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A NOTE ON A CONJECTURE OF D. OBERLIN

BY

YIBIAO PAN (PITTSBURGH, PENNSYLVANIA)

1. Let N be a positive integer, PN be the set of all real-valued poly-
nomials on R of degree at most N . In [1], D. Oberlin stated the following
conjecture concerning uniform estimates for oscillatory integrals with poly-
nomial phases:

Conjecture. Let n, N be two positive integers. Then there is a con-
stant C(N,n) such that

(1.1)
∣∣∣ b∫

a

eiP (x)|P (n)(x)|1/n+is dx
∣∣∣ ≤ C(N,n)(1 + |s|)1/n ,

for P ∈ PN , a < b and s ∈ R.

For the significance of such estimates in Fourier analysis, we refer the
reader to [1] and [2].

Clearly, (1.1) holds if n ≥ N (for n > N it is trivial; for n = N it
follows from van der Corput’s lemma). Hence we need to be concerned with
n = 1, . . . , N − 1 only. For n = 1 or 2, the conjecture has been proved
by Oberlin ([1], Theorem 2). The purpose of this note is to prove the
conjectured estimate (1.1) in the case n = N − 1.

2. We state our result as the following theorem.

Theorem. Let N ≥ 2 be an integer. Then there exists a constant
C(N) > 0 such that

(2.1)
∣∣∣ b∫

a

eiP (x)|P (N−1)(x)|1/(N−1)+is dx
∣∣∣ ≤ C(N)(1 + |s|)1/(N−1),

for P ∈ PN , a < b and s ∈ R.

First we state a simple lemma whose proof is deferred until the end of
this note.
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Lemma 2.1. Let n be a positive integer , Q(x) be a monic polynomial with
real coefficients and degree n. Suppose that the coefficient of the xn−1 term
in Q(x) is zero. Then there are m (m ≤ n) disjoint intervals J1, . . . , Jm

and r1, . . . , rm ∈ R such that
⋃m

k=1 Jk = R and

(2.2) |Q(x)| ≥ |x||x− rk|n−1,

for x ∈ Jk, k = 1, . . . ,m.

We shall need the following lemma which is due to van der Corput.

Lemma 2.2 ([3], p. 197). Suppose ϕ and ψ are smooth on [a, b] and ϕ
is real-valued. If |ϕ′(x)| ≥ λ, and ϕ′ is monotone on [a, b], then∣∣∣ b∫

a

eiϕ(x)ψ(x) dx
∣∣∣ ≤ 4λ−1

(
|ψ(b)|+

b∫
a

|ψ′(x)| dx
)
.

P r o o f o f t h e T h e o r e m. Let P ∈ PN , and deg(P ) = N . By a
change of variable x → cx + d, for suitable c and d, we may assume that
P (x) is of the form

(2.3) P (x) = xN +R(x) ,

with deg(R) ≤ N − 2. To prove the Theorem, it suffices to prove that, for
a < b and s ∈ R,

(2.4)
∣∣∣ b∫

a

eiP (x)|x|1/(N−1)+is dx
∣∣∣ ≤ C(N)(1 + |s|)1/(N−1).

Let n = N − 1, Q(x) = P ′(x). We assume that n ≥ 2 (for n = 1 is
covered by Oberlin’s result). By Lemma 2.1, there are disjoint intervals
J1, . . . , Jm and r1, . . . , rm ∈ R (for some m ≤ n) such that

⋃m
k=1 Jk = R

and
|Q(x)| ≥ |x||x− rk|n−1 ,

for x ∈ Jk, k = 1, . . . ,m. To prove (2.4), we may assume that P ′′(x) is of
constant sign on I = [a, b]. As a further reduction, we shall consider the
integral over each I ∩ Jk ∩ (0,∞) and I ∩ Jk ∩ (−∞, 0), for k = 1, . . . ,m.
Without loss of generality, we pick k = 1, and consider the integral over
I ∩ J1 ∩ (0,∞). For the sake of convenience, we still denote I ∩ J1 ∩ (0,∞)
by I. Let A = r1; we have

|P ′(x)| ≥ |x||x−A|n−1 ,

for x ∈ I. There are two cases.

C a s e I: A > 0. Let σ > 0 such that σn(A+ σ) = 1 + |s|. Then,

(2.5)
∣∣∣ ∫

I∩[A,A+σ]

eiP (x)|x|1/n+is dx
∣∣∣ ≤ σ(A+ σ)1/n = (1 + |s|)1/n .
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On the other hand, by Lemma 2.2, we have, for j ≥ 0,

(2.6)
∣∣∣ ∫

I∩[2j(A+σ),2j+1(A+σ)]

eiP (x)|x|1/n+isdx
∣∣∣

≤ C(N)
2j(A+ σ)σn−1

(
2(j+1)/n(A+ σ)1/n +

(
1
n

+ |s|
) 2j+1(A+σ)∫

2j(A+σ)

x1/n−1 dx

)

≤ C(N)(1 + |s|)
(A+ σ)(n−1)/nσn−1

2(1/n−1)j = C(N)(1 + |s|)1/n2(1/n−1)j .

Hence we have∣∣∣ ∫
I∩[A+σ,∞)

eiP (x)|x|1/n+is dx
∣∣∣ ≤ C(N)(1 + |s|)1/n

∑
j≥0

2(1/n−1)j(2.7)

≤ C(N)(1 + |s|)1/n .

It remains for us to show that

(2.8)
∣∣∣ ∫

I∩[0,A]

eiP (x)|x|1/n+is dx
∣∣∣ ≤ C(N)(1 + |s|)1/n .

If A ≤ 4n/(n+1)(1 + |s|)1/(n+1), then

(2.9)
∣∣∣ ∫

I∩[0,A]

eiP (x)|x|1/n+is dx
∣∣∣ ≤ A∫

0

x1/n dx ≤ C(N)(1 + |s|)1/n .

If A > 4n/(n+1)(1 + |s|)1/(n+1) = 8B, we let σ′ = ((1 + |s|)/A)1/n ≤ A/4.
Let n1 and n2 be two integers such that

2n1 ≤ B < 2n1+1 and 2n2 ≤ A/4 < 2n2+1 .

We write∫
I∩[0,A]

eiP (x)|x|1/n+is dx

=
∫

I∩[0,2n1 ]

eiP (x)|x|1/n+is dx+
n2∑

j=n1

∫
I∩[2j ,2j+1]

eiP (x)|x|1/n+is dx

+
∫

I∩[2n2+1,A−σ′]

eiP (x)|x|1/n+is dx+
∫

I∩[A−σ′,A]

eiP (x)|x|1/n+is dx .

The first term and fourth term are easily seen to be bounded by (1+ |s|)1/n.
For the third term, one observes that

|P ′(x)| ≥ |x||x−A|n−1 ≥ (A/4)(σ′)n−1 ,
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for x ∈ I ∩ [2n2+1, A − σ′], and the desired bound follows from van der
Corput’s lemma. To treat the second term, we use

|P ′(x)| ≥ |x||x−A|n−1 ≥ (21−n)2jAn−1

for x ∈ I ∩ [2j , 2j+1], n1 ≤ j ≤ n2. Then∣∣∣ n2∑
j=n1

∫
I∩[2j ,2j+1]

eiP (x)|x|1/n+is dx
∣∣∣

≤ C

n2∑
j=n1

(1 + |s|)
2jAn−1

2j/n ≤ C(1 + |s|)A1−n2n1(1/n−1)

≤ C(1 + |s|)1−
n−1
n+1 (1 + |s|)

1
n+1 ( 1

n−1) = C(1 + |s|)1/n .

The above argument shows that (2.8) holds. Combining (2.5), (2.7) and
(2.8), we see that case I is proved.

C a s e II: A ≤ 0. This case is actually easier than the previous case. Now
we have |P ′(x)| ≥ |x|n for x ∈ I. Let δ = (1+ |s|)1/(n+1); we decompose the
integral as∫

I

eiP (x)|x|1/n+is dx =
∫

I∩[0,δ]

eiP (x)|x|1/n+is dx

+
∞∑

j=1

∫
I∩[2jδ,2j+1δ]

eiP (x)|x|1/n+is dx .

While the first term is trivially bounded by (1 + |s|)1/n, an application of
van der Corput’s lemma shows that the second term is also bounded by
(1 + |s|)1/n.

The proof of the theorem is now complete.

P r o o f o f L e m m a 2.1. Let z1, . . . , zn be the n roots of Q(x), and
∆ = {z1, . . . , zn}. Then we have

(2.10) Q(x) =
n∏

j=1

(x− zj) .

Suppose

{Re z | z ∈ ∆} = {r1, . . . , rm} ,
and r1 < . . . < rm. Define

J1 =
(
−∞,

r1 + r2
2

]
, Jm =

(
rm−1 + rm

2
,∞

)
,
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and

Jk =
(
rk−1 + rk

2
,
rk + rk+1

2

]
, for k = 2, . . . ,m− 1 .

For x ∈ Ik, 1 ≤ k ≤ m, we find

(2.11) |x− zj | ≥ |x− Re zj | ≥ |x− rk|,
for all j = 1, . . . , n. On the other hand, we have

n∑
j=1

(x− zj) = nx−
n∑

j=1

zj = nx ,

where we used the fact that the coefficient of the xn−1 term in Q(x) is zero.
Hence, for every x ∈ R, there is a jx, 1 ≤ jx ≤ n, such that

(2.12) |x− zjx
| ≥ |x| .

(2.11) and (2.12) imply that

|Q(x)| ≥ |x||x− rk|n−1 ,

for x ∈ Jk, k = 1, . . . ,m.
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