COLLOQUIUM MATHEMATICUM

VOL. LXVI

FASC. 1

ON THE DISJOINT (0, n)-CELLS PROPERTY FOR HOMOGENEOUS ANR'S

by PAWEŁ KRUPSKI (WROCŁAW)

A metric space (X, ϱ) satisfies the disjoint (0, n)-cells property provided for each point $x \in X$, any map f of the n-cell B^n into X and for each $\varepsilon > 0$ there exist a point $y \in X$ and a map $g : B^n \to X$ such that $\varrho(x, y) < \varepsilon$, $\widehat{\varrho}(f, g) < \varepsilon$ and $y \notin g(B^n)$. It is proved that each homogeneous locally compact ANR of dimension > 2 has the disjoint (0, 2)-cells property. If dim X = n > 0, X has the disjoint (0, n-1)-cells property and X is a locally compact LC^{n-1} -space then local homologies satisfy $H_k(X, X - x) = 0$ for k < n and $H_n(X, X - x) \neq 0$.

0. Introduction. All spaces in the paper are assumed to be metric separable and all mappings are continuous. A space X is said to be homogeneous if for each couple of points $x, y \in X$ there exists a homeomorphism $h: X \to X$ such that h(x) = y. Function spaces are endowed with the compact-open topology. In particular, if Y is locally compact and ϱ is a metric in X, then the space X^Y is metrizable by the metric $\hat{\varrho}$ defined as follows: represent Y as the union $Y = \bigcup_{m=1}^{\infty} C_m$, where C_m is compact and $C_m \subset \operatorname{int} C_{m+1}$ for each m; for $f, g \in X^Y$ put $\varrho_m(f, g) = \min\{1/m, \sup\{\varrho(f(y), g(y)) : y \in C_m\}\}$ and $\hat{\varrho}(f, g) = \sup\{\varrho_m(f, g) : m = 1, 2, \ldots\}$. We will say that maps $f \in X^Y$ approximate a given map $g \in X^Y$ if $\hat{\varrho}(f, g)$ can be made as small as we wish. Two maps $f, g \in X^Y$ are said to be ε -close if $\varrho(f(y), g(y)) < \varepsilon$ for each $y \in Y$. As usual, $B^n = \{x \in \mathbb{R}^n : |x| \leq 1\}, S^{n-1} = \partial B^n = \{x \in \mathbb{R}^n : |x| = 1\}, I = [0, 1], B^0$ means a one-point space.

The disjoint (n, m)-cells property of a space X, denoted by D(n, m), is defined as follows: for each $\varepsilon > 0$ and any two mappings $f : B^n \to X$ and $g : B^m \to X$ there exist mappings $f' : B^n \to X$ and $g' : B^m \to X$ such that $\widehat{\varrho}(f, f') < \varepsilon$, $\widehat{\varrho}(g, g') < \varepsilon$ and $f'(B^n) \cap g'(B^m) = \emptyset$. Obviously $D(n, m) \Rightarrow$ D(n', m') for $n' \leq n$, $m' \leq m$. The properties D(n, m) for n = m > 1

¹⁹⁹¹ Mathematics Subject Classification: 54F35, 55M15, 54C55, 57P05.

Key words and phrases: LC^n -space, absolute neighborhood retract, homogeneous space, disjoint cells property, generalized manifold.

are crucial in recognizing manifolds among ANR's of (finite or infinite) dimensions >4 (see [5] as a general reference). The Bing–Borsuk conjecture [1] says that every *n*-dimensional (n > 2) locally compact homogeneous ANR is a manifold or at least a generalized manifold. So far, it is not even known whether homogeneous ANR-spaces of dimension >4 must contain a 2-cell (the property D(2, 2) would imply that).

This paper is concerned with the properties D(0, n) which play a role in recognizing generalized manifolds. The property D(0,0) of a space X just means that X is dense in itself. A space X satisfies D(0,1) if and only if X contains no free arcs, i.e. each arc is nowhere dense in X (note that each map $f: I \to X$ can be approximated by a map $q: I \to X$ whose image is a finite union of small arcs in f(I); thus q(I) is nowhere dense in X and D(0, 1)follows). For a homogeneous locally compact ANR X we have $X \in D(0, 1)$ if and only if dim X > 1. Indeed, if dim X > 1, then by the homogeneity arcs are nowhere dense in X; if dim X = 1, then X is a one-manifold [1, Theorem 6.1, hence it contains free arcs. Nontrivial problems start with n > 1. Therefore, henceforth, we always assume n > 1 when dealing with D(0,n). The main result is that each homogeneous locally compact ANR of dimension > 2 has D(0,2). For such spaces X we also present an easyto-follow argument that D(0,n) implies $H_k(X, X - \{x\}) = 0$ for $k \leq n$ (all homology groups are singular with integer coefficients). The latter result was first established in [10] with a heavy use of algebraic topology. Actually, we show a more natural stronger version for LC^n -spaces and homotopy groups. Moreover, if dim X = n and $X \in D(0, n-1)$, then $H_n(X, X - \{x\}) \neq 0$. This generalizes a theorem announced by Lysko [8].

The author thanks T. Januszkiewicz for several improvements.

1. Auxiliary results. The book [9] is a good reference for basic theory of ANR's. For convenience we recall here three facts about ANR's and their counterparts for LC^n -spaces.

(1.1) Open subsets of an ANR (LC^n -space) are again ANR's (LC^n -spaces).

(1.2) If X is an ANR (LCⁿ-space), $\varepsilon > 0$ and f is a map from a compact space Y (with dim $Y \leq n$, resp.) into X, then there is a $\delta > 0$ such that if another map $g: Y \to X$ is δ -close to f, then f and g are ε -homotopic.

(1.3) The small homotopy extension property, which means the homotopy extension property where all homotopies involved are limited by an arbitrarily fixed number $\varepsilon > 0$ (and come from spaces of dimension at most n in case of LC^n -spaces).

We are going to use the following Effros theorem.

PROPOSITION 1.4. If X is a homogeneous locally compact space with metric ρ , $a \in X$ and $\varepsilon > 0$, then there exists $\delta > 0$ such that if $\rho(x, a) < \delta$, then there is a homeomorphism $h: X \to X$ satisfying h(a) = x and $\hat{\rho}(h, \mathrm{id}_X) < \varepsilon$ (the number δ is called an *Effros* δ for ε and a).

Remark. Effros' theorem has usually been formulated for compact spaces. However, its proof, as that in [3, p. 584], runs unchanged for locally compact spaces X due to the fact that the group of all selfhomeomorphisms of X is a Borel subset of X^X [6].

PROPOSITION 1.5. Suppose X is a homogeneous locally compact ANR with metric ϱ , $U \subset X$ is an open neighborhood of a point x with compact closure, $0 < \varepsilon < \varrho(x, X - U)$ and $K = X - N_{\varepsilon}(X - U)$ where $N_{\varepsilon}(X - U)$ denotes the open ε -ball around X - U. Then there exists a $\delta > 0$ such that if $\varrho(x, y) < \delta$, $y \in U$, then there is a mapping $g : U \to U$ which is ε -close to the identity id_U on U, g|K is a homeomorphism and g(y) = x.

Proof. Represent X as the union of compact subsets C_m such that $C_m \subset \operatorname{int} C_{m+1}$ for $m=1,2,\ldots$ There exists n such that $U \subset C_n$. Since U is an ANR, there is a positive number $\eta < \min\{\varepsilon, 1/n\}$ such that if a mapping $f: K \to U$ is η -close to id_K , then f is ε -homotopic to id_K in U. Consider an Effros' δ for η and x. Take $y \in U$ with $\varrho(x, y) < \delta$. By Proposition 1.4 there exists a homeomorphism $h: X \to X$ such that h(y) = x and $\widehat{\varrho}(h, \operatorname{id}_X) < \eta$. By the definition of $\widehat{\varrho}, h | K$ is η -close to id_K . It follows from (1.3) that h | K extends to a mapping $g: U \to U$ which is ε -close to id_U .

Let us recall the notion of a Cantor manifold. A locally compact *n*dimensional space is called a *Cantor manifold* if no subset of dimension less than n-1 separates it. If the space is infinite-dimensional, then it is called a *Cantor manifold* if no finite-dimensional subset separates it. A locally compact locally connected space is a *local Cantor manifold* if each connected open subset is a Cantor manifold of the same dimension.

The following theorem was stated in [7] (see also [6]).

PROPOSITION 1.6. Any locally compact locally connected homogeneous space is a local Cantor manifold.

On the other hand, one can recognize local Cantor manifolds by means of local homology groups.

PROPOSITION 1.7. Let X be a locally compact locally connected space and n > 1. If $H_k(X, X - \{x\}) = 0$ for every $x \in X$ and k < n, then dim $X \ge n$. In the case where dim X = n at each point, X is a local Cantor manifold.

Proof. Let U be an open connected subset of X. From [4, Lemma 2.1] and the excision we have $H_1(U, U - A) = 0$ for each closed subset A of X whose dimension is less than n - 1. This means that U - A is connected.

But if dim X < n, then X contains a basis of open sets with boundaries of dimension less than n - 1. Therefore dim $X \ge n$. The second part of the proposition now easily follows.

Recall that a subset A of X is called *locally k-coconnected* (k-LCC) if for each $a \in A$ any neighborhood U of a contains a neighborhood V of a such that each map of S^k into V - A can be extended to a map of B^{k+1} into U - A. The condition LCCⁿ means k-LCC for all k = 0, 1, ..., n.

PROPOSITION 1.8 [7]. If X is a homogeneous locally compact space, then X has the property D(0,n) if and only if the following condition $D^*(0,n)$ holds: for each point $x \in X$ any mapping $f : B^n \to X$ can be approximated by mappings with images omitting x. If X is an LC^n -space of dimension greater than 1, then $D^*(0,n)$ is equivalent to a singleton $\{x\}$ being LCC^{n-1} for each $x \in X$.

R e m a r k. Condition $D^*(0, n)$ follows from D(0, n) by Proposition 1.4. The second part of the above proposition was formulated in [7] under superfluous assumptions that X be a compact ANR and dim X > 2, but the proof runs for an LCⁿ-space X; the assumption dim X > 2 was used there to derive D(0, 1) from D(1, 1) but, as we have seen in the previous section, D(0, 1) is a consequence of dim X > 1.

We add the following nice description of the property D(0, n).

PROPOSITION 1.9. If X is a homogeneous locally compact space, then X has D(0,n) if and only if the set of all mappings of B^n into X with nowhere dense images is dense in the mapping space X^{B^n} .

Proof. Suppose X satisfies D(0,n). Let $\{d_1, d_2, ...\}$ be a countable dense subset of X and $D_m = \{d_1, ..., d_m\}$. It easily follows from Proposition 1.8 that, given any finite subset A of X, each mapping of B^n into X can be approximated by mappings omitting A. Hence the set \mathcal{F}_m of all mappings of B^n into $X - D_m$ is open and dense in X^{B^n} . Now, the set $\bigcap_{m=1}^{\infty} \mathcal{F}_m$ consists of mappings with nowhere dense images and is dense in X^{B^n} by the Baire Category Theorem. The proof of the converse implication is left to the reader. ■

2. Main results

PROPOSITION 2.1. Assume a locally compact LC^n -space X satisfies $D^*(0,n)$, n > 1. If U is an open nonempty subset of X, $x \in X$ and $z \in U - \{x\}$, then the inclusion-induced homomorphism i_* between the k-th homotopy groups $\pi_k(U - \{x\}, z)$ and $\pi_k(U, z)$ is an isomorphism for 0 < k < n and it is an epimorphism for k = n.

Proof. Recall that $D(0,n) \Rightarrow D(0,k)$ for $k \leq n$. To show that i_* is one-to-one for 0 < k < n take two maps f and g of the cube I^k into $U - \{x\}$ which are joined by a homotopy $H: I^k \times I \to U$ such that $H(\partial I^k \times I) = \{z\}$. By $D^*(0,n)$, H is approximated, arbitrarily closely, by a map $H': I^k \times I \to$ $U - \{x\}$. If H' is close enough to H, then by (1.1)–(1.3) the map $H|\partial I^{k+1}$ has an extension $\overline{H}: I^k \times I \to U - \{x\}$. Hence f and g represent the same element of $\pi_k(U - \{x\}, z)$. To prove that i_* is onto for $0 < k \le n$ let $f: I^k \to U$ be a map such that $f(\partial I^k) = \{z\}$. Then f is approximated by a map $f': I^k \to U - \{x\}$ (property $D^*(0,n)$). Set $K = I^k \times \{0\} \cup \partial I^k \times I$ and consider the map $H: K \to U$ defined by H(p,0) = f(p) for $p \in I^k$ and $H(\partial I^k \times I) = \{z\}$. It follows from (1.1)–(1.3) that if f' is close enough to f, then there is a small homotopy $G: I^k \times I \to U$, where G(p,0) = f(p), G(p,1) = f'(p), such that G|K is homotopic to H in U. Thus H extends to a homotopy $\overline{H}: I^k \times I \to U$ which approximates G. Then the map g defined by $g(p) = \overline{H}(p, 1)$ approximates f', so we can assume that g maps I^k into $U - \{x\}$. Moreover, the homotopy \overline{H} joins f and g and $\overline{H}(\partial I^k \times I) = \{z\}$.

R e m a r k. That the fundamental groups $\pi_1(U - \{x\}, z)$ and $\pi_1(U, z)$ are isomorphic follows also from [5, Proposition 3, p. 144].

PROPOSITION 2.2. If $i_* : \pi_k(U - \{x\}) \to \pi_k(U)$ is a monomorphism for each $x \in X$ and each U from a basis \mathcal{U} of open connected subsets of an LC^n -space X (0 < k < n), then $\{x\}$ is k-LCC.

Proof. Write $\mathcal{U}_x = \{U \in \mathcal{U} : x \in U\}$. Suppose W is an open neighborhood of x. Choose $U_2 \subset U_1 \subset U_0 \subset W$ such that $U_i \in \mathcal{U}_x$ and any map from an at most *n*-dimensional space into U_{i+1} is homotopic in U_i to a constant map, i = 0, 1. Fix a point s of the sphere S^k and consider a map $f : (S^k, s) \to (U_2 - \{x\}, f(s))$.

This map is homotopic in U_1 to a constant map g. Since U_1 is arcwise connected, we can assume that $g(S^k) = f(s)$. Suppose $H: S^k \times I \to U_1$ is a homotopy such that H(p,0) = f(p), H(p,1) = f(s). Put $K = S^k \times$ $\{0,1\} \cup \{s\} \times I$ and define $G: K \to U_2$ by G(p,0) = f(p) for $p \in S^k$ and G(z) = f(s) elsewhere. Then G and H|K are homotopic in U_0 . So Gextends to a mapping $\overline{G}: S^k \times I \to U_0$. This means that f represents the identity element in the group $\pi_k(U_0, f(s))$, hence in $\pi_k(U_0 - \{x\}, f(s))$ as well. It follows that f admits an extension $\overline{f}: B^{k+1} \to U_0 - \{x\}$.

The next theorem is a consequence of Propositions 2.1, 2.2 and 1.8.

THEOREM 2.3. If X is a homogeneous locally compact LC^n -space of dimension greater than 1, then X satisfies D(0,n), n > 1, if and only if for each basis (equivalently, there exists a basis) \mathcal{U} of open connected subsets of X and for any $x \in X$ and $U \in \mathcal{U}$ the inclusion $i : U - \{x\} \subset U$ is an *n*-equivalence (in the sense of [11]). From the Whitehead theorem [11], excision and exactness properties and from Proposition 1.7 we get the following corollary.

COROLLARY 2.4. Suppose X is a homogeneous locally compact LC^n -space satisfying D(0,n), n > 1. Then $H_k(X, X - \{x\}) = 0$ for each $x \in X$ and $k \leq n$. Moreover, dim X > n.

Theorem 2.3, Corollary 2.4 and Proposition 1.7 imply

THEOREM 2.5. Let X be an n-dimensional homogeneous locally compact LC^{n-1} -space satisfying D(0, n-1), n > 2. Then

(a) $\pi_k(U, U - \{x\}) = 0$ for k < n and for each open connected nonempty $U \subset X$, but, in case that $X \in ANR$, for all sufficiently small open connected neighborhoods V of x we have $\pi_n(V, V - \{x\}) \neq 0$;

(b) $H_k(X, X - \{x\}) = 0$ for k < n and $H_n(X, X - \{x\}) \neq 0$.

THEOREM 2.6. If X is a homogeneous locally compact ANR of dimension > 2, then X satisfies D(0, 2).

Proof. We will prove that $\{p\} \in LCC^1$ for arbitrary $p \in X$ (Proposition 1.8). To this end let U be an open subset of X containing p and V be an open neighborhood of p which is contractible in U. We can assume that U is connected and its closure is compact.

Suppose first that $f: S^1 \to V - \{p\}$ has one-dimensional image and let $F_0: B^2 \to U$ be an extension of f. Take a point $q \in U - F_0(B^2)$ and an arc A in $U - f(S^1)$ joining p and q. Such an arc exists because X is a local Cantor manifold (Proposition 1.6). Define $M = \{x \in A : \text{there exists a mapping } F: B^2 \to U - \{x\}$ such that $F|S^1 = f\}$. We are going to show that M is closed. Suppose $x \in \operatorname{cl} M$. Let $0 < \varepsilon < \frac{1}{2}\varrho(x, X - U)$ and ε satisfy the condition that if a map $f': S^1 \to U - \{x\}$ is ε -close to f, then f' is homotopic to f in the ANR $U - \{x\}$. Take a point $y \in M$ such that $\varrho(x, y) < \delta$ where δ is a number as in Proposition 1.5. Let $F: B^2 \to U - \{y\}$ be an extension of f. If g is a map guaranteed by Proposition 1.5, then gF maps B^2 into $U - \{x\}$ and $gF|S^1 = gf$ is homotopic to f in $U - \{x\}$. It follows from the homotopy extension property for $U - \{x\}$ that f has an extension $F_1: B^2 \to U - \{x\}$. That means that $x \in M$. The set M is evidently nonempty and open in A, hence M = A. We have shown that $p \in M$ which means that the condition LCC^1 is satisfied by mappings with one-dimensional images.

In the general case any mapping $f: S^1 \to V - \{p\}$ can be approximated by mappings $f': S^1 \to V - \{p\}$ with one-dimensional images $(f'(S^1))$ can be viewed as a finite union of small arcs in $f(S^1)$; details of this standard procedure are left to the reader). If f' is sufficiently close to f, then the two mappings are homotopic in $U - \{p\}$. Since f' extends to a mapping $F : B^2 \to U - \{p\}$, so does f by the homotopy extension property for $U - \{p\}$.

The three-dimensional case calls special attention.

COROLLARY 2.7. Let X be a homogeneous locally compact ANR. If dim X > 2, then $H_k(X, X - \{x\}) = 0$ for any $x \in X$ and k < 3. If dim X = 3, then $H_3(X, X - \{x\}) \neq 0$.

The author does not know whether a homogeneous locally compact ANR of dimension greater than n > 2 must satisfy D(0, n).

3. Final remarks. Let us recall property Δ of Borsuk [2]: a space X has property $\Delta(n)$ if for every point $x \in X$ every neighborhood U of x contains a neighborhood V of x such that each compact nonempty set $A \subset V$ of dimension at most n-1 is contractible in a subset of U of dimension at most dim A+1; property Δ means $\Delta(n)$ for every n. If X is a locally compact ANR satisfying $\Delta(n)$ and K is a compact space of dimension at most n, then the set of mappings $f: K \to X$ with dim $f(K) \leq \dim K$ is dense in X^K (see the proof of [2, (2.1), p. 164]). It follows that $\Delta(n)$ implies D(0, n) for locally compact ANR's of dimension greater than n at each point. Thus Theorem 2.5 generalizes the following result announced in [8] (unfortunately, its proof has never been published): if X is an n-dimensional compact homogeneous ANR which satisfies condition Δ , then $H_k(X, X - \{x\}) = 0$ for k < n and $H_n(X, X - \{x\}) \neq 0$.

Each local Cantor manifold X of dimension at least three has D(1,1) (see the proof of [4, Proposition 2.2]). If X is, additionally, an LC¹-space, then $X \times \mathbb{R}$ has D(1,2) and $X \times \mathbb{R}^2$ has D(2,2) [4]. When $X \times \mathbb{R}$ has D(2,2)is, however, a deeper question. One of central problems on generalized manifolds is to learn whether their products with the real line \mathbb{R} are genuine manifolds. It is thus important to be able to detect D(2,2) for such products of dimension at least five. It follows from a characterization of D(1,2) in [4] that each ANR X of dimension at least four which is a local Cantor manifold satisfying $\Delta(2)$ has D(1,2), hence the product $X \times \mathbb{R}$ has D(2,2). Propositions 1.6 and 1.7 show possible applications of this remark.

OBSERVATION 3.1. Let X be a locally compact ANR of dimension at least four satisfying $\Delta(2)$. If X is either homogeneous or a generalized manifold, then X has D(1,2) and $X \times \mathbb{R}$ has D(2,2).

The above observation improves [10, Corollary 5.5] and restates (a correct part of) [10, Theorem 4.6].

P. KRUPSKI

REFERENCES

- R. H. Bing and K. Borsuk, Some remarks concerning topologically homogeneous spaces, Ann. of Math. 81 (1965), 100–111.
- [2] K. Borsuk, Theory of Retracts, PWN-Polish Sci. Publ., Warszawa, 1967.
- [3] J. J. Charatonik and T. Maćkowiak, Around Effros' theorem, Trans. Amer. Math. Soc. 298 (1986), 579–602.
- [4] R. J. Daverman, Detecting the disjoint disks property, Pacific J. Math. 93 (1981), 277-298.
- [5] —, Decompositions of Manifolds, Academic Press, Orlando, 1986.
- [6] P. Krupski, Homogeneity and Cantor manifolds, Proc. Amer. Math. Soc. 109 (1990), 1135–1142.
- [7] —, Recent results on homogeneous curves and ANR's, Topology Proc. 16 (1991), 109–118.
- [8] J. M. Lysko, On homogeneous ANR-spaces, in: Proc. Internat. Conf. on Geometric Topology, PWN–Polish Sci. Publ., Warszawa, 1980, 305–306.
- [9] J. van Mill, Infinite-Dimensional Topology, North-Holland, Amsterdam, 1989.
- [10] W. J. R. Mitchell, General position properties of ANR's, Math. Proc. Cambridge Philos. Soc. 92 (1982), 451–466.
- [11] E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.

MATHEMATICAL INSTITUTE UNIVERSITY OF WROCŁAW PL. GRUNWALDZKI 2/4 50-384 WROCŁAW, POLAND

Reçu par la Rédaction le 22.2.1993