VOL. LXVI

1993

A NOTE ON A CONJECTURE OF D. OBERLIN

BY

YIBIAO PAN (PITTSBURGH, PENNSYLVANIA)

1. Let N be a positive integer, P_N be the set of all real-valued polynomials on \mathbb{R} of degree at most N. In [1], D. Oberlin stated the following conjecture concerning uniform estimates for oscillatory integrals with polynomial phases:

CONJECTURE. Let n, N be two positive integers. Then there is a constant C(N, n) such that

(1.1)
$$\left| \int_{a}^{b} e^{iP(x)} |P^{(n)}(x)|^{1/n+is} dx \right| \le C(N,n)(1+|s|)^{1/n},$$

for $P \in P_N$, a < b and $s \in \mathbb{R}$.

For the significance of such estimates in Fourier analysis, we refer the reader to [1] and [2].

Clearly, (1.1) holds if $n \ge N$ (for n > N it is trivial; for n = N it follows from van der Corput's lemma). Hence we need to be concerned with $n = 1, \ldots, N - 1$ only. For n = 1 or 2, the conjecture has been proved by Oberlin ([1], Theorem 2). The purpose of this note is to prove the conjectured estimate (1.1) in the case n = N - 1.

2. We state our result as the following theorem.

THEOREM. Let $N \ge 2$ be an integer. Then there exists a constant C(N) > 0 such that

(2.1)
$$\left| \int_{a}^{b} e^{iP(x)} |P^{(N-1)}(x)|^{1/(N-1)+is} dx \right| \le C(N)(1+|s|)^{1/(N-1)},$$

for $P \in P_N$, a < b and $s \in \mathbb{R}$.

First we state a simple lemma whose proof is deferred until the end of this note.

¹⁹⁹¹ Mathematics Subject Classification: Primary 42B20.

LEMMA 2.1. Let n be a positive integer, Q(x) be a monic polynomial with real coefficients and degree n. Suppose that the coefficient of the x^{n-1} term in Q(x) is zero. Then there are m $(m \leq n)$ disjoint intervals J_1, \ldots, J_m and $r_1, \ldots, r_m \in \mathbb{R}$ such that $\bigcup_{k=1}^m J_k = \mathbb{R}$ and

(2.2)
$$|Q(x)| \ge |x||x - r_k|^{n-1},$$

for $x \in J_k, \ k = 1, ..., m$.

We shall need the following lemma which is due to van der Corput.

LEMMA 2.2 ([3], p. 197). Suppose φ and ψ are smooth on [a, b] and φ is real-valued. If $|\varphi'(x)| \geq \lambda$, and φ' is monotone on [a, b], then

$$\left|\int_{a}^{b} e^{i\varphi(x)}\psi(x)\,dx\right| \leq 4\lambda^{-1}\left(|\psi(b)| + \int_{a}^{b} |\psi'(x)|\,dx\right).$$

Proof of the Theorem. Let $P \in P_N$, and $\deg(P) = N$. By a change of variable $x \to cx + d$, for suitable c and d, we may assume that P(x) is of the form

(2.3)
$$P(x) = x^N + R(x),$$

with $\deg(R) \leq N-2$. To prove the Theorem, it suffices to prove that, for a < b and $s \in \mathbb{R}$,

(2.4)
$$\left| \int_{a}^{b} e^{iP(x)} |x|^{1/(N-1)+is} dx \right| \le C(N)(1+|s|)^{1/(N-1)}$$

Let n = N - 1, Q(x) = P'(x). We assume that $n \ge 2$ (for n = 1 is covered by Oberlin's result). By Lemma 2.1, there are disjoint intervals J_1, \ldots, J_m and $r_1, \ldots, r_m \in \mathbb{R}$ (for some $m \le n$) such that $\bigcup_{k=1}^m J_k = \mathbb{R}$ and

$$|Q(x)| \ge |x||x - r_k|^{n-1}$$

for $x \in J_k$, k = 1, ..., m. To prove (2.4), we may assume that P''(x) is of constant sign on I = [a, b]. As a further reduction, we shall consider the integral over each $I \cap J_k \cap (0, \infty)$ and $I \cap J_k \cap (-\infty, 0)$, for k = 1, ..., m. Without loss of generality, we pick k = 1, and consider the integral over $I \cap J_1 \cap (0, \infty)$. For the sake of convenience, we still denote $I \cap J_1 \cap (0, \infty)$ by I. Let $A = r_1$; we have

$$|P'(x)| \ge |x||x - A|^{n-1},$$

for $x \in I$. There are two cases.

Case I: A > 0. Let $\sigma > 0$ such that $\sigma^n(A + \sigma) = 1 + |s|$. Then,

(2.5)
$$\left| \int_{I \cap [A, A+\sigma]} e^{iP(x)} |x|^{1/n+is} dx \right| \le \sigma (A+\sigma)^{1/n} = (1+|s|)^{1/n}.$$

On the other hand, by Lemma 2.2, we have, for $j \ge 0$,

$$(2.6) \quad \left| \int_{I \cap [2^{j}(A+\sigma), 2^{j+1}(A+\sigma)]} e^{iP(x)} |x|^{1/n+is} dx \right|$$

$$\leq \frac{C(N)}{2^{j}(A+\sigma)\sigma^{n-1}} \left(2^{(j+1)/n} (A+\sigma)^{1/n} + \left(\frac{1}{n} + |s|\right) \int_{2^{j}(A+\sigma)}^{2^{j+1}(A+\sigma)} x^{1/n-1} dx \right)$$

$$\leq \frac{C(N)(1+|s|)}{(A+\sigma)^{(n-1)/n}\sigma^{n-1}} 2^{(1/n-1)j} = C(N)(1+|s|)^{1/n} 2^{(1/n-1)j}.$$

Hence we have

(2.7)
$$\left| \int_{I \cap [A+\sigma,\infty)} e^{iP(x)} |x|^{1/n+is} dx \right| \le C(N)(1+|s|)^{1/n} \sum_{j\ge 0} 2^{(1/n-1)j} \le C(N)(1+|s|)^{1/n}.$$

It remains for us to show that

(2.8)
$$\left| \int_{I \cap [0,A]} e^{iP(x)} |x|^{1/n+is} \, dx \right| \le C(N)(1+|s|)^{1/n} \, .$$

If $A \leq 4^{n/(n+1)}(1+|s|)^{1/(n+1)}$, then

(2.9)
$$\left| \int_{I \cap [0,A]} e^{iP(x)} |x|^{1/n+is} dx \right| \le \int_{0}^{A} x^{1/n} dx \le C(N)(1+|s|)^{1/n}.$$

If $A > 4^{n/(n+1)}(1+|s|)^{1/(n+1)} = 8B$, we let $\sigma' = ((1+|s|)/A)^{1/n} \le A/4$. Let n_1 and n_2 be two integers such that

$$2^{n_1} \leq B < 2^{n_1+1} \quad \text{and} \quad 2^{n_2} \leq A/4 < 2^{n_2+1} \,.$$

We write

$$\begin{split} & \int\limits_{I\cap[0,A]} e^{iP(x)} |x|^{1/n+is} \, dx \\ &= \int\limits_{I\cap[0,2^{n_1}]} e^{iP(x)} |x|^{1/n+is} \, dx + \sum_{j=n_1}^{n_2} \int\limits_{I\cap[2^j,2^{j+1}]} e^{iP(x)} |x|^{1/n+is} \, dx \\ &+ \int\limits_{I\cap[2^{n_2+1},A-\sigma']} e^{iP(x)} |x|^{1/n+is} \, dx + \int\limits_{I\cap[A-\sigma',A]} e^{iP(x)} |x|^{1/n+is} \, dx \, . \end{split}$$

The first term and fourth term are easily seen to be bounded by $(1+|s|)^{1/n}$. For the third term, one observes that

$$|P'(x)| \ge |x||x - A|^{n-1} \ge (A/4)(\sigma')^{n-1},$$

for $x \in I \cap [2^{n_2+1}, A - \sigma']$, and the desired bound follows from van der Corput's lemma. To treat the second term, we use

$$P'(x) \ge |x||x - A|^{n-1} \ge (2^{1-n})2^j A^{n-1}$$

for $x \in I \cap [2^j, 2^{j+1}], n_1 \le j \le n_2$. Then

$$\begin{split} \Big| \sum_{j=n_1}^{n_2} \int\limits_{I \cap [2^j, 2^{j+1}]} e^{iP(x)} |x|^{1/n+is} \, dx \Big| \\ &\leq C \sum_{j=n_1}^{n_2} \frac{(1+|s|)}{2^j A^{n-1}} 2^{j/n} \leq C(1+|s|) A^{1-n} 2^{n_1(1/n-1)} \\ &\leq C(1+|s|)^{1-\frac{n-1}{n+1}} (1+|s|)^{\frac{1}{n+1}(\frac{1}{n}-1)} = C(1+|s|)^{1/n} \end{split}$$

The above argument shows that (2.8) holds. Combining (2.5), (2.7) and (2.8), we see that case I is proved.

Case II: $A \leq 0$. This case is actually easier than the previous case. Now we have $|P'(x)| \geq |x|^n$ for $x \in I$. Let $\delta = (1+|s|)^{1/(n+1)}$; we decompose the integral as

$$\int_{I} e^{iP(x)} |x|^{1/n+is} dx = \int_{I \cap [0,\delta]} e^{iP(x)} |x|^{1/n+is} dx + \sum_{j=1}^{\infty} \int_{I \cap [2^{j}\delta, 2^{j+1}\delta]} e^{iP(x)} |x|^{1/n+is} dx$$

While the first term is trivially bounded by $(1 + |s|)^{1/n}$, an application of van der Corput's lemma shows that the second term is also bounded by $(1 + |s|)^{1/n}$.

The proof of the theorem is now complete. \blacksquare

Proof of Lemma 2.1. Let z_1, \ldots, z_n be the *n* roots of Q(x), and $\Delta = \{z_1, \ldots, z_n\}$. Then we have

(2.10)
$$Q(x) = \prod_{j=1}^{n} (x - z_j).$$

Suppose

$$\{\operatorname{Re} z \mid z \in \Delta\} = \{r_1, \ldots, r_m\},\$$

and $r_1 < \ldots < r_m$. Define

$$J_1 = \left(-\infty, \frac{r_1 + r_2}{2}\right], \quad J_m = \left(\frac{r_{m-1} + r_m}{2}, \infty\right),$$

and

$$J_k = \left(\frac{r_{k-1} + r_k}{2}, \frac{r_k + r_{k+1}}{2}\right], \quad \text{for } k = 2, \dots, m-1.$$

For $x \in I_k$, $1 \le k \le m$, we find

(2.11)
$$|x - z_j| \ge |x - \operatorname{Re} z_j| \ge |x - r_k|,$$

for all j = 1, ..., n. On the other hand, we have

$$\sum_{j=1}^{n} (x - z_j) = nx - \sum_{j=1}^{n} z_j = nx \,,$$

where we used the fact that the coefficient of the x^{n-1} term in Q(x) is zero. Hence, for every $x \in \mathbb{R}$, there is a j_x , $1 \le j_x \le n$, such that (2.12) $|x - z_{j_x}| \ge |x|$.

$$(2.11)$$
 and (2.12) imply the

$$|Q(x)| \ge |x||x - r_k|^{n-1}$$
,

for $x \in J_k, k = 1, \ldots, m$.

REFERENCES

- [1] D. Oberlin, Oscillatory integrals with polynomial phase, Math. Scand. 69 (1991), 145-156.
- [2] E. M. Stein, Oscillatory integrals in Fourier analysis, in: Beijing Lectures in Harmonic Analysis, Princeton Univ. Press, Princeton, 1986, 307–355.
- [3] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, Cambridge, 1959.

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF PITTSBURGH PITTSBURGH, PENNSYLVANIA 15260 U.S.A.

Reçu par la Rédaction le 19.10.1992