C OLLOQUIUM MATHEMATICUM
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">VOL. LXVI</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">1993</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">FASC. 1</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| VOL. LXVI | 1993 | FASC. 1 |
| :--- | :--- | :--- |</table-markdown></div>

SOME MODELS OF GEOMETRIES
AND A FUNCTIONAL EQUATION
By
R. C. POWERS, T. RIEDEL and P. K. SAHOO (LOUISVILLE, KENTUCKY)

1. Introduction. Let \mathbb{R} denote the set of real numbers. Let \mathcal{M}_{p} be the family of all straight lines in \mathbb{R}^{2} which are parallel to the y axis and of all curves of the form $y=p(x+\alpha)+\beta$, where p is a fixed function and α, β run over \mathbb{R}. In [3] and [4], Faber, Grünbaum, Kuczma and Mycielski proved that if there exists a continuous bijection of \mathbb{R}^{2} onto \mathbb{R}^{2} which induces a map of the family of all straight lines onto \mathcal{M}_{p}, then p must be a polynomial of degree 2 . Let \mathcal{N}_{p} consist of all planes parallel to the z-axis and all surfaces of the form

$$
z=p(x+\alpha, y+\beta)+\gamma
$$

where $p: \mathbb{R}^{2} \rightarrow \mathbb{R}$, and α, β, and γ are real constants. In [3], the following problem was raised: Characterize those functions p for which \mathcal{N}_{p} is continuously isomorphic to the family of all planes in \mathbb{R}^{3}. In this paper, we solve the problem posed in [3] through a functional equation and show that p is a polynomial of degree 2 .

The paper is organized as follows. In Section 2, we determine the general solution of a functional equation which is instrumental in proving the main result. In Section 3, we provide the answer to the question of Faber, Kuczma and Mycielski.
2. A functional equation. For $x, y \in \mathbb{R}^{2}$, let

$$
\begin{equation*}
\langle x, y\rangle=\sum_{i=1}^{2} x_{i} y_{i} \tag{2.1}
\end{equation*}
$$

denote the inner product between x and y, where x_{i} and y_{i} are the i th components of x and y, respectively. Let x^{T} denote the transpose of x in \mathbb{R}^{2}. Let $e_{1}:=(1,0)$ and $e_{2}:=(0,1)$ be the basis elements of \mathbb{R}^{2}. For $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, let

$$
\begin{equation*}
f[x, y]:=f(x)+f(y)-f(x+y)-f(0) \tag{2.2}
\end{equation*}
$$

be the Cauchy difference of f. Furthermore, let

$$
\begin{equation*}
f\{y\}:=\left(f\left[e_{1}, y\right], f\left[e_{2}, y\right]\right) \tag{2.3}
\end{equation*}
$$

Then, for $y \in \mathbb{R}^{2}$, clearly $f\{y\} \in \mathbb{R}^{2}$. Now we determine the general solution of a functional equation which is instrumental in establishing our main result.

THEOREM 1. The continuous map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfies the functional equation

$$
\begin{equation*}
f[x, y]=\langle x, f\{y\}\rangle \quad\left(x, y \in \mathbb{R}^{2}\right) \tag{FE}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
f(x)=A x^{T}+x B x^{T}+\alpha \tag{SO}
\end{equation*}
$$

where $A=\left(\begin{array}{ll}a & b\end{array}\right), B=\left(\begin{array}{cc}c & e \\ e & d\end{array}\right)$, and a, b, c, d, e, α are arbitrary real constants.
Proof. Using (2.1)-(2.3), (FE) can be written as

$$
\begin{align*}
f\left(x_{1}, x_{2}\right)+ & f\left(y_{1}, y_{2}\right)-f\left(x_{1}+y_{1}, x_{2}+y_{2}\right)-f(0,0) \tag{2.4}\\
= & x_{1}\left[f(1,0)-f(0,0)+f\left(y_{1}, y_{2}\right)-f\left(1+y_{1}, y_{2}\right)\right] \\
& \quad+x_{2}\left[f(0,1)-f(0,0)+f\left(y_{1}, y_{2}\right)-f\left(y_{1}, 1+y_{2}\right)\right]
\end{align*}
$$

for all $x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{R}$. Defining $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
g\left(x_{1}, x_{2}\right):=f\left(x_{1}, x_{2}\right)-f(0,0) \tag{2.5}
\end{equation*}
$$

we get from (2.4),

$$
\begin{align*}
& g\left(x_{1}, x_{2}\right)+g\left(y_{1}, y_{2}\right)-g\left(x_{1}+y_{1}, x_{2}+y_{2}\right) \tag{2.6}\\
& = \\
& \quad x_{1}\left[g\left(y_{1}, y_{2}\right)-g\left(1+y_{1}, y_{2}\right)+g(1,0)\right] \\
& \quad+x_{2}\left[g\left(y_{1}, y_{2}\right)-g\left(y_{1}, 1+y_{2}\right)+g(0,1)\right] .
\end{align*}
$$

Letting $x_{2}=y_{2}=0$ in (2.6), we get

$$
\begin{equation*}
g\left(x_{1}, 0\right)+g\left(y_{1}, 0\right)-g\left(x_{1}+y_{1}, 0\right)=x_{1}\left[g\left(y_{1}, 0\right)-g\left(1+y_{1}, 0\right)+g(1,0)\right] \tag{2.7}
\end{equation*}
$$

Defining

$$
\begin{equation*}
p\left(x_{1}\right):=g\left(x_{1}, 0\right) \quad\left(x_{1} \in \mathbb{R}\right), \tag{2.8}
\end{equation*}
$$

from (2.7), we obtain

$$
\begin{equation*}
p\left(x_{1}\right)+p\left(y_{1}\right)-p\left(x_{1}+y_{1}\right)=x_{1}\left[p\left(y_{1}\right)+p(1)-p\left(y_{1}+1\right)\right] . \tag{2.9}
\end{equation*}
$$

Interchanging x_{1} and y_{1} in (2.9) and using the resulting expression with (2.9), we obtain

$$
\begin{equation*}
x_{1}\left[p\left(y_{1}\right)+p(1)-p\left(y_{1}+1\right)\right]=y_{1}\left[p\left(x_{1}\right)+p(1)-p\left(x_{1}+1\right)\right] \tag{2.10}
\end{equation*}
$$

for all $x_{1}, y_{1} \in \mathbb{R}$. Hence

$$
\begin{equation*}
p\left(y_{1}\right)+p(1)-p\left(y_{1}+1\right)=c_{0} y_{1}, \tag{2.11}
\end{equation*}
$$

where c_{0} is a real constant. Inserting (2.11) into (2.9), we get

$$
\begin{equation*}
p\left(x_{1}\right)+p\left(y_{1}\right)-p\left(x_{1}+y_{1}\right)=c_{0} x_{1} y_{1} . \tag{2.12}
\end{equation*}
$$

Define

$$
\begin{equation*}
\phi\left(x_{1}\right):=p\left(x_{1}\right)+\frac{1}{2} c_{0} x_{1}^{2} . \tag{2.13}
\end{equation*}
$$

Then by (2.13), (2.12) reduces to

$$
\begin{equation*}
\phi\left(x_{1}\right)+\phi\left(y_{1}\right)=\phi\left(x_{1}+y_{1}\right) \tag{2.14}
\end{equation*}
$$

for all $x_{1}, y_{1} \in \mathbb{R}$.
Since f is continuous, p is also continuous. Therefore, with (2.14), (2.13) yields (see [1, p. 13])

$$
\begin{equation*}
p\left(x_{1}\right)=a x_{1}-\frac{1}{2} c_{0} x_{1}^{2} \tag{2.15}
\end{equation*}
$$

where a is an arbitrary constant.
Similarly, we let $x_{1}=y_{1}=0$ in (2.6) to get

$$
\begin{equation*}
g\left(0, x_{2}\right)+g\left(0, y_{2}\right)-g\left(0, x_{2}+y_{2}\right)=x_{2}\left[g\left(0, y_{2}\right)+g(0,1)-g\left(0, y_{2}+1\right)\right] \tag{2.16}
\end{equation*}
$$

Defining

$$
\begin{equation*}
q\left(x_{2}\right):=g\left(0, x_{2}\right) \quad\left(x_{2} \in \mathbb{R}\right) \tag{2.17}
\end{equation*}
$$

we obtain from (2.16)

$$
\begin{equation*}
q\left(x_{2}\right)+q\left(y_{2}\right)-q\left(x_{2}+y_{2}\right)=x_{2}\left[q\left(y_{2}\right)+q(1)-q\left(y_{2}+1\right)\right] \tag{2.18}
\end{equation*}
$$

for all $x_{2}, y_{2} \in \mathbb{R}$. This equation is similar to (2.9) and hence, we obtain

$$
\begin{equation*}
q\left(x_{2}\right)=b x_{2}-\frac{1}{2} d_{0} x_{2}^{2} \tag{2.19}
\end{equation*}
$$

where b and d_{0} are constants in \mathbb{R}.
Next, letting $x_{1}=y_{2}=0$ in (2.6), we obtain
(2.20) $g\left(0, x_{2}\right)+g\left(y_{1}, 0\right)-g\left(y_{1}, x_{2}\right)=x_{2}\left[g\left(y_{1}, 0\right)-g\left(y_{1}, 1\right)+g(0,1)\right]$,
which is

$$
(2.21) \quad q\left(x_{2}\right)+p\left(y_{1}\right)-g\left(y_{1}, x_{2}\right)=x_{2}\left[p\left(y_{1}\right)-g\left(y_{1}, 1\right)+g(0,1)\right] .
$$

Similarly, letting $x_{2}=y_{1}=0$ in (2.6), we get
(2.22) $\quad g\left(x_{1}, 0\right)+g\left(0, y_{2}\right)-g\left(x_{1}, y_{2}\right)=x_{1}\left[g\left(0, y_{2}\right)-g\left(1, y_{2}\right)+g(1,0)\right]$,
which is
(2.23) $\quad p\left(x_{1}\right)+q\left(y_{2}\right)-g\left(x_{1}, y_{2}\right)=x_{1}\left[q\left(y_{2}\right)-g\left(1, y_{2}\right)+g(1,0)\right]$.

Comparing (2.21) and (2.23), we see that

$$
\begin{align*}
g\left(x_{1}, x_{2}\right) & =\left(1-x_{2}\right) p\left(x_{1}\right)+q\left(x_{2}\right)+x_{2}\left[g\left(x_{1}, 1\right)-g(0,1)\right] \\
\text { also } & =p\left(x_{1}\right)+\left(1-x_{1}\right) q\left(x_{2}\right)+x_{1}\left[g\left(1, x_{2}\right)-g(1,0)\right] . \tag{2.24}
\end{align*}
$$

Hence, we get

$$
x_{2}\left[g\left(x_{1}, 1\right)-g(0,1)-p\left(x_{1}\right)\right]=x_{1}\left[g\left(1, x_{2}\right)-g(1,0)-q\left(x_{2}\right)\right] .
$$

Therefore

$$
g\left(x_{1}, 1\right)-g(0,1)=p\left(x_{1}\right)+\delta x_{1}
$$

where δ is a constant, and by (2.24) and the above, we get

$$
\begin{align*}
g\left(x_{1}, x_{2}\right) & =\left(1-x_{2}\right) p\left(x_{1}\right)+q\left(x_{2}\right)+x_{2}\left[p\left(x_{1}\right)+\delta x_{1}\right] \tag{2.25}\\
& =p\left(x_{1}\right)+q\left(x_{2}\right)+\delta x_{1} x_{2} .
\end{align*}
$$

By (2.5), (2.15) and (2.19), (2.25) yields

$$
\begin{equation*}
f\left(x_{1}, x_{2}\right)=a x_{1}-\frac{1}{2} c_{0} x_{1}^{2}+b x_{2}-\frac{1}{2} d_{0} x_{2}^{2}+\delta x_{1} x_{2}+\alpha \tag{2.26}
\end{equation*}
$$

Now renaming the constants $-\frac{1}{2} c_{0},-\frac{1}{2} d_{0}$, and δ as c, d and $2 e$, respectively, we get the asserted solution (SO).

The converse is easy to verify. This completes the proof of the theorem.
Remark 1. Although, in Theorem 1, we have assumed f to be continuous, the general solution of the functional equation (FE) can be obtained without this assumption. In this case, the general solution of (FE) would be $f(x)=A(x)+x B x^{T}+\alpha$, where A is a biadditive function. Furthermore, (FE) can easily be generalized to the case of n variables. We leave the details to the reader.
3. The main result. Let \mathcal{P} denote the family of all planes in \mathbb{R}^{3}. Here, the following subsets of \mathcal{P} and \mathcal{N}_{p} are of particular interest. Let

$$
\mathcal{V}_{x}=\bigcup_{a \in \mathbb{R}}\left\{\left\{(a, y, z) \in \mathbb{R}^{3} \mid a \text { is some fixed constant }\right\}\right\}
$$

be the set of all planes parallel to $y z$-plane and similarly, let

$$
\mathcal{V}_{y}=\bigcup_{b \in \mathbb{R}}\left\{\left\{(x, b, z) \in \mathbb{R}^{3} \mid b \text { is some fixed constant }\right\}\right\}
$$

denote the set of all planes parallel to $x z$-plane.
An isomorphism from \mathcal{P} onto \mathcal{N}_{p} is a bijection of \mathbb{R}^{3} which induces a bijection from \mathcal{P} onto \mathcal{N}_{p}. Similarly, an automorphism of \mathcal{P} is a bijection of \mathbb{R}^{3} which induces a bijection from \mathcal{P} onto \mathcal{P}. The next result characterizes the automorphisms of \mathcal{P} and is known as the "Fundamental Theorem of Projective Geometry" [2, p. 156].

Lemma. Every bijection ϕ of \mathbb{R}^{3} onto itself which induces a bijection of \mathcal{P} onto itself is affine linear, that is,
$\phi(x, y, z)=\left(a_{1} x+b_{1} y+c_{1} z+u, a_{2} x+b_{2} y+c_{2} z+v, a_{3} x+b_{3} y+d_{3} z+w\right)$
where

$$
\operatorname{det}\left(\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right) \neq 0
$$

and $a_{i}, b_{i}, c_{i}(i=1,2,3)$ are arbitrary constants.
Now adopting a technique similar to the proof of the Theorem in [4], we proceed to prove our main result.

THEOREM 2. Let $p: \mathbb{R}^{2} \rightarrow \mathbb{R}$. There exists a continuous isomorphism θ from \mathcal{P} onto \mathcal{N}_{p} if and only if $p(x, y)=d_{1} x^{2}+d_{2} y^{2}+2 d_{3} x y+d_{4} x+d_{5} y+d_{6}$ with $d_{1} d_{2}-d_{3}^{2} \neq 0$. Here, $d_{i}(i=1, \ldots, 6)$ are real constants.

Proof. Let $\theta: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a continuous bijection which induces an isomorphism from \mathcal{P} onto \mathcal{N}_{p}. Then, for any affine linear automorphism α of \mathcal{P}, which by the previous lemma has the form
$\alpha(x, y, z)=\left(a_{1} x+b_{1} y+c_{1} z+u, a_{2} x+b_{2} y+c_{2} z+v, a_{3} x+b_{3} y+c_{3} z+w\right)$
with

$$
\operatorname{det}\left(\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right) \neq 0
$$

the composition $\kappa=\theta \circ \alpha$ is still a continuous isomorphism from \mathcal{P} onto \mathcal{N}_{p}.
Note that \mathcal{V}_{x} and \mathcal{V}_{y} are maximal sets of parallel planes belonging to both \mathcal{P} and \mathcal{N}_{p}. Since κ is an isomorphism, the images of \mathcal{V}_{x} and \mathcal{V}_{y} are maximal sets of parallel planes/surfaces in \mathcal{N}_{p}. Thus, we can choose α such that κ maps \mathcal{V}_{x} onto \mathcal{V}_{x} and \mathcal{V}_{y} onto \mathcal{V}_{y}. Hence, κ is of the form

$$
\begin{equation*}
\kappa(x, y, z)=(f(x), g(y), h(x, y, z)) \tag{3.1}
\end{equation*}
$$

and by choosing α appropriately, we may assume that $f(0)=0$ and $g(0)=0$.
Now consider the two-parameter group of automorphisms of \mathcal{P} and \mathcal{N}_{p} whose elements are defined by

$$
\tau_{s, t}(x, y, z)=(x+s, y+t, z)
$$

Since κ maps \mathcal{P} to \mathcal{N}_{p}, we see by the previous lemma that

$$
\begin{equation*}
\tau_{s, t}^{\prime}=\kappa^{-1} \circ \tau_{s, t} \circ \kappa \tag{3.2}
\end{equation*}
$$

is affine linear, and hence, by (3.1), of the form
$\tau_{s, t}^{\prime}(x, y, z)=(\widetilde{a}(s) x+u(s), \widetilde{b}(t) y+v(t), a(s, t) x+b(s, t) y+c(s, t) z+w(s, t))$.
For $s \neq 0, \tau_{s, t}^{\prime}$ does not fix any of the planes in \mathcal{V}_{x}, hence the equation $\widetilde{a}(s) x+u(s)=x$ cannot have a solution. This yields $\widetilde{a}(s) \equiv 1$. Similarly for $t \neq 0, \widetilde{b}(t) y+v(t)=y$ cannot have a solution and thus $\vec{b}(t) \equiv 1$. Thus, $\tau_{s, t}^{\prime}$
has the form

$$
\begin{align*}
& \tau_{s, t}^{\prime}(x, y, z) \tag{3.3}\\
& \quad=(x+u(s), y+v(t), a(s, t) x+b(s, t) y+c(s, t) z+w(s, t))
\end{align*}
$$

Using $\kappa \circ \tau_{s, t}^{\prime}=\tau_{s, t} \circ \kappa$, we obtain

$$
\begin{equation*}
f(x+u(s))=f(x)+s \quad \text { and } \quad g(y+v(t))=g(y)+t \tag{3.4}
\end{equation*}
$$

Letting $x=0$ and $y=0$ in (3.4), we see that

$$
\begin{equation*}
u(s)=f^{-1}(s) \quad \text { and } \quad v(t)=g^{-1}(t) \tag{3.5}
\end{equation*}
$$

since $f(0)=g(0)=0$. Thus u and v are continuous. Furthermore, since the $\tau_{s, t}^{\prime}$ form a group, we have

$$
\begin{equation*}
\tau_{q, r}^{\prime} \circ \tau_{s, t}^{\prime}=\tau_{q+s, r+t}^{\prime} . \tag{3.6}
\end{equation*}
$$

Thus, from (3.6), we have

$$
\begin{equation*}
u(q+s)=u(q)+u(s) \quad \text { and } \quad v(r+t)=v(r)+v(t) . \tag{3.7}
\end{equation*}
$$

Since u and v are continuous, the Cauchy equations in (3.7) yield

$$
\begin{equation*}
u(s)=\xi s \quad \text { and } \quad v(t)=\eta t \tag{3.8}
\end{equation*}
$$

where ξ and η are nonzero arbitrary constants. Again, we can refine our choice of α (the affine linear transformation) to obtain $\xi=\eta=1$. Thus, from (3.5), we get $f(x)=x$ and $g(y)=y$; and from (3.1),

$$
\begin{equation*}
\kappa(x, y, z)=(x, y, h(x, y, z)) . \tag{3.9}
\end{equation*}
$$

Now we note that, for $m \in \mathbb{R}, \sigma_{m}(x, y, z)=(x, y, z+m)$ is the only one-parameter group of automorphisms of \mathcal{P} and \mathcal{N}_{p} which fixes \mathcal{V}_{x} and \mathcal{V}_{y}, respectively and has no fixed points for $m \neq 0$. Thus, the mapping

$$
\begin{equation*}
\sigma_{m} \rightarrow \sigma_{m}^{\prime}=\kappa^{-1} \circ \sigma_{m} \circ \kappa \tag{3.10}
\end{equation*}
$$

is an automorphism of this group. This implies that

$$
\begin{equation*}
\sigma_{m}^{\prime}(x, y, z)=(x, y, z+l(m)) \tag{3.11}
\end{equation*}
$$

for some continuous function $l: \mathbb{R} \rightarrow \mathbb{R}$. Since $\sigma_{m+n}^{\prime}=\sigma_{m}^{\prime} \circ \sigma_{n}^{\prime}$, it follows that

$$
\begin{equation*}
l(m)=\zeta m \quad \text { for some } \zeta \neq 0 \tag{3.12}
\end{equation*}
$$

Since $\sigma_{m}^{\prime}=\kappa^{-1} \circ \sigma_{m} \circ \kappa$, we have

$$
\begin{equation*}
\kappa \circ \sigma_{m}^{\prime}=\sigma_{m} \circ \kappa \tag{3.13}
\end{equation*}
$$

and hence

$$
\begin{equation*}
h(x, y, z+l(m))=h(x, y, z)+m . \tag{3.14}
\end{equation*}
$$

Letting $z=0$ and $m=z / \zeta$, we obtain from (3.14) and (3.12),

$$
\begin{equation*}
h(x, y, z)=h(x, y, 0)+\frac{z}{\zeta}, \tag{3.15}
\end{equation*}
$$

and by again refining our choice of the affine linear transformation α we may assume that $\zeta=1$.

By (3.9), κ maps the $x y$-plane to the set $\{(x, y, h(x, y, 0)) \mid x, y \in \mathbb{R}\}$ and this belongs to \mathcal{N}_{p}. It follows that there exist constants c_{1}, c_{2} and c_{3} such that

$$
\begin{equation*}
h(x, y, 0)=p\left(x+c_{0}, y+c_{1}\right)+c_{2}=: \psi(x, y) . \tag{3.16}
\end{equation*}
$$

Thus (3.15) and (3.16) with $\zeta=1$ yield

$$
\begin{equation*}
h(x, y, z)=\psi(x, y)+z \tag{3.17}
\end{equation*}
$$

and hence from (3.9), we obtain

$$
\begin{equation*}
\kappa(x, y, z)=(x, y, z+\psi(x, y)) . \tag{3.18}
\end{equation*}
$$

Substituting (3.18) into (3.2), we obtain, on the one hand,
(3.19) $\quad \tau_{s, t}^{\prime}(x, y, z)=(x+s, y+t, z+\psi(x, y)-\psi(x+s, y+t))$,
and from (3.3),
(3.20) $\quad \tau_{s, t}^{\prime}(x, y, z)=(x+s, y+t, a(s, t) x+b(s, t) y+c(s, t) z+w(s, t))$.

Setting these two equal yields for the z-component:
(3.21) $z+\psi(x, y)-\psi(x+s, y+t)=a(s, t) x+b(s, t) y+c(s, t) z+w(s, t)$
and it immediately follows that $c(s, t) \equiv 1$. Thus

$$
\begin{equation*}
\psi(x, y)-\psi(x+s, y+t)=a(s, t) x+b(s, t) y+w(s, t) \tag{3.22}
\end{equation*}
$$

Now we let $x=y=0$:

$$
\begin{equation*}
\psi(0,0)-\psi(s, t)=w(s, t) \tag{3.23}
\end{equation*}
$$

Also, letting $x=1, y=0$ in (3.22), we see that

$$
\begin{equation*}
\psi(1,0)-\psi(1+s, t)=a(s, t)+\psi(0,0)-\psi(s, t) . \tag{3.24}
\end{equation*}
$$

Thus (3.24) yields

$$
\begin{equation*}
a(s, t)=\psi(1,0)-\psi(1+s, t)-\psi(0,0)+\psi(s, t) . \tag{3.25}
\end{equation*}
$$

Similarly, letting $x=0$ and $y=1$ in (3.22), we get

$$
\begin{equation*}
b(s, t)=\psi(0,1)-\psi(s, 1+t)-\psi(0,0)+\psi(s, t) . \tag{3.26}
\end{equation*}
$$

Hence, from (3.22), (3.25) and (3.26), we obtain

$$
\begin{align*}
& \psi(x, y)-\psi(x+s, y+t)-\psi(0,0)+\psi(s, t) \tag{3.27}\\
& =\quad x[\psi(1,0)-\psi(1+s, t)-\psi(0,0)+\psi(s, t)] \\
& \quad \quad+y[\psi(0,1)-\psi(s, 1+t)-\psi(0,0)+\psi(s, t)]
\end{align*}
$$

for all $x, y, s, t \in \mathbb{R}$. By Theorem 1, the solution to (3.27) is

$$
\begin{equation*}
\psi(x, y)=d_{1} x^{2}+d_{2} y^{2}+2 d_{3} x y+\delta_{4} x+\delta_{5} y+\delta_{6} \tag{3.28}
\end{equation*}
$$

where $d_{1}, d_{2}, d_{3}, \delta_{4}, \delta_{5}, \delta_{6}$ are real constants. From (3.22), we know that

$$
\begin{equation*}
\psi(x+s, y+t)=\psi(x, y)-a x-b y-w \tag{3.29}
\end{equation*}
$$

That is, if $\psi(x, y)$ is given by (3.28), then there exist $a=a(s, t), b=b(s, t)$ and $w=w(s, t)$ such that (3.29) is true. Thus, any element in \mathcal{N}_{p} is the image under κ of a plane belonging to \mathcal{P}. Conversely, $z=-a x-b y-w$ is the equation of an arbitrary nonvertical plane in \mathcal{P} and its image under κ belongs to \mathcal{N}_{p} if there exist $s=s(a, b)$ and $t=t(a, b)$ such that (3.29) is true. Substituting (3.28) into (3.29), we see that ψ satisfies (3.29) if and only if

$$
\left(\begin{array}{ll}
2 d_{1} & 2 d_{3} \tag{3.30}\\
2 d_{3} & 2 d_{2}
\end{array}\right)\binom{s}{t}=\binom{-a}{-b}
$$

and

$$
\left(\begin{array}{ll}
s & t
\end{array}\right)\left(\begin{array}{ll}
d_{1} & d_{3} \tag{3.31}\\
d_{3} & d_{2}
\end{array}\right)\binom{s}{t}+\left(\begin{array}{l}
\delta_{4} \delta_{5}
\end{array}\right)\binom{s}{t}=w
$$

In order to have a unique solution for s and t (uniqueness is needed so that κ is one-to-one from \mathcal{P} onto \mathcal{N}_{p}), it follows that

$$
\operatorname{det}\left(\begin{array}{ll}
d_{1} & d_{3} \\
d_{3} & d_{2}
\end{array}\right) \neq 0
$$

which is $d_{1} d_{2}-d_{3}^{2} \neq 0$. Hence by (3.16), there exists a continuous isomorphism θ from \mathcal{P} onto \mathcal{N}_{p} if and only if $p(x, y)=d_{1} x^{2}+d_{2} y^{2}+2 d_{3} x y+d_{4} x+$ $d_{5} y+d_{6}$ with $d_{1} d_{2}-d_{3}^{2} \neq 0$. Here, $d_{i}(i=1, \ldots, 6)$ are real constants.

Remark2. Our Theorem 2 has a natural generalization to \mathbb{R}^{n}. In this case, the function $p: \mathbb{R}^{n-1} \rightarrow \mathbb{R}$ is of the form $p(x)=a x^{T}+x B x^{T}+\alpha$, where a is an arbitrary constant in \mathbb{R}^{n-1}, B is an $n-1$ by $n-1$ real symmetric matrix with nonzero determinant, and α is a real constant. Again we leave the details to the reader.

Acknowledgments. This work was supported by a grant from the University of Louisville. The authors would like to thank J. Mycielski and the referee for helpful comments.

REFERENCES

[1] J. Aczél and J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, Cambridge, 1989.
[2] R. Artzy, Linear Geometry, Addison-Wesley, Reading, Mass., 1965.
[3] V. Faber, M. Kuczma and J. Mycielski, Some models of plane geometries and a functional equation, Colloq. Math. 62 (1991), 279-281.
[4] B. Grünbaum and J. Mycielski, Some models of plane geometry, Amer. Math. Monthly 97 (1990), 839-846.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF LOUISVILLE
LOUISVILLE, KENTUCKY 40292,
U.S.A.

E-mail: RCPOWE01@ULKYVX.LOUISVILLE.EDU
T0RIED01@ULKYVX.LOUISVILLE.EDU
PKSAHO01@ULKYVX.LOUISVILLE.EDU

