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A NOTE ON A CONJECTURE OF D. OBERLIN

BY

YIBIAO PAN (PITTSBURGH, PENNSYLVANIA)

1. Let N be a positive integer, Py be the set of all real-valued poly-
nomials on R of degree at most N. In [1], D. Oberlin stated the following
conjecture concerning uniform estimates for oscillatory integrals with poly-
nomial phases:

CONJECTURE. Let n, N be two positive integers. Then there is a con-
stant C(N,n) such that

b
(1.1) | [ @ PO @) da| < (N m)(1+ Js))

for P € Py, a<band s eR.

For the significance of such estimates in Fourier analysis, we refer the
reader to [1] and [2].

Clearly, (1.1) holds if n > N (for n > N it is trivial; for n = N it
follows from van der Corput’s lemma). Hence we need to be concerned with
n=1...,N—1only. For n = 1 or 2, the conjecture has been proved
by Oberlin ([1], Theorem 2). The purpose of this note is to prove the
conjectured estimate (1.1) in the case n = N — 1.

2. We state our result as the following theorem.

THEOREM. Let N > 2 be an integer. Then there exists a constant
C(N) > 0 such that

b
(2.1) ‘ feiP(m)|p(N*1)(x)|1/(N71)+is dz| < C(N)(1 + |s|)/ V=D,
a

for P€ Py,a<band s e€R.

First we state a simple lemma whose proof is deferred until the end of
this note.
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LEMMA 2.1. Let n be a positive integer, Q(x) be a monic polynomial with
real coefficients and degree n. Suppose that the coefficient of the x"~* term

in Q(x) is zero. Then there are m (m < n) disjoint intervals Jy,...,Jm
and r1,...,mm € R such that ;" Jy =R and
(2.2) Q)] = |zfjz —re[" 7,

forxe Jg, k=1,...,m.
We shall need the following lemma which is due to van der Corput.

LEMMA 2.2 ([3], p. 197). Suppose ¢ and ¢ are smooth on [a,b] and ¢
is real-valued. If |¢'(z)| > A, and ¢’ is monotone on [a,b], then

‘ feiW(z)¢($) dx’ < 4)\—1<W;(b)\ + f’l//(x) da;) '

Proof of the Theorem. Let P € Py, and deg(P) = N. By a
change of variable x — cx + d, for suitable ¢ and d, we may assume that
P(x) is of the form
(2.3) P(z) = 2™ + R(z),
with deg(R) < N — 2. To prove the Theorem, it suffices to prove that, for
a<bandseR,

b
(2.4) ‘ [ e gV NTOFE g < O(N) (14 [s]) /N,

Let n = N — 1, Q(z) = P'(z). We assume that n > 2 (for n = 1 is
covered by Oberlin’s result). By Lemma 2.1, there are disjoint intervals
Ji,...,Jm and 71,...,7, € R (for some m < n) such that (J;—, Jy = R
and

Q)] = |z]|z —re[" 7",
for x € Ji, k =1,...,m. To prove (2.4), we may assume that P”(z) is of
constant sign on I = [a,b]. As a further reduction, we shall consider the
integral over each I N Ji N (0,00) and I N Ji N (—00,0), for k = 1,...,m.
Without loss of generality, we pick & = 1, and consider the integral over
InJiN(0,00). For the sake of convenience, we still denote I N J; N (0, 00)
by I. Let A = ry; we have

|P'(z)] > |z]|lz — A",
for x € I. There are two cases.
Case I A > 0. Let 0 > 0 such that 6™ (A+ o) =1+ |s|. Then,

(2.5) [ PO dal < (A4 o) = (14 s
IN[A,A+o]
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On the other hand, by Lemma 2.2, we have, for j > 0,

f ez’P(m)|x‘1/n+isd:D
IN[27 (At0),27 1 (Ato)]

(2.6)

211 (At0)

C(N) . 1 _

2 (9l l/n 4 1/n - 1/n—1

S At o)or T < (A4o)/" + ~ |s| | f x dx
27 (A+o)

CU)U s n—1)j n n—1)j
U +(U)()751)/L(’7)TLIQ(1/ 1)j ZC(N)(1+|3|)1/ o(1/n=1)j

Hence we have
(27) ’ f 61’P(£)|$|1/n+is daj‘ < C(N)(]. + |8|)1/n 22(1/71—1)]‘
IN[A+40,00) >0
< C(N)(1+ s/

It remains for us to show that
(2.8) | @l d| < O(N) (1 + s

1N[0,A]

I A < 47/ (1 4 [o]) /(D) then

A
29) | [ POt < [l de < O+ [s)
IN[0,A] 0

If A > 401 4 sV (Y = 8B, we let o/ = ((1+ |s|)/A)Y/™ < A/4.
Let n; and nsy be two integers such that

2" < B <2mtl and 2" < A/4 < 2m2Fh,

We write

f eiP(I)|.’E|1/n+is dx

N[0, 4]

ng
_ f eiP(w)‘xll/n+is dx + Z f eiP(m)‘w‘l/n+is dr

IN[0,2™1] Jj=n1 In[29 29%1)

+ f eiP(z)|x‘1/n+is dx + f eiP(z)|x’1/n+is dr .
N[22+t Ao’ IN[A—o',A]

The first term and fourth term are easily seen to be bounded by (1+ |s|)'/™.
For the third term, one observes that

[P/ ()] = |af]e — A" = (A/4)(0")" 7,
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for z € TN[2"2*t1 A — ¢'], and the desired bound follows from van der
Corput’s lemma. To treat the second term, we use

|P'(2)] > |alla — A" > (2177)27 A"
for z € I'N[27,2711] ny < j < ny. Then

’ i f eiP(z)’x‘l/nJris dx‘

j=n1 In[2d 2711

1+|8| n —naoni n—
<CZ YTE L2/ < C(1 4 |s[) AT Trem (/D)

Jj=n
C(1+ [s)' 57 (1 + |s)) 71 G0 = O (1 + [s]) /"

The above argument shows that (2.8) holds. Combining (2.5), (2.7) and
(2.8), we see that case I is proved.

Case II: A < 0. This case is actually easier than the previous case. Now
we have |P’(z)| > |z|" for z € I. Let § = (1+4]s|)*/(*+1); we decompose the
integral as

f eiP(a:)|:L,|1/n+is dr = f eiP(ac)|x|1/n+is dx
I IN[0,6]

J=1 In[276,27F14)

While the first term is trivially bounded by (1 + |s|)'/™, an application of
van der Corput’s lemma shows that the second term is also bounded by
(1+ s/

The proof of the theorem is now complete. m

Proof of Lemma 2.1. Let zq,...,2, be the n roots of Q(z), and
A={z,...,2,}. Then we have

(2.10) ﬁ (x — z5)

j=1
Suppose
{Rez|ze A}y ={r1,...,mm},
and 1 < ... < ;. Define

J1:<—OO,T1+T2:|, Jm:<rml+rqﬂ.,00),
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and

Jip = ], fork=2,...,m—1.

Th—1+ 7Tk Tk +TEt1
2 ’ 2
k

Forxze I, 1<

(2.11) |z — zj| > |z — Rezj| > |z — g,

for all j =1,...,n. On the other hand, we have
Z(z—zj) :na:—z,zj =nz,
j=1 j=1

where we used the fact that the coefficient of the 2"~ ! term in Q(z) is zero.
Hence, for every x € R, there is a j,, 1 < j, < n, such that

(212) 2= 25,1 2 ol
(2.11) and (2.12) imply that
Q)| > Jalle — i7",

forxeJp, k=1,...,m. =m
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