SOME REMARKS ABOUT MYCIELSKI IDEALS

ву

SHIZUO KAMO (SAKAI)

1. Introduction and definitions. Our set theoretic notation and terminology is standard (see e.g. [4], [5]). Let \mathbf{c} denote $|\mathcal{P}(\omega)|$ (= the cardinality of $\mathcal{P}(\omega)$). Let X be a subset of ω . The set $\{Y \subset X \mid |Y| = \omega\}$ is denoted by $[X]^{\omega}$. ${}^{\omega}X$ (${}^{\omega}>X$) denotes the family of ω -sequences (finite sequences) of elements in X, respectively. $\forall^{\infty}n \in X$ (...) means that $\{n \in X \mid not \ldots\}$ is finite. $\exists^{\infty}n \in X$ (...) means that $\{n \in X \mid \ldots\}$ is infinite. For $f, g \in {}^{\omega}\omega$, g dominates f (denoted by $f \prec g$) if $\forall^{\infty}n < \omega$ (f(n) < g(n)). For $F \subset {}^{\omega}\omega$, F is called a dominating family of ${}^{\omega}\omega$ if $\forall g \in {}^{\omega}\omega \ \exists f \in F \ (g \prec f)$, and an unbounded family of ${}^{\omega}\omega$ if $\forall g \in {}^{\omega}\omega \ \exists f \in F \ (notf \prec g)$. Denote by \mathbf{d} (\mathbf{b}) the least cardinality of a dominating (unbounded) family of ${}^{\omega}\omega$, respectively.

Let $1 < \mathcal{X} \leq \omega$. For $X \subset \omega$ and $A \subset {}^{\omega}\mathcal{X}$, $\Gamma_{\mathcal{X}}(A,X)$ denotes the infinite game between two players, I and II. At each step $n < \omega$, player I chooses $k_n < \mathcal{X}$ if $n \in \omega \setminus X$ and player II chooses $k_n < \mathcal{X}$ if $n \in X$. Player I wins if $\langle k_n \mid n < \omega \rangle \in A$ and player II wins in the opposite case. A strategy is a function $\sigma : {}^{<\omega}\mathcal{X} \to \mathcal{X}$. STR_{\mathcal{X}} denotes the set of strategies. For $\tau, \sigma \in \mathrm{STR}_{\mathcal{X}}$ and $X \subset \omega$, $\tau *_X \sigma$ denotes the resulting ω -sequence of the game $\Gamma_{\mathcal{X}}(A,X)$ when player I follows the strategy τ and II follows σ , i.e.

$$\tau *_X \sigma(n) = \begin{cases} \tau(\tau *_X \sigma {\upharpoonright} n) & \text{if } n \in \omega \setminus X, \\ \sigma(\tau *_X \sigma {\upharpoonright} n) & \text{if } n \in X. \end{cases}$$

For $f: \omega \to \mathcal{X}$, we identify f with $\sigma_f \in STR_{\mathcal{X}}$ which is defined by

$$\sigma_f(s) = f(\text{length}(s)), \text{ for any } s \in {}^{<\omega}\mathcal{X}.$$

Note that f (i.e. σ_f) is a strategy which does not depend on the previous movements of the players. For $\sigma \in \mathrm{STR}_{\mathcal{X}}$ and $X \subset \omega$, $\mathrm{STR}_{\mathcal{X}} *_X \sigma$ denotes the set of all results of the game determined by X, in which the second player uses strategy σ , i.e.

$$STR_{\mathcal{X}} *_{X} \sigma = \{ \tau *_{X} \sigma \mid \tau \in STR_{\mathcal{X}} \}.$$

The following fact is easily checked.

FACT 1.1. For any $\sigma \in STR_{\mathcal{X}}$, $X \subset \omega$ and $f \in {}^{\omega}\mathcal{X}$, the following are equivalent.

- (a) $f \in STR_{\mathcal{X}} *_X \sigma$.
- (b) $f \in \{g *_X \sigma \mid g \in {}^{\omega}\mathcal{X}\}.$
- (c) $f = f *_X \sigma$.
- (d) $\forall n \in X \ (\sigma(f \upharpoonright n) = f(n)).$

A strategy σ is called a winning strategy for player II in the game $\Gamma_{\mathcal{X}}(A,X)$ if $(\operatorname{STR}_{\mathcal{X}}*_{X}\sigma) \cap A = \emptyset$. Denote by $V_{\operatorname{II}}(\mathcal{X},X)$ the family of all sets $A \subset {}^{\omega}\mathcal{X}$ for which player II has a winning strategy in $\Gamma_{\mathcal{X}}(A,X)$ and $V_{\operatorname{II}}^*(\mathcal{X},X)$ the family of all sets $A \subset {}^{\omega}\mathcal{X}$ for which player II has in $\Gamma_{\mathcal{X}}(A,X)$ a winning strategy which does not depend on the movements of player I, i.e.

$$V_{\mathrm{II}}(\mathcal{X}, X) = \{ A \subset {}^{\omega}\mathcal{X} \mid \exists \sigma \in \mathrm{STR}_{\mathcal{X}} ((\mathrm{STR}_{\mathcal{X}} *_{X} \sigma) \cap A = \emptyset) \},$$

$$V_{\mathrm{II}}^{*}(\mathcal{X}, X) = \{ A \subset {}^{\omega}\mathcal{X} \mid \exists f \in {}^{\omega}\mathcal{X} ((\mathrm{STR}_{\mathcal{X}} *_{X} f) \cap A = \emptyset) \}.$$

A family $\mathcal{K} \subset [\omega]^{\omega}$ is said to be a *normal system* if for any $X \in \mathcal{K}$ there exist $X_1, X_2 \in \mathcal{K}$ such that $X_1, X_2 \subset X$ and $X_1 \cap X_2 = \emptyset$.

For any normal system K, let

$$\mathcal{M}_{\mathcal{X},\mathcal{K}} = \bigcap_{X \in \mathcal{K}} V_{\mathrm{II}}(\mathcal{X}, X)$$
$$= \left\{ A \subset {}^{\omega}\mathcal{X} \mid \forall X \in \mathcal{K} \; \exists \sigma \in \mathrm{STR}_{\mathcal{X}} \; ((\mathrm{STR}_{\mathcal{X}} *_{X} \sigma) \cap A = \emptyset) \right\},$$

and

$$\begin{split} \mathcal{M}_{\mathcal{X},\mathcal{K}}^* &= \bigcap_{X \in \mathcal{K}} V_{\mathrm{II}}^*(\mathcal{X},X) \\ &= \left\{ A \subset {}^{\omega}\mathcal{X} \mid \forall X \in \mathcal{K} \; \exists f \in {}^{\omega}\mathcal{X} \; ((\mathrm{STR}_{\mathcal{X}} *_X f) \cap A = \emptyset) \right\}. \end{split}$$

These are σ -ideals (called *Mycielski ideals*), introduced by Mycielski [6], and generalized by Rosłanowski [9, 10] and studied in [1, 3, 8–10]. The ideals $\mathcal{M}_{\mathcal{X},[\omega]^{\omega}}$ and $\mathcal{M}_{\mathcal{X},[\omega]^{\omega}}^*$ will be denoted by $\mathcal{C}_{\mathcal{X}}$ and $\mathcal{P}_{\mathcal{X}}$, respectively.

We shall consider ${}^{\omega}\mathcal{X}$ with the product measure and the product topology. The σ -ideals of null sets and meager sets are denoted by $\mathbf{L}_{\mathcal{X}}$ and $\mathbf{K}_{\mathcal{X}}$, respectively.

2. Orthogonality. Throughout this section, we assume that $1 < \mathcal{X} < \omega$. Two ideals \mathcal{I}, \mathcal{J} of $\mathcal{P}(^{\omega}\mathcal{X})$ are called *orthogonal* if there exist sets $A \in \mathcal{I}$ and $B \in \mathcal{J}$ such that $A \cup B = {}^{\omega}\mathcal{X}$. We study conditions on a normal system \mathcal{K} which imply the orthogonality of $\mathcal{M}_{\mathcal{X},\mathcal{K}}$ and $\mathbf{L}_{\mathcal{X}}$. For each $X \in [\omega]^{\omega}$, let e_X denote the order isomorphism from ω to X. Rosłanowski [10] proved the following two results:

Theorem 2.1. If a normal system K satisfies

$$(2.1) \qquad \forall Y \in [\omega]^{\omega} \ \exists X \in \mathcal{K} \ \forall^{\infty} n < \omega \ (|[e_Y(n), e_Y(n+1)) \cap X| \le 1),$$

then $\mathcal{M}_{\mathcal{X},\mathcal{K}}$ and $\mathbf{L}_{\mathcal{X}}$ are not orthogonal.

Theorem 2.2. There exists a normal system K (with cardinality \mathbf{c}) such that $\{e_X \mid X \in K\}$ is unbounded in ${}^{\omega}\omega$ and $\mathcal{M}_{\mathcal{X},K}$ and $\mathbf{L}_{\mathcal{X}}$ are orthogonal.

He called a normal system \mathcal{K} which satisfies the condition (2.1) dominating. This condition is a little stronger than the condition that $\{e_X \mid X \in \mathcal{K}\}$ is a dominating family of ${}^{\omega}\omega$. In fact, it is easy to check that, for any $\mathcal{U} \subset [\omega]^{\omega}$, $\{e_X \mid X \in \mathcal{U}\}$ is a dominating family of ${}^{\omega}\omega$ if and only if for each $Y \in [\omega]^{\omega}$ there exists an $X \in \mathcal{U}$ such that $\forall^{\infty} n < \omega$ ($|[e_Y(n), e_Y(n+1)) \cap X| \leq n$). Using this and the fact that a small set $(I_n, S_n)_{n < \omega}$ can be choosen which satisfies $|S_n| \cdot \mathcal{X}^{-|I_n|} < \mathcal{X}^{-2n}$ for any $n < \omega$, a slight modification of Rosłanowski's proof of Theorem 2.1 yields a proof of

THEOREM 2.3. For any normal system K, if $\{e_X \mid X \in K\}$ is a dominating family of ${}^{\omega}\omega$, then $\mathcal{M}_{\mathcal{X},K}$ and $\mathbf{L}_{\mathcal{X}}$ are not orthogonal.

The following theorem and corollary show that unboundedness is not a sufficient condition for non-orthogonality.

Theorem 2.4. Let κ be an uncountable cardinal and P the notion of forcing adjoining κ Cohen reals. Then, in V^P , $\mathcal{M}_{\mathcal{X},\mathcal{K}}^*$ and $\mathbf{L}_{\mathcal{X}}$ are orthogonal, for any normal system $\mathcal{K} \subset [\omega]^{\omega}$ with cardinality $< \kappa$.

Proof. Let $K \in V^P$ be a normal system with cardinality $< \kappa$. Since $|K| < \kappa$, we may assume that $K \in V$. From now on, we work in V^P .

Claim 1. There exists a sequence $\langle S_n \mid n < \omega \rangle$ such that

- $(1) \ \forall n < m < \omega \ (S_n \subset \omega \ \& \ |S_n| \ge n \ \& \ S_n \cap S_m = \emptyset),$
- (2) $\forall X \in \mathcal{K} \exists^{\infty} n < \omega \ (S_n \subset X).$

Proof of Claim 1. Take a Cohen generic subset $U \subset \omega$ over V. For each $n < \omega$, set $S_n = [e_U(n^2), e_U((n+1)^2)) \cap U$. Then $\langle S_n \mid n < \omega \rangle$ is as required. \blacksquare

Take a sequence $\langle S_n \mid n < \omega \rangle$ which satisfies (1), (2) of Claim 1. Set

$$A = \{ f \in {}^{\omega}\mathcal{X} \mid \exists^{\infty} n < \omega \ (f \upharpoonright S_n \equiv 0) \} \in \mathbf{L}_{\mathcal{X}}.$$

Since $STR_{\mathcal{X}} *_{X}Const_{0} \subset A$ for all $X \in \mathcal{K}$, we conclude that ${}^{\omega}\mathcal{X} \setminus A \in \mathcal{M}_{\mathcal{X},\mathcal{K}}^{*}$.

COROLLARY 2.5. It is consistent with $\mathbf{b} < \mathbf{d} = \mathbf{c}$ that "for any normal system \mathcal{K} with cardinality $< \mathbf{c}$, $\mathcal{M}_{\mathcal{K},\mathcal{X}}$ and $\mathbf{L}_{\mathcal{X}}$ are orthogonal".

Relating to orthogonality, Balcerzak and Rosłanowski [1] proved that

THEOREM 2.6. For each $A \in \mathbf{K}_{\mathcal{X}}$, there exists a normal system \mathcal{K} such that $A \in \mathcal{M}_{\mathcal{X},\mathcal{K}}^*$.

They asked whether a measure analogue of Theorem 2.6 holds. I.e., does, for each $A \in \mathbf{L}_{\mathcal{X}}$, exist a normal system \mathcal{K} such that $A \in \mathcal{M}_{\mathcal{X},\mathcal{K}}$? The following example gives a negative answer to this question.

EXAMPLE 2.7. Let s be the unique $t < \omega$ such that $2t \le \mathcal{X} < 2(t+1)$ and set

$$A = \{ f \in {}^{\omega}\mathcal{X} \mid \exists^{\infty} n < \omega \ (|\{k < n \mid f(k) \ge s\}| < n/4) \}.$$

Then A is a Lebesgue measure zero set and, for any normal system $\mathcal{K} \subset [\omega]^{\omega}$, $A \notin \mathcal{M}_{\mathcal{X},\mathcal{K}}$.

Proof. In order to show that $A \notin \mathcal{M}_{\mathcal{X},\mathcal{K}}$ for all normal systems $\mathcal{K} \subset [\omega]^{\omega}$, we need the following lemma.

LEMMA 2.8. Let X be a subset of ω such that $A \in V_{II}(\mathcal{X}, X)$. Then

$$\forall^{\infty} n < \omega \ (|X \cap n| \ge n/4) \ .$$

Proof. Take $\tau \in STR_{\mathcal{X}}$ such that $(STR_{\mathcal{X}} *_X \tau) \cap A = \emptyset$. Set $f = Const_0 *_X \tau$. Since $f \notin A$, we have $\forall^{\infty} n < \omega \ (|\{k < n \mid f(k) \ge s\}| \ge n/4)$. The assertion follows from this and the fact that $\forall k \in \omega \backslash X \ (f(k) = 0 < s)$.

By Lemma 2.8, for any disjoint subsets X_i (for i < 5) of ω , there is some i < 5 such that $A \notin V_{II}(\mathcal{X}, X_i)$. So, $A \notin \mathcal{M}_{\mathcal{X}, \mathcal{K}}$ for all normal \mathcal{K} .

We must show that A has Lebesgue measure zero. Let μ denote the Lebesgue measure on ${}^{\omega}\mathcal{X}$. For each $n<\omega$, define $B_n=\{f\in{}^{\omega}\mathcal{X}\mid |\{k< n\mid f(k)\geq s\}|< n/4\}$. Since $A=\bigcap_{m<\omega}\bigcup_{m\leq n<\omega}B_n$, we have $\mu(A)\leq \lim_{m<\omega}(\sum_{m\leq n<\omega}\mu(B_n))$. So, it suffices to show

(C.1)
$$\sum_{n < \omega} \mu(B_n) < \omega.$$

Lemma 2.9.
$$\binom{4(n+1)}{n} \le \left(\frac{4^4}{3^3}\right)^n$$
 for all $1 \le n < \omega$.

Proof. Since $\binom{8}{1} = 8 \le 4^4/3^3$, it suffices to show that

$$\binom{4(n+1)}{n} \le \frac{4^4}{3^3} \cdot \binom{4n}{n-1}$$
 for $n \ge 2$.

Indeed,

$$\binom{4(n+1)}{n} = \frac{4}{3} \cdot \frac{(4n+3)(4n+2)(4n+1)}{n(3n+4)(3n+2)} \binom{4n}{n-1} \le \frac{4^4}{3^3} \cdot \binom{4n}{n-1}. \quad \blacksquare$$

By Lemma 2.9, for any $0 < m < \omega$,

$$\left(\frac{2}{3}\right)^m \left(\frac{1}{2}\right)^{3m} \sum_{k \leq m} \binom{4(m+1)}{k} \leq (m+1) \left(\frac{2 \cdot 4^4}{3 \cdot 8 \cdot 3^3}\right)^m = (m+1) \left(\frac{64}{81}\right)^m.$$

Using this, we have

$$\sum_{0 \le m \le \omega} \left(\frac{2}{3}\right)^m \left(\frac{1}{2}\right)^{3m} \sum_{k \le m} \binom{4(m+1)}{k} < \omega.$$

(C.1) follows from this and from

$$\mu(B_n) = \mathcal{X}^{-n} \sum_{X \in [n]^{< n/4}} ((\mathcal{X} - s)^{|X|} \cdot s^{|n \setminus X|}) \le \sum_{X \in [n]^{< n/4}} \left(\frac{2}{3}\right)^{|X|} \left(\frac{1}{2}\right)^{n - |X|}$$

$$\le \left(\frac{2}{3}\right)^{n/4} \left(\frac{1}{2}\right)^{3n/4} \sum_{k < n/4} \binom{n}{k}, \text{ for any } n < \omega. \blacksquare$$

Remark. In [3], the definition of the ideals $\mathcal{P}_{\mathcal{X}}$ was generalized to all functions $\mathcal{X} \in {}^{\omega}(\omega \setminus 2)$. A similar generalization is possible for the ideals $\mathcal{M}_{\mathcal{X},\mathcal{K}}$ and $\mathcal{M}_{\mathcal{X},\mathcal{K}}^*$, for each $\mathcal{X}:\omega \to (\omega+1\setminus 2)$. By modifying the construction of A in Example 2.7 a little, for each $\mathcal{X} \in {}^{\omega}(\omega \setminus 2)$ we can construct a Lebesgue measure zero subset A of $\prod_{n<\omega} \mathcal{X}(n)$ such that $A \notin \mathcal{M}_{\mathcal{X},\mathcal{K}}$ for any normal system \mathcal{K} .

3. Cardinal coefficients. In this section, we study the cardinal coefficients of the ideals $\mathcal{C}_{\mathcal{X}}$ and $\mathcal{P}_{\mathcal{X}}$. For an ideal \mathcal{I} of $\mathcal{P}(^{\omega}\mathcal{X})$, define

$$\begin{aligned} & \operatorname{cof}(\mathcal{I}) = \min\{|\mathcal{S}| \mid \mathcal{S} \subset \mathcal{I} \& \forall A \in \mathcal{I} \exists B \in \mathcal{S} \ (A \subset B)\}, \\ & \operatorname{non}(\mathcal{I}) = \min\{|A| \mid A \subset {}^{\omega}\mathcal{X} \& A \notin \mathcal{I}\}, \\ & \operatorname{cov}(\mathcal{I}) = \min\left\{|\mathcal{S}| \middle| \mathcal{S} \subset \mathcal{I} \& \bigcup \mathcal{S} = {}^{\omega}\mathcal{X}\right\}, \\ & \operatorname{add}(\mathcal{I}) = \min\left\{|\mathcal{S}| \middle| \mathcal{S} \subset \mathcal{I} \& \bigcup \mathcal{S} \notin \mathcal{I}\right\}. \end{aligned}$$

The following facts are well-known.

FACT 3.1. Let \mathcal{I}, \mathcal{J} be σ -ideals of $\mathcal{P}(^{\omega}\mathcal{X})$ such that $^{\omega}\mathcal{X} \notin \mathcal{I}$ and $\{f\} \in \mathcal{I}$, for all $f \in {}^{\omega}\mathcal{X}$. Then

- (1) $\operatorname{non}(\mathcal{I}), \operatorname{cov}(\mathcal{I}) \leq \operatorname{cof}(\mathcal{I}).$
- (2) $\omega_1 \leq \operatorname{add}(\mathcal{I}) \leq \operatorname{non}(\mathcal{I}), \operatorname{cov}(\mathcal{I}).$
- (3) If \mathcal{I} and \mathcal{J} are orthogonal and translation invariant, then $cov(\mathcal{I}) \leq non(\mathcal{J})$.

FACT 3.2. The cardinal coefficients of the ideals $\mathbf{K}_{\mathcal{X}}$ and $\mathbf{L}_{\mathcal{X}}$ do not depend on the choice of \mathcal{X} , i.e. for any $1 < \mathcal{X}, \mathcal{Y} \leq \omega$, $\operatorname{cof}(\mathbf{K}_{\mathcal{X}}) = \operatorname{cof}(\mathbf{K}_{\mathcal{Y}})$, $\operatorname{cof}(\mathbf{L}_{\mathcal{X}}) = \operatorname{cof}(\mathbf{L}_{\mathcal{Y}})$, . . .

For the ideals $\mathcal{C}_{\mathcal{X}}$ and $\mathcal{P}_{\mathcal{X}}$, the following theorems are known.

THEOREM 3.3 [8, 10]. (1)
$$non(\mathcal{C}_{\chi}) = non(\mathcal{P}_{\chi}) = \mathbf{c}$$
.

(2)
$$\operatorname{add}(\mathcal{C}_{\omega}) = \operatorname{add}(\mathcal{P}_{\omega}) = \operatorname{cov}(\mathcal{C}_{\omega}) = \operatorname{cov}(\mathcal{P}_{\omega}) = \omega_1.$$

- (3) $\operatorname{cov}(\mathcal{P}_{\mathcal{X}}) = \operatorname{add}(\mathcal{P}_{\mathcal{X}}).$
- (4) $\operatorname{cof}(\mathcal{P}_{\omega}) > \mathbf{c}$ and $\operatorname{cof}(\mathcal{C}_{\omega}) > \mathbf{c}$.
- (5) If $cov(\mathbf{K}) = \mathbf{c}$, then $cof(\mathcal{P}_{\mathcal{X}}) > \mathbf{c}$ and $cof(\mathcal{C}_{\mathcal{X}}) > \mathbf{c}$.
- (6) $\operatorname{cov}(\mathcal{P}_2) \leq \operatorname{cof}(\mathbf{L})^+$.

THEOREM 3.4 (I. Recław, see [8]). The proper forcing axiom (**PFA**) implies that $cov(\mathcal{P}_2) > \omega_1$.

THEOREM 3.5 [3]. It is consistent with Martin's Axiom and $\mathbf{c} = \omega_2$ that $cov(\mathcal{P}_2) = \omega_1$.

We shall show the following.

THEOREM 3.6. $cof(\mathcal{P}_{\mathcal{X}}) > \mathbf{c}$ and $cof(\mathcal{C}_{\mathcal{X}}) > \mathbf{c}$, for any $1 < \mathcal{X} < \omega$.

THEOREM 3.7. **PFA** implies that $add(C_2) > \omega_1$.

THEOREM 3.8. $add(\mathcal{C}_2) \leq cof(\mathbf{L})$.

The case of $\mathcal{X}=2$ in Theorem 3.6 gives an affirmative answer to Problem 5.3.18(c) of [9].

Proof of Theorem 3.6. It suffices to show:

(*) For any $\{A_{\alpha} \mid \alpha < \mathbf{c}\} \subset \mathcal{C}_{\mathcal{X}}$, there exists $B \in \mathcal{P}_{\mathcal{X}}$ such that $\forall \alpha < \mathbf{c} (B \not\subset A_{\alpha})$.

In order to show (*), we need several definitions and two lemmas.

For any $A \subset {}^{\omega}\mathcal{X}$ and $X \subset \omega$, the set $\{f \upharpoonright X \mid f \in A\}$ is denoted by A|X. Note that $\mathcal{P}_{\mathcal{X}} = \{A \subset {}^{\omega}\mathcal{X} \mid \forall X \in [\omega]^{\omega} \ (A|X \neq {}^{X}\mathcal{X})\}.$

Take a nonempty $A \in \mathcal{P}_{\mathcal{X}}$ such that

$$(3.1) \forall c \in A \ \forall d \in {}^{\omega}\mathcal{X} \ (\forall^{\infty} n < \omega \ (c(n) = d(n)) \Rightarrow d \in A).$$

For each $X \in [\omega]^{\omega}$, take a sequence $\langle c_{\alpha,X} \mid \alpha < \mathbf{c} \rangle$ such that

$$c_{\alpha,X} \in {}^{X}\mathcal{X} \setminus A|X$$
 and $c_{\alpha,X} \neq c_{\beta,X}$ if $\alpha \neq \beta$.

LEMMA 3.9. Suppose that $\mathcal{F} \subset \mathbf{c} \times [\omega]^{\omega}$ and $Y \in [\omega]^{\omega}$ satisfy

$$\forall (\alpha, X) \in \mathcal{F} \ (X \setminus Y \ is \ finite) \ \& \ |\mathcal{F}| < \mathbf{c}.$$

Then there exists $g \in {}^{Y}\mathcal{X}$ such that

$$\forall (\alpha, X) \in \mathcal{F} \ (c_{\alpha, X} \upharpoonright (X \cap Y) \not\subset g) \ .$$

Proof. For each $(\alpha, X) \in \mathcal{F}$, let $d_{\alpha, X} = c_{\alpha, X} \upharpoonright (X \cap Y)$. By (3.1),

$$d_{\alpha,X} \notin A|(X \cap Y)$$
 for all $(\alpha, X) \in \mathcal{F}$.

Then, since $\forall (\alpha, X) \in \mathcal{F} (\{f \in {}^{Y}\mathcal{X} \mid d_{\alpha, X} \subset f\}) \cap A|Y = \emptyset)$, we have

$$\left(\bigcup_{(\alpha,X)\in\mathcal{F}} \{f \in {}^{Y}\mathcal{X} \mid d_{\alpha,X} \subset f\}\right) \cap A|Y = \emptyset.$$

Since $A|Y \neq \emptyset$, we can take $g \in A|Y$. This g is as required.

Recall that $X, Y \in [\omega]^{\omega}$ are almost disjoint if $X \cap Y$ is finite. A family $\mathcal{F} \subset [\omega]^{\omega}$ is said to be pairwise almost disjoint if any two distinct elements of \mathcal{F} are almost disjoint. A MAD-family is a maximal family (with the inclusion order) which is pairwise almost disjoint. Take a MAD-family $\mathcal{W} \subset [\omega]^{\omega}$ such that $|\mathcal{W}| = \mathbf{c}$. Take an enumeration $\langle U_{\alpha} \mid \alpha < \mathbf{c} \rangle$ of $\bigcup_{X \in \mathcal{W}} [X]^{\omega}$.

To prove Theorem 3.6, let $\{A_{\alpha} \mid \alpha < \mathbf{c}\} \subset \mathcal{C}_{\mathcal{X}}$. Take $\langle \tau_{\alpha,X} \mid \alpha < \mathbf{c} \& X \in [\omega]^{\omega} \rangle$ such that

$$\tau_{\alpha,X} \in STR_{\mathcal{X}}$$
 and $({}^{\omega}\mathcal{X} *_{X} \tau_{\alpha,X}) \cap A_{\alpha} = \emptyset$ for all $\alpha < \mathbf{c}, X \in [\omega]^{\omega}$.

LEMMA 3.10. There exist sequences $\langle h_{\alpha} \mid \alpha < \mathbf{c} \rangle$ and $\langle e_{\alpha} \mid \alpha < \mathbf{c} \rangle$ which satisfy the following

- (1) $h_{\alpha} \in {}^{\omega}\mathcal{X} \setminus A_{\alpha} \text{ and } e_{\alpha} \in {}^{U_{\alpha}}\mathcal{X}.$
- (2) $e_{\alpha} \not\subset h_{\beta}$, for any $\alpha, \beta < \mathbf{c}$.

Proof. We shall show, by induction on $\alpha < \mathbf{c}$, that there exist $h_{\alpha} \in {}^{\omega}\mathcal{X} \setminus A_{\alpha}$ and $e_{\alpha} \in \{c_{\eta,U_{\alpha}} \mid \eta < \mathbf{c}\}$ which satisfy $e_{\xi} \not\subset h_{\alpha}$ and $e_{\alpha} \not\subset h_{\xi}$ for all $\xi \leq \alpha$.

So, let $\alpha < \mathbf{c}$. Take $X \in \mathcal{W}$ such that $\forall \xi < \alpha \ (U_{\xi} \cap X \text{ is finite})$. Set $Y = \omega \setminus X$. Then by Lemma 3.9, there exists $g \in {}^{Y}\mathcal{X}$ such that $e_{\xi} \upharpoonright (U_{\xi} \cap Y) \not\subset g$ for all $\xi < \alpha$. Set $h_{\alpha} = g *_{X} \tau_{\alpha,X} \ (\in {}^{\omega}\mathcal{X} \setminus A_{\alpha})$. Since $g \subset h_{\alpha}$, we have $e_{\xi} \not\subset h_{\alpha}$, for all $\xi < \alpha$. Take $e_{\alpha} \in \{c_{\eta,U_{\alpha}} \mid \eta < \mathbf{c}\}$ such that $e_{\alpha} \not\in \{h_{\xi} \upharpoonright U_{\alpha} \mid \xi \leq \alpha\}$.

Let $\langle h_{\alpha} \mid \alpha < \mathbf{c} \rangle$ and $\langle e_{\alpha} \mid \alpha < \mathbf{c} \rangle$ be sequences which satisfy (1) and (2) of Lemma 3.10. Set $B = \{h_{\alpha} \mid \alpha < \mathbf{c}\}$. Since $\forall \alpha < \mathbf{c} \ (h_{\alpha} \notin A_{\alpha})$, we have $B \not\subset A_{\alpha}$ for all $\alpha < \mathbf{c}$. To show $B \in \mathcal{P}_{\mathcal{X}}$, let $X \in [\omega]^{\omega}$. Take $Y \in \mathcal{W}$ such that $X \cap Y$ is infinite and $\alpha < \mathbf{c}$ such that $U_{\alpha} = X \cap Y$. Then, since $e_{\alpha} \notin B|U_{\alpha}$, it follows that $B|X \neq {}^{X}\mathcal{X}$.

Proof of Theorem 3.7. In order to show Theorem 3.7, we need to modify the notion of covering systems in [10].

DEFINITION. Let κ be a cardinal, $U \in [\omega]^{\omega}$, and $h: U \to \omega \setminus \{0\}$. A double indexed sequence $\langle f_{\alpha,X} \mid \alpha < \kappa \ \& \ X \in [U]^{\omega} \rangle$ is called a κ -covering system for h if it satisfies

- (1) $f_{\alpha,X} \in \prod_{n \in X} h(n)$,
- (2) $\forall g \in \prod_{n \in U} h(n) \exists \alpha < \kappa \ \forall X \in [U]^{\omega} \ (f_{\alpha,X} \not\subset g).$

Lemma 3.11 (**PFA**)

(C) There does not exist an ω_1 -covering system for h, for any $h: U \to \omega \setminus \{0\}$ and $U \in [\omega]^\omega$.

Proof. Let $U \in [\omega]^{\omega}$ and $h: U \to \omega \setminus \{0\}$.

Suppose that a sequence $F = \langle f_{\alpha,X} \mid \alpha < \omega_1 \& X \in [U]^{\omega} \rangle$ satisfies the condition (1) in the definition of covering systems. (We show that F does not satisfy (2).)

Define the forcing notion $P (= P_F)$ by

$$P = \Big\{ p \ \Big| \ \exists X \in [U]^\omega \ \Big(p \in \prod_{n \in U \backslash X} h(n) \Big) \Big\}, \quad \ p \leq q \ \text{ iff } \ p \supset q \,.$$

Since the partial ordering \leq_n (for $n < \omega$) on P defined by

 $p \leq_n q$ iff $p \leq q$ and "the set of the first n elements of $U \setminus \text{dom}(p)$ " $= \text{"the set of the first } n \text{ elements of } U \setminus \text{dom}(q)$ "

satisfies Axiom A of Baumgartner, P is proper. For each $\alpha < \omega_1$, set

$$D_{\alpha} = \{ p \in P \mid \exists X \in [U]^{\omega} \ (f_{\alpha,X} \subset p) \}.$$

Since $\forall \alpha < \omega_1 \ (D_\alpha \text{ is dense in } P)$, by **PFA**, there exists a $\{D_\alpha \mid \alpha < \omega_1\}$ -generic filter \mathcal{G} on P. Since \mathcal{G} is a filter, we can take $g \in \prod_{n \in U} h(n)$ such that $\bigcup \mathcal{G} \subset g$. Then $\forall \alpha < \omega_1 \ \exists X \in [U]^\omega \ (f_{\alpha,X} \subset g)$.

By Lemma 3.11, it suffices to show that (C) implies $\operatorname{add}(\mathcal{C}_2) > \omega_1$. To show this, assume that (C) holds and let $\{A_\alpha \mid \alpha < \omega_1\} \subset \mathcal{C}_2$.

To show that $\bigcup_{\alpha<\omega_1}A_\alpha\in\mathcal{C}_2$, let $X\in[\omega]^\omega$. For each $\alpha<\omega_1$ and $Y\in[X]^\omega$, take $\tau_{\alpha,Y}\in\mathrm{STR}_2$ such that $(^\omega2*_Y\tau_{\alpha,Y})\cap A_\alpha=\emptyset$. Set $f_{\alpha,Y}=\langle\tau_{\alpha,Y}|^n2\mid n\in Y\rangle$. Using (C), take $g=\langle g_n\mid n\in X\rangle$ such that $\forall \alpha<\omega_1$ $\exists Y\in[X]^\omega$ $(f_{\alpha,Y}\subset g)$. Define $\tau\in\mathrm{STR}_2$ by

$$\tau(s) = \begin{cases} g_n(s) & \text{if length}(s) = n \in X, \\ 0 & \text{otherwise.} \end{cases}$$

To show that $({}^{\omega}2*_{X}\tau)\cap A_{\alpha}=\emptyset$ for all $\alpha<\omega_{1}$, let $\alpha<\omega_{1}$. Take $Y\in[X]^{\omega}$ such that $f_{\alpha,Y}\subset g$. Then $\tau_{\alpha,Y}{}^{\uparrow}(\bigcup_{n\in Y}{}^{n}2)\subset \tau$. So, ${}^{\omega}2*_{X}\tau\subset {}^{\omega}2*_{Y}\tau={}^{\omega}2*_{Y}\tau_{\alpha,Y}$. Since $({}^{\omega}2*_{Y}\tau_{\alpha,Y})\cap A_{\alpha}=\emptyset$, we conclude $({}^{\omega}2*_{X}\tau)\cap A_{\alpha}=\emptyset$.

Proof of Theorem 3.8. Define $h: \omega \to \omega$ by

$$h(0) = 0$$
, $h(n+1) = 2^n(h(n) + 1)$.

For each $n < \omega$, set

$$A_n = \{ u \mid u : {}^{h(n+1)}2 \to 2 \}.$$

Set

$$\mathcal{T} = \{ \langle S_n \mid n < \omega \rangle \mid \forall n < \omega \ (S_n \subset A_n \ \& \ |S_n| \le 2^n) \}.$$

Using Bartoszyński's Characterization Theorem [2], take $\mathcal{B}\subset\mathcal{T}$ such that

$$|\mathcal{B}| = \operatorname{cof}(\mathbf{L})$$
 and $\forall g \in \prod_{n < \omega} A_n \ \exists S \in \mathcal{B} \ \forall n < \omega \ (g(n) \in S(n)).$

A tree $T \subset {}^{\omega} > 2$ is called a thin tree if it satisfies

 $\forall n < \omega \ (T_n \text{ has at most one branch which ramifies}).$

Note that if T is a thin tree then $\{f \in {}^{\omega}2 \mid \forall n < \omega \ (f \upharpoonright n \in T)\} \in \mathcal{C}_2$. For each $S \in \mathcal{B}$, take a thin tree T_S such that

(**) $\forall s \in T_S \cap^{h(n)+1} 2 \ \forall \varrho \in S(n) \ \exists t \in T_S \cap^{h(n+1)} 2 \ (s \subset t \ \& \ t \land \langle \varrho(t) \rangle \in T_S)$, and set

$$A_S = \{ d \in {}^{\omega}2 \mid \forall n < \omega \ (d \upharpoonright n \in T_S) \}.$$

Since $A_S \in \mathcal{C}_2$ for all $S \in \mathcal{B}$, we can complete the proof by showing that $\bigcup_{S\in\mathcal{B}}A_S\not\in\mathcal{C}_2$. Let $X=\{h(n+1)\mid n<\omega\}$. We claim that, for any $\sigma\in$ STR_2 , σ is not a winning strategy for player II in the game $\Gamma_2(\bigcup_{S \in \mathcal{B}} A_S, X)$. To show this, set $g = \langle \sigma | (h^{(n+1)}2) | n < \omega \rangle \in \mathcal{T}$. Take $S \in \mathcal{B}$ such that $\forall n < \omega \ (g(n) \in S(n)).$ By induction on $n < \omega$, define $s_n \in T_S \cap {}^{h(n)}2$ as follows. For n=0, take an arbitrary $s_0 \in T_S \cap {}^{h(0)}2$. Assume that s_n was defined. Then, using (**), take $s_{n+1} \in T_X \cap {}^{h(n+1)}2$ such that $s_n \wedge \langle \sigma(s_n) \rangle \subset s_{n+1} \text{ and } s_{n+1} \wedge \langle \sigma(s_{n+1}) \rangle \in T_S.$ $\text{Set } f = \bigcup_{n < \omega} s_n \in A_S. \text{ Since } \forall k \in X \ (\sigma(f \upharpoonright k) = f(k)), \ f \in \text{STR}_2 *_X \sigma.$

Thus, $(STR_2 *_X \sigma) \cap A_S \neq \emptyset$. So, $\bigcup_{S \in \mathcal{B}} A_S \notin \mathcal{C}_2$.

REFERENCES

- M. Balcerzak and A. Rosłanowski, On Mycielski ideals, Proc. Amer. Math. Soc. 110 (1990), 243-250.
- T. Bartoszyński, Combinatorical aspects of measure and category, Fund. Math. 127 (1987), 225–239.
- J. Cichoń, A. Rosłanowski, J. Steprāns and B. Węglorz, Combinatorial properties of the ideal \mathcal{P}_2 , preprint.
- T. Jech, Set Theory, Academic Press, 1978.
- K. Kunen, Set Theory, North-Holland, 1980.
- J. Mycielski, Some new ideals of sets on the real line, Colloq. Math. 20 (1969), 71 - 76.
- L. Newelski and A. Rosłanowski, The ideal determined by the unsymmetric game, Proc. Amer. Math. Soc. 117 (1993), 823–831.
- A. Rosłanowski, On game ideals, Colloq. Math. 59 (1990), 159–168.
- —, On game ideals, Ph.D. thesis, Wrocław 1990.
- [10] —, Mycielski ideals generated by uncountable systems, Colloq. Math., to appear.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF OSAKA PREFECTURE MOZU-UMEMACHI SAKAI, JAPAN

> Reçu par la Rédaction le 24.6.1992; en version modifiée le 16.2.1993