.x | @ < Kk & X € [U]¥) is called a k-covering
system for h if it satisfies

(1) fa,X € HneX h(n)v
(2) Vg € [[,,ep h(n) Ja <k VX € [U]¥ (fa,x Z 9).
LemMMmA 3.11 (PFA)

(C)  There does not exist an wi-covering system for h, for any h : U —

w\ {0} and U € [w]“.
Proof. Let U € [w]* and h: U — w \ {0}.
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Suppose that a sequence F' = (fo,x | @ < w; & X € [U]“) satisfies the
condition (1) in the definition of covering systems. (We show that F' does
not satisfy (2).)

Define the forcing notion P (= Pg) by

P={p ’ 3X e U] (pe 11 h(n))}, p<q iff p>gq.
neU\X
Since the partial ordering <,, (for n < w) on P defined by

p <, q iff p <qand “the set of the first n elements of U \ dom(p)”
= “the set of the first n elements of U \ dom(q)”

satisfies Axiom A of Baumgartner, P is proper. For each a < wq, set
Do={peP|3IX € [U} (fax Cp)}-

Since Ya < wy (D, is dense in P), by PFA| there exists a {D, | a < w}-
generic filter G on P. Since G is a filter, we can take g € [[, . h(n) such
that |JG C ¢g. Then Vo < wy 3X € [U]¥ (fo,x Cg). =

By Lemma 3.11, it suffices to show that (C) implies add(C3) > wy. To
show this, assume that (C) holds and let {4, | @ < wi} C Cs.

To show that (J,., Aa € C2, let X € [w]”. For each a < w; and
Y € [X]¥, take 75,y € STRy such that (“2 %y 74y) N Ay = 0. Set foy =
(Ta,y "2 | n € Y). Using (C), take g = (g9, | n € X) such that Va < wy
Y € [X]¥ (fa,y C g). Define 7 € STRy by

(s) = {gn(s) if length(s) =necX,
0 otherwise.

To show that (“2%x7)NA, = O forall @ < w, let @ < wy. TakeY € [X]¥
such that foy C g. Then 74y [(U,cy "2) C 7. So, “2%x 7 C “2%y T =
“2xy Toy. Since (Y2xy 7oy )N Ay = 0, we conclude (“2xx 7)N Ay =0. m

Proof of Theorem 3.8. Define h : w — w by
h(0) =0, h(n+1)=2"h(n)+1).

For each n < w, set

nelU

Ap ={u|u:" Y2 591,
Set
T={(Sn|n<w)|Vn<w (S, CA, &|[S,| <2")}.

Using Bartoszynski’s Characterization Theorem [2], take B C 7 such
that

|B| = cof(L) and Vg€ H A, 3S e BVYn<w (g9(n) € S(n)).

nw
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A tree T C “>2 is called a thin tree if it satisfies
Vn < w (T}, has at most one branch which ramifies) .

Note that if 7" is a thin tree then {f € “2 | Vn < w (fn € T)} € Cs. For
each S € B, take a thin tree T such that
(x%) Vs € TsNM™WH12v0 € S(n) 3t € TsN Y2 (s C t & t"(o(t)) € Ts),
and set
As={de“2|Vn<w (dneTs)}.

Since Ag € Cy for all S € B, we can complete the proof by showing that
Uses As & C2. Let X = {h(n+1) | n < w}. We claim that, for any o €
STRy, o is not a winning strategy for player II in the game I3 (| gz As, X).
To show this, set g = (o[(*™*1V2) | n < w) € T. Take S € B such that
Vn < w (g(n) € S(n)). By induction on n < w, define s, € Tg N ™2
as follows. For n = 0, take an arbitrary sqg € Tg N h(0)2. Assume that
s, was defined. Then, using (x%), take s,.1 € Tx N *™*Y2 such that
s (0(80)) C Spy1 and s, 41" (0 (spa1)) € Ts.

Set f=U,<,5n € As. Since Vk € X (o(flk) = f(k)), f € STRz xx0.
Thus, (STR2*x0) N Ag # 0. So, Jgep As € Co. =
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