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SOME REMARKS ABOUT MYCIELSKI IDEALS
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SHIZUO K A M O (SAKAI)

1. Introduction and definitions. Our set theoretic notation and ter-
minology is standard (see e.g. [4], [5]). Let c denote |P(ω)| (= the cardinality
of P(ω)). Let X be a subset of ω. The set {Y ⊂ X | |Y | = ω} is denoted
by [X]ω. ωX ( ω>X) denotes the family of ω-sequences (finite sequences) of
elements in X, respectively. ∀∞n ∈ X (. . .) means that {n ∈ X | not . . .}
is finite. ∃∞n ∈ X (. . .) means that {n ∈ X | . . .} is infinite. For f, g ∈ ωω,
g dominates f (denoted by f ≺ g) if ∀∞n < ω (f(n) < g(n)). For F ⊂ ωω,
F is called a dominating family of ωω if ∀g ∈ ωω ∃f ∈ F (g ≺ f), and an
unbounded family of ωω if ∀g ∈ ωω ∃f ∈ F (notf ≺ g). Denote by d (b) the
least cardinality of a dominating (unbounded) family of ωω, respectively.

Let 1 < X ≤ ω. For X ⊂ ω and A ⊂ ωX , ΓX (A,X) denotes the infinite
game between two players, I and II. At each step n < ω, player I chooses
kn < X if n ∈ ω \ X and player II chooses kn < X if n ∈ X. Player I
wins if 〈kn | n < ω〉 ∈ A and player II wins in the opposite case. A strategy
is a function σ : <ωX → X . STRX denotes the set of strategies. For
τ, σ ∈ STRX and X ⊂ ω, τ ∗X σ denotes the resulting ω-sequence of the
game ΓX (A,X) when player I follows the strategy τ and II follows σ, i.e.

τ ∗X σ(n) =
{

τ(τ ∗X σ�n) if n ∈ ω \X,
σ(τ ∗X σ�n) if n ∈ X.

For f : ω → X , we identify f with σf ∈ STRX which is defined by

σf (s) = f(length(s)), for any s ∈ <ωX .

Note that f (i.e. σf ) is a strategy which does not depend on the previous
movements of the players. For σ ∈ STRX and X ⊂ ω, STRX ∗Xσ denotes
the set of all results of the game determined by X, in which the second
player uses strategy σ, i.e.

STRX ∗Xσ = {τ ∗X σ | τ ∈ STRX } .

The following fact is easily checked.

Fact 1.1. For any σ ∈ STRX , X ⊂ ω and f ∈ ωX , the following are
equivalent.
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(a) f ∈ STRX ∗Xσ.
(b) f ∈ {g ∗X σ | g ∈ ωX}.
(c) f = f ∗X σ.
(d) ∀n ∈ X (σ(f�n) = f(n)).

A strategy σ is called a winning strategy for player II in the game
ΓX (A,X) if (STRX ∗Xσ) ∩ A = ∅. Denote by VII(X , X) the family of all
sets A ⊂ ωX for which player II has a winning strategy in ΓX (A,X) and
V ∗

II(X , X) the family of all sets A ⊂ ωX for which player II has in ΓX (A,X)
a winning strategy which does not depend on the movements of player I, i.e.

VII(X , X) = {A ⊂ ωX | ∃σ ∈ STRX ((STRX ∗Xσ) ∩A = ∅)} ,

V ∗
II(X , X) = {A ⊂ ωX | ∃f ∈ ωX ((STRX ∗Xf) ∩A = ∅)} .

A family K ⊂ [ω]ω is said to be a normal system if for any X ∈ K there
exist X1, X2 ∈ K such that X1, X2 ⊂ X and X1 ∩X2 = ∅.

For any normal system K, let

MX ,K =
⋂

X∈K
VII(X , X)

= {A ⊂ ωX | ∀X ∈ K ∃σ ∈ STRX ((STRX ∗Xσ) ∩A = ∅)} ,

and

M∗
X ,K =

⋂
X∈K

V ∗
II(X , X)

= {A ⊂ ωX | ∀X ∈ K ∃f ∈ ωX ((STRX ∗Xf) ∩A = ∅)} .

These are σ-ideals (called Mycielski ideals), introduced by Mycielski [6], and
generalized by Ros lanowski [9, 10] and studied in [1, 3, 8–10]. The ideals
MX ,[ω]ω and M∗

X ,[ω]ω will be denoted by CX and PX , respectively.
We shall consider ωX with the product measure and the product topo-

logy. The σ-ideals of null sets and meager sets are denoted by LX and KX ,
respectively.

2. Orthogonality. Throughout this section, we assume that 1 < X <
ω. Two ideals I,J of P(ωX ) are called orthogonal if there exist sets A ∈ I
and B ∈ J such that A∪B = ωX . We study conditions on a normal system
K which imply the orthogonality of MX ,K and LX . For each X ∈ [ω]ω, let
eX denote the order isomorphism from ω to X. Ros lanowski [10] proved the
following two results:

Theorem 2.1. If a normal system K satisfies

(2.1) ∀Y ∈ [ω]ω ∃X ∈ K ∀∞n < ω (|[eY (n), eY (n + 1)) ∩X| ≤ 1) ,

then MX ,K and LX are not orthogonal.
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Theorem 2.2. There exists a normal system K (with cardinality c) such
that {eX | X ∈ K} is unbounded in ωω and MX ,K and LX are ortho-
gonal.

He called a normal system K which satisfies the condition (2.1) dom-
inating. This condition is a little stronger than the condition that {eX |
X ∈ K} is a dominating family of ωω. In fact, it is easy to check that,
for any U ⊂ [ω]ω, {eX | X ∈ U} is a dominating family of ωω if and
only if for each Y ∈ [ω]ω there exists an X ∈ U such that ∀∞n < ω
(|[eY (n), eY (n + 1)) ∩ X| ≤ n). Using this and the fact that a small set
(In, Sn)n<ω can be choosen which satisfies |Sn| · X−|In| < X−2n for any
n < ω, a slight modification of Ros lanowski’s proof of Theorem 2.1 yields a
proof of

Theorem 2.3. For any normal system K, if {eX | X ∈ K} is a domi-
nating family of ωω, then MX ,K and LX are not orthogonal.

The following theorem and corollary show that unboundedness is not a
sufficient condition for non-orthogonality.

Theorem 2.4. Let κ be an uncountable cardinal and P the notion of forc-
ing adjoining κ Cohen reals. Then, in V P , M∗

X ,K and LX are orthogonal ,
for any normal system K ⊂ [ω]ω with cardinality < κ.

P r o o f. Let K ∈ V P be a normal system with cardinality < κ. Since
|K| < κ, we may assume that K ∈ V . From now on, we work in V P .

Claim 1. There exists a sequence 〈Sn | n < ω〉 such that

(1) ∀n < m < ω (Sn ⊂ ω & |Sn| ≥ n & Sn ∩ Sm = ∅),
(2) ∀X ∈ K ∃∞n < ω (Sn ⊂ X).

P r o o f o f C l a i m 1. Take a Cohen generic subset U ⊂ ω over V . For
each n < ω, set Sn = [eU (n2), eU ((n + 1)2)) ∩ U . Then 〈Sn | n < ω〉 is as
required.

Take a sequence 〈Sn | n < ω〉 which satisfies (1), (2) of Claim 1. Set

A = {f ∈ ωX | ∃∞n < ω (f�Sn ≡ 0)} ∈ LX .

Since STRX ∗XConst0 ⊂ A for all X ∈ K, we conclude that ωX \ A ∈
M∗

X ,K.

Corollary 2.5. It is consistent with b < d = c that “for any normal
system K with cardinality < c, MK,X and LX are orthogonal”.

Relating to orthogonality, Balcerzak and Ros lanowski [1] proved that

Theorem 2.6. For each A ∈ KX , there exists a normal system K such
that A ∈M∗

X ,K.
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They asked whether a measure analogue of Theorem 2.6 holds. I.e.,
does, for each A ∈ LX , exist a normal system K such that A ∈MX ,K? The
following example gives a negative answer to this question.

Example 2.7. Let s be the unique t < ω such that 2t ≤ X < 2(t + 1)
and set

A = {f ∈ ωX | ∃∞n < ω (|{k < n | f(k) ≥ s}| < n/4)} .

Then A is a Lebesgue measure zero set and , for any normal system K ⊂ [ω]ω,
A 6∈ MX ,K.

P r o o f. In order to show that A 6∈ MX ,K for all normal systems K ⊂
[ω]ω, we need the following lemma.

Lemma 2.8. Let X be a subset of ω such that A ∈ VII(X , X). Then

∀∞n < ω (|X ∩ n| ≥ n/4) .

P r o o f. Take τ ∈ STRX such that (STRX ∗Xτ) ∩ A = ∅. Set f =
Const0 ∗X τ . Since f 6∈ A, we have ∀∞n < ω (|{k < n | f(k) ≥ s}| ≥ n/4).
The assertion follows from this and the fact that ∀k ∈ ω\X (f(k) = 0 < s).

By Lemma 2.8, for any disjoint subsets Xi (for i < 5) of ω, there is some
i < 5 such that A 6∈ VII(X , Xi). So, A 6∈ MX ,K for all normal K.

We must show that A has Lebesgue measure zero. Let µ denote the
Lebesgue measure on ωX . For each n < ω, define Bn = {f ∈ ωX |
|{k < n | f(k) ≥ s}| < n/4}. Since A =

⋂
m<ω

⋃
m≤n<ω Bn, we have µ(A) ≤

limm<ω(
∑

m≤n<ω µ(Bn)). So, it suffices to show

(C.1)
∑
n<ω

µ(Bn) < ω .

Lemma 2.9.
(

4(n + 1)
n

)
≤

(
44

33

)n

for all 1 ≤ n < ω.

P r o o f. Since
(

8
1

)
= 8 ≤ 44/33, it suffices to show that(

4(n + 1)
n

)
≤ 44

33
·
(

4n

n− 1

)
for n ≥ 2 .

Indeed,(
4(n + 1)

n

)
=

4
3
· (4n + 3)(4n + 2)(4n + 1)

n(3n + 4)(3n + 2)

(
4n

n− 1

)
≤ 44

33
·
(

4n

n− 1

)
.

By Lemma 2.9, for any 0 < m < ω,(
2
3

)m(
1
2

)3m ∑
k≤m

(
4(m + 1)

k

)
≤ (m + 1)

(
2 · 44

3 · 8 · 33

)m

= (m + 1)
(

64
81

)m

.
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Using this, we have∑
0<m<ω

(
2
3

)m(
1
2

)3m ∑
k≤m

(
4(m + 1)

k

)
< ω .

(C.1) follows from this and from

µ(Bn) = X−n
∑

X∈[n]<n/4

((X − s)|X| · s|n\X|) ≤
∑

X∈[n]<n/4

(
2
3

)|X|(1
2

)n−|X|

≤
(

2
3

)n/4(1
2

)3n/4 ∑
k<n/4

(
n

k

)
, for any n < ω .

R e m a r k. In [3], the definition of the ideals PX was generalized to
all functions X ∈ ω(ω \ 2). A similar generalization is possible for the
ideals MX ,K and M∗

X ,K, for each X : ω → (ω + 1 \ 2). By modifying
the construction of A in Example 2.7 a little, for each X ∈ ω(ω \ 2) we
can construct a Lebesgue measure zero subset A of

∏
n<ω X (n) such that

A 6∈ MX ,K for any normal system K.

3. Cardinal coefficients. In this section, we study the cardinal coef-
ficients of the ideals CX and PX . For an ideal I of P(ωX ), define

cof(I) = min{|S| | S ⊂ I & ∀A ∈ I ∃B ∈ S (A ⊂ B)} ,

non(I) = min{|A| | A ⊂ ωX & A 6∈ I} ,

cov(I) = min
{
|S|

∣∣∣S ⊂ I &
⋃
S = ωX

}
,

add(I) = min
{
|S|

∣∣∣S ⊂ I &
⋃
S 6∈ I

}
.

The following facts are well-known.

Fact 3.1. Let I,J be σ-ideals of P(ωX ) such that ωX 6∈ I and {f} ∈ I,
for all f ∈ ωX . Then

(1) non(I), cov(I) ≤ cof(I).
(2) ω1 ≤ add(I) ≤ non(I), cov(I).
(3) If I and J are orthogonal and translation invariant , then cov(I) ≤

non(J ).

Fact 3.2. The cardinal coefficients of the ideals KX and LX do not
depend on the choice of X , i.e. for any 1 < X ,Y ≤ ω, cof(KX ) = cof(KY),
cof(LX ) = cof(LY), . . .

For the ideals CX and PX , the following theorems are known.

Theorem 3.3 [8, 10]. (1) non(CX ) = non(PX ) = c.
(2) add(Cω) = add(Pω) = cov(Cω) = cov(Pω) = ω1.
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(3) cov(PX ) = add(PX ).
(4) cof(Pω) > c and cof(Cω) > c.
(5) If cov(K) = c, then cof(PX ) > c and cof(CX ) > c.
(6) cov(P2) ≤ cof(L)+.

Theorem 3.4 (I. Rec law, see [8]). The proper forcing axiom (PFA)
implies that cov(P2) > ω1.

Theorem 3.5 [3]. It is consistent with Martin’s Axiom and c = ω2 that
cov(P2) = ω1.

We shall show the following.

Theorem 3.6. cof(PX ) > c and cof(CX ) > c, for any 1 < X < ω.

Theorem 3.7. PFA implies that add(C2) > ω1.

Theorem 3.8. add(C2) ≤ cof(L).

The case of X = 2 in Theorem 3.6 gives an affirmative answer to Problem
5.3.18(c) of [9].

P r o o f o f T h e o r e m 3.6. It suffices to show:

(∗) For any {Aα | α < c} ⊂ CX , there exists B ∈ PX such that ∀α < c
(B 6⊂ Aα).

In order to show (∗), we need several definitions and two lemmas.
For any A ⊂ ωX and X ⊂ ω, the set {f�X | f ∈ A} is denoted by A|X.

Note that PX = {A ⊂ ωX | ∀X ∈ [ω]ω (A|X 6= XX )}.
Take a nonempty A ∈ PX such that

(3.1) ∀c ∈ A ∀d ∈ ωX (∀∞n < ω (c(n) = d(n)) ⇒ d ∈ A) .

For each X ∈ [ω]ω, take a sequence 〈cα,X | α < c〉 such that

cα,X ∈ XX \A|X and cα,X 6= cβ,X if α 6= β .

Lemma 3.9. Suppose that F ⊂ c× [ω]ω and Y ∈ [ω]ω satisfy

∀(α, X) ∈ F (X \ Y is finite) & |F| < c .

Then there exists g ∈ Y X such that

∀(α, X) ∈ F (cα,X�(X ∩ Y ) 6⊂ g) .

P r o o f. For each (α, X) ∈ F , let dα,X = cα,X�(X ∩ Y ). By (3.1),

dα,X 6∈ A|(X ∩ Y ) for all (α, X) ∈ F .

Then, since ∀(α, X) ∈ F ({f ∈ Y X | dα,X ⊂ f}) ∩A|Y = ∅), we have( ⋃
(α,X)∈F

{f ∈ Y X | dα,X ⊂ f}
)
∩A|Y = ∅ .

Since A|Y 6= ∅, we can take g ∈ A|Y . This g is as required.
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Recall that X, Y ∈ [ω]ω are almost disjoint if X ∩ Y is finite. A family
F ⊂ [ω]ω is said to be pairwise almost disjoint if any two distinct elements
of F are almost disjoint. A MAD-family is a maximal family (with the
inclusion order) which is pairwise almost disjoint. Take a MAD-family W ⊂
[ω]ω such that |W| = c. Take an enumeration 〈Uα | α < c〉 of

⋃
X∈W [X]ω.

To prove Theorem 3.6, let {Aα | α < c} ⊂ CX . Take 〈τα,X | α < c &
X ∈ [ω]ω〉 such that

τα,X ∈ STRX and (ωX ∗X τα,X) ∩Aα = ∅ for all α < c, X ∈ [ω]ω .

Lemma 3.10. There exist sequences 〈hα | α < c〉 and 〈eα | α < c〉 which
satisfy the following

(1) hα ∈ ωX \Aα and eα ∈ UαX .
(2) eα 6⊂ hβ , for any α, β < c.

P r o o f. We shall show, by induction on α < c, that there exist hα ∈
ωX \Aα and eα ∈ {cη,Uα | η < c} which satisfy eξ 6⊂ hα and eα 6⊂ hξ for all
ξ ≤ α.

So, let α < c. Take X ∈ W such that ∀ξ < α (Uξ ∩ X is finite).
Set Y = ω \ X. Then by Lemma 3.9, there exists g ∈ Y X such that
eξ�(Uξ ∩ Y ) 6⊂ g for all ξ < α. Set hα = g ∗X τα,X (∈ ωX \ Aα). Since
g ⊂ hα, we have eξ 6⊂ hα, for all ξ < α. Take eα ∈ {cη,Uα | η < c} such that
eα 6∈ {hξ�Uα | ξ ≤ α}.

Let 〈hα | α < c〉 and 〈eα | α < c〉 be sequences which satisfy (1) and
(2) of Lemma 3.10. Set B = {hα | α < c}. Since ∀α < c (hα 6∈ Aα), we
have B 6⊂ Aα for all α < c. To show B ∈ PX , let X ∈ [ω]ω. Take Y ∈ W
such that X ∩ Y is infinite and α < c such that Uα = X ∩ Y . Then, since
eα 6∈ B|Uα, it follows that B|X 6= XX .

P r o o f o f T h e o r e m 3.7. In order to show Theorem 3.7, we need to
modify the notion of covering systems in [10].

Definition. Let κ be a cardinal, U ∈ [ω]ω, and h : U → ω \ {0}. A
double indexed sequence 〈fα,X | α < κ & X ∈ [U ]ω〉 is called a κ-covering
system for h if it satisfies

(1) fα,X ∈
∏

n∈X h(n),
(2) ∀g ∈

∏
n∈U h(n) ∃α < κ ∀X ∈ [U ]ω (fα,X 6⊂ g).

Lemma 3.11 (PFA)

(C) There does not exist an ω1-covering system for h, for any h : U →
ω \ {0} and U ∈ [ω]ω.

P r o o f. Let U ∈ [ω]ω and h : U → ω \ {0}.
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Suppose that a sequence F = 〈fα,X | α < ω1 & X ∈ [U ]ω〉 satisfies the
condition (1) in the definition of covering systems. (We show that F does
not satisfy (2).)

Define the forcing notion P (= PF ) by

P =
{

p
∣∣∣ ∃X ∈ [U ]ω

(
p ∈

∏
n∈U\X

h(n)
)}

, p ≤ q iff p ⊃ q .

Since the partial ordering ≤n (for n < ω) on P defined by

p ≤n q iff p ≤ q and “the set of the first n elements of U \ dom(p)”
= “the set of the first n elements of U \ dom(q)”

satisfies Axiom A of Baumgartner, P is proper. For each α < ω1, set

Dα = {p ∈ P | ∃X ∈ [U ]ω (fα,X ⊂ p)} .

Since ∀α < ω1 (Dα is dense in P ), by PFA, there exists a {Dα | α < ω1}-
generic filter G on P . Since G is a filter, we can take g ∈

∏
n∈U h(n) such

that
⋃
G ⊂ g. Then ∀α < ω1 ∃X ∈ [U ]ω (fα,X ⊂ g).

By Lemma 3.11, it suffices to show that (C) implies add(C2) > ω1. To
show this, assume that (C) holds and let {Aα | α < ω1} ⊂ C2.

To show that
⋃

α<ω1
Aα ∈ C2, let X ∈ [ω]ω. For each α < ω1 and

Y ∈ [X]ω, take τα,Y ∈ STR2 such that (ω2 ∗Y τα,Y ) ∩ Aα = ∅. Set fα,Y =
〈τα,Y �n2 | n ∈ Y 〉. Using (C), take g = 〈gn | n ∈ X〉 such that ∀α < ω1

∃Y ∈ [X]ω (fα,Y ⊂ g). Define τ ∈ STR2 by

τ(s) =
{

gn(s) if length(s) = n ∈ X,
0 otherwise.

To show that (ω2∗Xτ)∩Aα = ∅ for all α < ω1, let α < ω1. Take Y ∈ [X]ω

such that fα,Y ⊂ g. Then τα,Y �(
⋃

n∈Y
n2) ⊂ τ . So, ω2 ∗X τ ⊂ ω2 ∗Y τ =

ω2 ∗Y τα,Y . Since (ω2 ∗Y τα,Y )∩Aα = ∅, we conclude (ω2 ∗X τ)∩Aα = ∅.

P r o o f o f T h e o r e m 3.8. Define h : ω → ω by

h(0) = 0, h(n + 1) = 2n(h(n) + 1) .

For each n < ω, set

An = {u | u : h(n+1)2 → 2} .

Set
T = {〈Sn | n < ω〉 | ∀n < ω (Sn ⊂ An & |Sn| ≤ 2n)} .

Using Bartoszyński’s Characterization Theorem [2], take B ⊂ T such
that

|B| = cof(L) and ∀g ∈
∏
n<ω

An ∃S ∈ B ∀n < ω (g(n) ∈ S(n)) .
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A tree T ⊂ ω>2 is called a thin tree if it satisfies

∀n < ω (Tn has at most one branch which ramifies) .

Note that if T is a thin tree then {f ∈ ω2 | ∀n < ω (f�n ∈ T )} ∈ C2. For
each S ∈ B, take a thin tree TS such that

(∗∗) ∀s ∈ TS∩h(n)+12 ∀% ∈ S(n) ∃t ∈ TS∩h(n+1)2 (s ⊂ t & t∧〈%(t)〉 ∈ TS) ,

and set
AS = {d ∈ ω2 | ∀n < ω (d�n ∈ TS)} .

Since AS ∈ C2 for all S ∈ B, we can complete the proof by showing that⋃
S∈B AS 6∈ C2. Let X = {h(n + 1) | n < ω}. We claim that, for any σ ∈

STR2, σ is not a winning strategy for player II in the game Γ2(
⋃

S∈B AS , X).
To show this, set g = 〈σ�(h(n+1)2) | n < ω〉 ∈ T . Take S ∈ B such that
∀n < ω (g(n) ∈ S(n)). By induction on n < ω, define sn ∈ TS ∩ h(n)2
as follows. For n = 0, take an arbitrary s0 ∈ TS ∩ h(0)2. Assume that
sn was defined. Then, using (∗∗), take sn+1 ∈ TX ∩ h(n+1)2 such that
sn
∧〈σ(sn)〉 ⊂ sn+1 and sn+1

∧〈σ(sn+1)〉 ∈ TS .
Set f =

⋃
n<ω sn ∈ AS . Since ∀k ∈ X (σ(f�k) = f(k)), f ∈ STR2 ∗Xσ.

Thus, (STR2 ∗Xσ) ∩AS 6= ∅. So,
⋃

S∈B AS 6∈ C2.
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