VOL. LXVI

1993

FASC. 1

A NOTE ON F.P.P. AND F*P.P.

BҮ

HISAO KATO (HIROSHIMA)

In [3], Kinoshita defined the notion of f*p.p. and he proved that each compact AR has f*p.p. In [4], Yonezawa gave some examples of not locally connected continua with f.p.p., but without f*p.p. In general, for each $n = 1, 2, \ldots$, there is an *n*-dimensional continuum X_n with f.p.p., but without f*p.p. such that X_n is locally (n - 2)-connected (see [4, Addendum]). In this note, we show that for each *n*-dimensional continuum X which is locally (n - 1)-connected, X has f.p.p. if and only if X has f*p.p.

1. Introduction. Let X be a compact connected metric space (= continuum). If every map $f : X \to X$ has a fixed point x_0 of f, i.e., $f(x_0) = x_0$, X is said to have the *fixed point property* (= f.p.p.). Let $f : X \to X$ be a map of a continuum X. A component C of the fixed point set $F(f) = \{x \in X \mid f(x) = x\}$ of f is called *essential* [3] if for any $\varepsilon > 0$ there is a $\delta > 0$ such that each map $f' : X \to X$ with $d(f, f') = \sup\{d(f(x), f'(x)) \mid x \in X\} < \delta$ has a fixed point in the ε -neighborhood $U_{\varepsilon}(C)$ of C in X. A continuum X has f*p.p. if it has f.p.p. and the fixed point set of every map $f : X \to X$ has an essential component. Put $C(X, X) = \{f : X \to X \mid f \text{ is a (continuous) map}\}$. Then C(X, X) has the supremum metric $d(f, f') = \sup\{d(f(x), f'(x)) \mid x \in X\} \ (f, f' \in C(X, X))$.

In [3], Kinoshita proved that every compact absolute retract (=AR) has f*p.p. In [4], Yonezawa gave several examples of not locally connected continua with f.p.p., but without f*p.p. Also, he showed that there is a not locally connected 2-dimensional continuum Z which has f*p.p. In this note, we prove that for an *n*-dimensional continuum X which is locally (n-1)-connected, X has f.p.p. if and only if X has f*p.p. It is known that for each $n \geq 1$, there is a continuum X such that dim X = n, X is locally (n-2)-connected and X has f.p.p., but X does not have f*p.p. (see [4, Addendum]). This implies that Yonezawa's examples are best possible for dimension and local m-connectedness.

The author wishes to thank the referee for his helpful remarks, in particular, for informing the author of the Cook continua (see (2.6)). **2.** Locally (n-1)-connected and *n*-dimensional continua with **f.p.p.** Let X be a space. Then X is said to be *locally m-connected* (m = 0, 1, ...) if for any $x \in X$ and any neighborhood U of x in X there is a neighborhood V $(V \subset U)$ of x in X such that if $f: S^i \to V$ is a map from the *i*-sphere S^i $(0 \le i \le m)$ to V, then f is null-homotopic in U.

The following theorem is the main result of this note.

(2.1) THEOREM. Let X be an n-dimensional continuum which is locally (n-1)-connected. Let $\mathbf{F} = \{f \in C(X,X) \mid F(f) \neq \emptyset\}$ and suppose that $f \in \mathbf{F}$. Then f has a neighborhood \mathbf{U} in C(X,X) with $\mathbf{U} \subset \mathbf{F}$ if and only if the fixed point set of f has an essential component. In particular, X has f.p.p. if and only if X has f.p.p.

Proof. The idea of the proof comes from [3]. Suppose that f has a neighborhood **U** as in the theorem. Suppose, on the contrary, that the fixed point set of f has no essential component. For each component C of F(f), there is a neighborhood U(C) of C in X such that $Bd(U(C)) \cap F(f) = \emptyset$ and there are maps in C(X, X) arbitrarily close to f which have no fixed points in U(C).

Choose a finite covering $\{U(C_1), \ldots, U(C_k)\}$ of F(f). Put $H_1 = F(f) \cap U(C_1)$, and $H_i = (F(f) \cap U(C_i)) - \bigcup_{j=1}^{i-1} H_j$ $(i = 2, \ldots, k)$. Then $\{H_i\}$ is a finite closed covering of F(f) such that $H_i \cap H_j = \emptyset$ $(i \neq j)$. Choose open sets V_i $(i = 1, \ldots, k)$ such that $H_i \subset V_i \subset \overline{V}_i \subset U(C_i)$ and $\overline{V}_i \cap \overline{V}_j = \emptyset$ $(i \neq j)$. Put $\varepsilon_0 = \inf\{d(x, f(x)) \mid x \in X - \bigcup_{i=1}^k V_i\} > 0$. Since X is locally (n-1)-connected, X satisfies the following condition (*):

(*) For any $\varepsilon > 0$ there is a $\delta > 0$ such that if $h : |L| \to X$ is a map from a subpolyhedron |L| of an *n*-dimensional polyhedron |K| such that the 0-skeleton K^0 of K is contained in L, diam $h(\Delta^0) < \delta$ for each simplex Δ of K and diam $h(\Delta) < \delta$ for each simplex Δ of L, then there is an extension $h' : |K| \to X$ of h such that diam $h'(\Delta) < \varepsilon$ for each simplex Δ of K.

Let $\gamma > 0$ be a sufficiently small positive number. Choose an open set W_i such that $\overline{V}_i \subset W_i$ (i = 1, ..., k), $\overline{W}_i \cap \overline{W}_j = \emptyset$ $(i \neq j)$ and $d(x, \overline{V}_i) < \gamma$ for $x \in \overline{W}_i - \overline{V}_i$. Let $h_i : X \to X$ be a map such that h_i has no fixed points in \overline{V}_i and $d(h_i, f) < \gamma$. Consider the map $f_i : \overline{V}_i \cup (X - W_i) \to X$ defined by $f_i | \overline{V}_i = h_i, f_i | (X - W_i) = f | X - W_i$. Let $1 \leq i \leq k$ be fixed. Choose a canonical covering \mathcal{U} of $W_i - \overline{V}_i$ such that diam $\operatorname{St}(U, \mathcal{U}) < \gamma$ for each $U \in \mathcal{U}$ (see [1, Chapter III, 9]). Let $N(\mathcal{U})$ be the nerve of \mathcal{U} . For each $U \in \mathcal{U}$, choose a point $a(U) \in A = (X - W_i) \cup \overline{V}_i$ such that d(U, a(U)) < 2d(U, A). Consider the map $F' : A \cup |N(\mathcal{U})^0| \to X$ defined by $F' | A = f_i$ and $F'(U) = f_i(a(U))$ for $U \in N(\mathcal{U})^0$, where $A \cup |N(\mathcal{U})|$ is the space such that the neighborhoods of a point $z \in A \cup |N(\mathcal{U})|$ are defined to be subsets U_z of z such that

FIXED POINT PROPERTIES

(a) if $z \in A - \overline{X - A}$, then $U_z \cap A$ is a neighborhood of z in X,

(b) if $z \in |N(\mathcal{U})|$, then $U_z \cap |N(\mathcal{U})|$ is a neighborhood of z in $|N(\mathcal{U})|$,

(c) if $z \in A \cap \overline{X-A}$, then $U_z \cap A$ is a neighborhood of z in A and there is a neighborhood V of z in X such that every simplex $\langle U_1, \ldots, U_t \rangle$ in N(U)with $\bigcup_{i=1}^t U_i \subset V$ is contained in U_z (see [1]).

By choosing a sufficiently small positive number $\gamma > 0$ and using (*), we obtain a map $F : A \cup |N(\mathcal{U})| \to X$ which is an extension of F'. Put $g_i = F \circ \varphi |\overline{W}_i : \overline{W}_i \to X$, where $\varphi : X \to A \cup |N(\mathcal{U})|$ is a canonical map (see [1, p. 82]). Also, by the definition of the canonical map φ , we assume that g_i is arbitrarily close to $f|\overline{W}_i$. Note that $g_i|\overline{V}_i = h_i$, and we assume $d(x, g_i(x)) \ge d(x, f(x)) - d(f(x), g_i(x)) \ge \varepsilon_0 - d(f(x), g_i(x)) > 0$ for $x \in \overline{W}_i - V_i$. Hence we see that g_i has no fixed points. Put

$$f'(x) = \begin{cases} f(x) & \text{if } x \in X - \bigcup_{i=1}^k W_i, \\ g_i(x) & \text{if } x \in \overline{W}_i \ (i = 1, \dots, k) \end{cases}$$

Then we may assume that $f' \in \mathbf{U}$ and f' has no fixed points. This is a contradiction. Hence the fixed point set of f has an essential component. The converse assertion is obvious.

Let $\delta > 0$ be a positive number. A homotopy $H : X \times I \to X$ is a δ -homotopy from f to g if $H_0 = f$, $H_1 = g$ and diam $H(\{x\} \times I) < \delta$ for each $x \in X$. For any maps $f, g : X \to X$, define $d_h(f, g) = \inf\{\delta \mid$ there is a δ -homotopy H from f to $g\}$ if f and g are homotopic.

By a similar argument to one of [3], we can prove the following proposition.

(2.2) PROPOSITION. Let X be a continuum with f.p.p., and let $f: X \to X$ be a map. Then there is a component C of the fixed point set of f such that for any $\varepsilon > 0$ there is a $\delta > 0$ such that if $g: X \to X$ is a map with $d_{h}(f,g) < \delta$, then g has a fixed point in $U_{\varepsilon}(C)$.

The following fact for ANR's is well-known.

(2.3) LEMMA ([1]). Let X be a compact ANR. For any $\varepsilon > 0$ there is a $\delta > 0$ such that if $f, g \in C(X, X)$ with $d(f, g) < \delta$, then f is ε -homotopic to g.

By using (2.2) and (2.3), we have the following.

(2.4) PROPOSITION. Let X be a compact ANR.

(1) X has f.p.p. if and only if X has $f^*p.p$.

(2) If $f: X \to X$ is a map with $\Lambda_f \neq 0$, then the fixed point set of f has an essential component, where Λ_f is the Lefschetz number of f.

(2.5) COROLLARY. If X has f.p.p., and $f: X \to X$ is a map such that f(X) is contained in an ANR-neighborhood in X, then the fixed point set of f has an essential component.

(2.6) Remark. In [4], Yonezawa showed that there is a not locally connected continuum X with dim X = 2 which has f*p.p. Naturally, the following question arises: Is there a 1-dimensional continuum Z such that Z is not locally connected and Z has f*p.p. ? In [2, Theorem 11], Cook constructed a 1-dimensional continuum C such that the identity is the only mapping of C onto a nondegenerate subcontinuum of C. Clearly, the Cook continuum C is not locally connected and C has f*p.p.

REFERENCES

- [1] K. Borsuk, Theory of Retracts, Monografie Mat. 44, PWN, Warszawa, 1967.
- H. Cook, Continua which admit only the identity mapping onto non-degenerate subcontinua, Fund. Math. 60 (1967), 241–249.
- [3] S. Kinoshita, On essential components of the set of fixed points, Osaka J. Math. 4 (1952), 19-22.
- Y. Yonezawa, On f.p.p. and f*p.p. of some not locally connected continua, Fund. Math. 139 (1991), 91-98.

FACULTY OF INTEGRATED ARTS AND SCIENCES HIROSHIMA UNIVERSITY, 1-7-1 KAGAMIYAMA HIGASI-HIROSHIMA 724, JAPAN

> Reçu par la Rédaction le 23.11.1992; en version modifiée le 15.3.1993