VOL. LXVI

1993

SQUARE LEHMER NUMBERS

BY WAYNE L. MCDANIEL (ST. LOUIS, MISSOURI)

1. Introduction. Let R and Q be relatively prime integers, and α and β denote the zeros of $x^2 - \sqrt{R}x + Q$.

In 1930, D. H. Lehmer [4] extended the arithmetic theory of Lucas sequences by defining $u_n = (\alpha^n - \beta^n)/(\alpha - \beta)$ and $v_n = \alpha^n + \beta^n$ for $n \ge 0$. If R is a perfect square, $\{u_n\}$ and $\{v_n\}$ are Lucas sequences and "associated" Lucas sequences, respectively. If R is not a square, then u_{2n+1} and v_{2n} are integers, while u_{2n} and v_{2n+1} are integral multiples of \sqrt{R} . If one defines

(1)
$$U_n = U_n(\sqrt{R}, Q) = \begin{cases} (\alpha^n - \beta^n)/(\alpha - \beta) & \text{if } n \text{ is odd,} \\ (\alpha^n - \beta^n)/(\alpha^2 - \beta^2) & \text{if } n \text{ is even,} \end{cases}$$

and

(2)
$$V_n = V_n(\sqrt{R}, Q) = \begin{cases} (\alpha^n + \beta^n)/(\alpha + \beta) & \text{if } n \text{ is odd,} \\ \alpha^n + \beta^n & \text{if } n \text{ is even,} \end{cases}$$

then $\{U_n\}$ and $\{V_n\}$ are seen to be the sequences $\{u_n\}$ and $\{v_n\}$ with the \sqrt{R} factor in u_{2n} and v_{2n+1} suppressed, and are therefore integer sequences. The sequences $\{U_n\}$ and $\{V_n\}$ are known as Lehmer and "associated" Lehmer sequences, respectively.

In this paper, we examine these sequences for the existence of perfect square terms and terms which are twice a perfect square. Using congruences, with extensive reliance upon the Jacobi symbol, we determine that the square terms of those Lehmer sequences $\{U_n(\sqrt{R}, Q)\}$ for which R is odd and $Q \equiv 3 \pmod{4}$, and for which $Q \equiv R \equiv 5 \pmod{8}$, may occur only for n = 0, 1, 2, 3, 4 or 6. We obtain a similar result for the associated Lehmer sequences $\{V_n(\sqrt{R}, Q)\}$ and $\{2V_n(\sqrt{R}, Q)\}$.

Interest in the factors of U_n and V_n began with Lehmer [4] who described the divisors of U_n and V_n and gave their forms in terms of n. In 1983, Rotkiewicz [7] used the Jacobi symbol to show that certain terms of the Lehmer sequence $\{U_n(\sqrt{R}, Q)\}$ cannot be squares when certain conditions on R and Q are satisfied. Each of Rotkiewicz's results involves $R \equiv 3$ (mod 4), $Q \equiv 0 \pmod{4}$, or $R \equiv 0 \pmod{4}$, $Q \equiv 1 \pmod{4}$, and in either W.L. MCDANIEL

case it is shown that the term U_n is not a square if n is odd and not a square, or n is an even integer, not a power of 2, whose greatest odd prime factor does not divide $\Delta = R - 4Q^2$.

The problem of determining the square terms when R is a perfect square, i.e., in Lucas sequences and associated Lucas sequences, has been solved in certain cases: When $Q = \pm 1$, and $\sqrt{R} = P$ is odd or has certain even values [1], [2], [3], and recently [6] for all Lucas sequences for which P and Q are odd. The previously mentioned paper by Rotkiewicz contains a partial solution for the Lucas sequence with P even and $Q \equiv 1 \pmod{4}$.

2. Preliminary results. From the definition of α and β , we have $Q = \alpha\beta$, $R = (\alpha + \beta)^2$ and we define $\Delta = R - 4Q = (\alpha - \beta)^2$. It follows readily from (1) that $U_0 = 0$, $U_1 = 1$, $V_0 = 2$, $V_1 = 1$, and these recurrence relations hold for $n \ge 2$:

(3)
$$U_{n+2} = \begin{cases} RU_{n+1} - QU_n & \text{if } n \text{ is odd,} \\ U_{n+1} - QU_n & \text{if } n \text{ is even} \end{cases}$$

(4)
$$V_{n+2} = \begin{cases} V_{n+1} - QV_n & \text{if } n \text{ is odd,} \\ RV_{n+1} - QV_n & \text{if } n \text{ is even.} \end{cases}$$

The definitions of U_n and V_n can be extended to n negative: (1) and (2) immediately imply that $U_{-n} = -U_n/Q^n$ and $V_{-n} = V_n/Q^n$; we see easily that if $n \neq 0$, $gcd(U_n, Q) = gcd(V_n, Q) = 1$, so U_{-n} and V_{-n} are integers only when $Q = \pm 1$. We shall require the following properties which hold for all n and all integers R and Q, except as noted:

(5) If R and Q are odd and $n \ge 0$, then U_n is even iff $3 \mid n$ and V_n is even iff $3 \mid n$.

(6)
$$U_{2n} = U_n V_n \quad \text{and} \quad V_{2n} = \begin{cases} R V_n^2 - 2Q^n & \text{if } n \text{ is odd,} \\ V_n^2 - 2Q^n & \text{if } n \text{ is even.} \end{cases}$$

(7)
$$U_{3n} = \begin{cases} U_n (RV_n^2 - Q^n) = U_n (\Delta U_n^2 + 3Q^n) & \text{if } n \text{ is odd,} \\ U_n (V_n^2 - Q^n) = U_n (R\Delta U_n^2 + 3Q^n) & \text{if } n \text{ is even} \end{cases}$$

(8)
$$V_{3n} = \begin{cases} V_n (RV_n^2 - 3Q^n) & \text{if } n \text{ is odd,} \\ V_n (V_n^2 - 3Q^n) & \text{if } n \text{ is even} \end{cases}$$

(9)
$$2U_{m\pm n} = \begin{cases} RU_m V_{\pm n} + U_{\pm n} V_m & \text{if } m \text{ is even and } n \text{ is odd,} \\ U_m V_{\pm n} + U_{\pm n} V_m & \text{if } m \text{ and } n \text{ have the same parity,} \\ U_m V_{\pm n} + RU_{\pm n} V_m & \text{if } m \text{ is odd and } n \text{ is even.} \end{cases}$$

$$(V_m V_{\pm n} + \Delta U_m U_{\pm n} \quad \text{if } m \text{ and } n \text{ have opposite parity.}$$

(10)
$$2V_{m\pm n} = \begin{cases} V_m V_{\pm n} + \Delta U_m U_{\pm n} & \text{if } m \text{ and } n \text{ mixe opposited} \\ RV_m V_{\pm n} + \Delta U_m U_{\pm n} & \text{if } m \text{ and } n \text{ are odd,} \\ U_m V_{\pm n} + R\Delta U_m U_{\pm n} & \text{if } m \text{ and } n \text{ are even.} \end{cases}$$

(11) If
$$j = 2^{u}k, u \ge 1, k \text{ odd}, k > 0$$
, and $m > 0$, then
(a) $U_{2j+m} \equiv -Q^{j}U_{m} \pmod{V_{2^{u}}},$

(b) $U_{2j-m} \equiv Q^{j-m}U_m \pmod{V_{2^u}}$ if $j \ge m$,

(c)
$$V_{2j+m} \equiv -Q^j V_m \pmod{V_{2^u}}$$
,

- (d) $V_{2j-m} \equiv -Q^{j-m}V_m \pmod{V_{2^u}}$ if $j \ge m$.
- (12) If $d = \operatorname{gcd}(m, n)$, then $\operatorname{gcd}(U_m, U_n) = U_d$.
- (13) If $d = \gcd(m, n)$, then $\gcd(V_m, V_n) = V_d$ if m/d and n/d are odd, and 1 or 2 otherwise.
- (14) If $d = \gcd(m, n)$, then $\gcd(U_m, V_n) = V_d$ if m/d is even, and 1 or 2 otherwise.

Properties (5) through (10) are proven precisely as for the Lucas sequences ((6) through (10) are immediately verifiable using (1) and (2)), and (12) is well-known. Property (11) follows readily from (6), (9), (10), (13) and (14). Properties (13) and (14) are proven in [5].

We list, for reference purposes, the first few values of U_n and V_n : $U_0 = 0$, $U_1 = 1$, $U_2 = 1$, $U_3 = R - Q$; $V_0 = 2$, $V_1 = 1$, $V_2 = R - 2Q$, $V_3 = R - 3Q$.

3. Some preliminary lemmas. For the remainder of the paper, it is assumed that R and Q are relatively prime odd integers, R is positive and not a square, and that $\Delta = R - 4Q > 0$. (The latter condition assures that $U_n > 0$ and $V_n > 0$ for n > 0.)

LEMMA 1. Let m be an odd positive integer and $u \ge 1$.

- (a) If $3 \mid m$, then $V_{2^{u}m} \equiv \pm 2 \pmod{8}$.
- (b) If $3 \nmid m$, then $V_{2^u m} \equiv \begin{cases} -1 \pmod{8} & \text{if } u > 1, \\ R 2Q \pmod{8} & \text{if } u = 1. \end{cases}$

Proof. (a) If $3 \mid m$, then by (5) and (6), $V_{2m} = RV_m^2 - 2Q^m \equiv -2Q$ or $4R - 2Q \equiv \pm 2 \pmod{8}$, and the result is immediate by induction.

(b) If $3 \nmid m$, then $V_{2m} = RV_m^2 - 2Q^m \equiv R - 2Q \pmod{8}$ is odd, so $V_{4m} = V_{2m}^2 - 2Q^{2m} \equiv -1 \pmod{8}$, and the result for V_{2^um} follows by induction.

It is also readily shown by induction on u that

(15) $V_{2^u} \equiv -Q^{2^{u-1}} \pmod{V_3}$ if u > 1, and

(16)
$$V_{2^u} \equiv -Q^{2^{u-1}} \pmod{U_3}$$
 if $u \ge 1$.

LEMMA 2. Let t > 0, $m \ge 0$, and 12t - m > 0. Then

- (i) $V_{12t+m} \equiv V_m \pmod{8}$ and $V_{12t-m} \equiv Q^m V_m \pmod{8}$, and
- (ii) $U_{12t+m} \equiv U_m \pmod{8}$ and $U_{12t-m} \equiv -Q^m U_m \pmod{8}$.

Proof. (i) By repeatedly using (4), we obtain

$$V_{6+m} = a_0 V_{1+m} + a_1 V_m \,,$$

where $a_0 = (R - Q)(R - 3Q)$ if m is odd, $a_0 = R(R - Q)(R - 3Q)$ if m is even, and $a_1 = -Q(R^2 - 3QR + Q^2)$. For all odd R and Q, $a_0 \equiv 0 \pmod{8}$, so $V_{6+m} \equiv a_1 V_m \pmod{8}$, and it readily follows by induction that $V_{6r+m} \equiv a_1^r V_m \pmod{8}$, for $r \geq 1$. Upon letting r = 2t, we have the first congruence of (i), since a_1 is odd, and the second congruence of (i) is readily established using $V_{-n} = V_n/Q^n$.

(ii) The proof of (ii) is similar to that of (i).

LEMMA 3. If u > 1, the Jacobi symbol $J = (V_3 | V_{2^u})$ equals +1.

Proof. Since V_{2^u} is odd, $gcd(V_3, V_{2^u}) = 1$ so $(V_3 | V_{2^u})$ is defined. Let $V_3 = 2^e N$, $e \ge 1$ and N odd. Then $J = (2^e | V_{2^u})(N | V_{2^u})$. Since $V_{2^u} \equiv -1 \pmod{8}$ for u > 1, $(2^e | V_{2^u}) = +1$, for all e. Hence, $J = (-1)^{(N-1)/2}(V_{2^u} | N)$. By (15), $V_{2^u} \equiv -Q^{2^{u-1}} \pmod{N}$, so

$$J = (-1)^{(N-1)/2} (-Q^{2^{u-1}} | N) = (-1)^{(N-1)/2} (-1)^{(N-1)/2} = +1$$

LEMMA 4. If u > 1, then $(U_3 | V_{2^u})$ equals +1.

Proof. By (5) and (14), $gcd(U_3, V_{2^u}) = 1$, so $(U_3 | V_{2^u})$ is defined. We let $U_3 = 2^e N$, $e \ge 1$, N odd, and proceed as in Lemma 3, using (16), to find that $(U_3 | V_{2^u}) = +1$.

LEMMA 5. If n is a positive integer, then

(i) $3 | U_n \text{ if and only if } 3 | n \text{ and } R \equiv Q \neq 0 \pmod{3}$, or $4 | n \text{ and } R \equiv 2Q \pmod{3}$, and

(ii) $3 | V_n \text{ if and only if } n \text{ is odd}, 3 | n \text{ and } R \equiv 0 \pmod{3}, \text{ or } n \equiv 2 \pmod{4}$ and $R \equiv 2Q \pmod{3}$.

Proof. Assume n > 0 is odd. We note first that if 3 | Q, then $3 \nmid U_n$ and $3 \nmid V_n$, since $gcd(U_n, Q) = gcd(V_n, Q) = 1$. Assume $3 \nmid Q$. Then either $R \equiv 0 \pmod{3}$, $R \equiv Q \pmod{3}$, or $R \equiv 2Q \pmod{3}$.

(i) If $R \equiv 0 \pmod{3}$,

$$U_n = RU_{n-1} - QU_{n-2} \equiv -QU_{n-2} \equiv (-Q)^2 U_{n-4}$$

$$\equiv \dots \equiv (-Q)^{(n-1)/2} U_1 \not\equiv 0 \pmod{3}.$$

If $R \equiv Q \pmod{3}$, then 3 divides $U_3 = R - Q$, and it follows from (12) that $3 \mid U_n$ iff $3 \mid n$. And, if $R \equiv 2Q \pmod{3}$, then 3 divides $U_4 = U_2V_2 = R - 2Q$ and, since by (12), $gcd(U_4, U_n) = U_1, U_2$ or $U_4, 3 \mid U_n$ iff $4 \mid n$.

(ii) If $R \equiv 0 \pmod{3}$, then $V_3 = V_1(RV_1^2 - 3Q) \equiv 0 \pmod{3}$ and by (13), $gcd(V_3, V_n)$ is divisible by 3 iff *n* is an odd multiple of 3. If $R \equiv Q$ (mod 3), then $3 \mid U_3$; however, by (14), $gcd(U_3, V_n)$ is 1 or 2 for all *n*, so $3 \nmid V_n$. If $R \equiv 2Q \pmod{3}$, then 3 divides $V_2 = R - 2Q$ and again, by (13), $gcd(V_2, V_n)$ is divisible by 3 iff *n* is an odd multiple of 2. **4.** Squares in $\{U_n\}$ and $\{V_n\}$. In this section, we use \Box for the words "a square".

LEMMA 6. Let n be a positive odd integer.

(i) If $Q \equiv 3 \pmod{4}$, then $U_n = \Box$ if and only if n = 1, or n = 3 and $R - Q = \Box$, and $U_n = 2\Box$ if and only if n = 3 and $R - Q = 2\Box$.

(ii) If $Q \equiv 1 \pmod{4}$, then $V_n = \Box$ if and only if n = 1, or n = 3 and $R - 3Q = \Box$, and $V_n = 2\Box$ if and only if n = 3 and $R - 3Q = 2\Box$.

Proof. (i) Assume $Q \equiv 3 \pmod{4}$ and n > 0 is odd. We note that $U_1 = 1 = \Box \neq 2\Box$ and clearly, U_3 equals \Box or $2\Box$ iff $R - Q = \Box$ or $2\Box$. Assume n > 3 and let n = 2j + m, $j = 2^u k$, $u \ge 1$, k odd, k > 0, and m = 1 or 3. We define $\lambda = 1$ or 2 and observe that if u > 1, then, using Lemma 1, we have $(\lambda | V_{2^u}) = +1$.

By (11a),

 $\lambda U_{2j+m} \equiv -\lambda Q^j U_m \pmod{V_{2^u}}.$

Now, $\lambda U_n = \Box$ only if the Jacobi symbol $(-\lambda Q^j U_m | V_{2^u})$ is +1. However, if u > 1, then $(-\lambda Q^j U_m | V_{2^u}) = (\lambda | V_{2^u})(-U_m | V_{2^u})$ is clearly -1 if m = 1, and, by Lemma 4, is -1 if m = 3. If u = 1, then n = 4k + m, k odd, implies that $n \equiv -1$ or $-3 \pmod{8}$; let n = 2i - t, $i = 2^w r$, $w \ge 2$, r odd and t = 1 or 3. By (11b),

$$\lambda U_n = \lambda U_{2i-t} \equiv \lambda Q^{i-1} U_1 \text{ or } \lambda Q^{i-3} U_3 \pmod{V_{2^w}}$$

Since $Q \equiv 3 \pmod{4}$,

$$(\lambda Q^{i-1}U_1 | V_{2^w}) = (+1)(Q | V_{2^w}) = (-1)(V_{2^w} | Q)$$

= $-(V_{2^{w-1}}^2 - 2Q^{2^{w-1}} | Q) = -1,$

and, using Lemma 4,

$$(\lambda Q^{i-3}U_3 \,|\, V_{2^w}) = (\lambda Q^{i-3} \,|\, V_{2^w})(U_3 \,|\, V_{2^w}) = -1 \,.$$

This proves that $\lambda U_n \neq \Box$ and therefore that $U_n \neq \lambda \Box$.

(ii) Assume $Q \equiv 1 \pmod{4}$ and *n* is a positive odd integer. If n = 1, then $V_n = 1 = \Box \neq 2\Box$, and if n = 3, then $V_n = R - 3Q$ could be \Box or $2\Box$. If n > 3, let n = 2j + m, $j = 2^u k$, $u \ge 1$, k odd, k > 0, and m = 1 or 3. As in (i), let $\lambda = 1$ or 2. By (11c),

$$\lambda V_{2j+m} \equiv -\lambda Q^j V_m \pmod{V_{2^u}}$$

We see from Lemma 1 that if u > 1, then $V_{2^u} \equiv -1 \pmod{8}$; hence, in this case, if m = 1, then $J = (-\lambda Q^j V_m | V_{2^u}) = -1$, and if m = 3, then, by Lemma 3, J = -1. If u = 1, then n = 4k + m with k odd, so $n \equiv -1$ or $-3 \pmod{8}$; let n = 2i - t, $i = 2^w r$, $w \ge 2$, r odd and t = 1 or 3. By (11d),

$$\lambda V_n = \lambda V_{2i-t} \equiv -\lambda Q^{i-t} V_t \equiv -\lambda Q^{i-1} V_1 \text{ or } -\lambda Q^{i-3} V_3 \pmod{V_{2^w}}.$$

Since $Q \equiv 1 \pmod{4}$,

$$(-\lambda Q^{i-1}V_1 \,|\, V_{2^w}) = -(\lambda \,|\, V_{2^w})(Q \,|\, V_{2^w}) = -(V_{2^w} \,|\, Q) = -1$$

and, using Lemma 3,

$$(-\lambda Q^{i-3}V_3 | V_{2^w}) = -(Q | V_{2^w})(V_3 | V_{2^w}) = (-1)(+1) = -1,$$

so $\lambda V_n \neq \Box$, and therefore $V_n \neq \lambda \Box$.

THEOREM 1. Let $n \ge 0$. If $Q \equiv 1 \pmod{4}$ and $R \equiv 1, 5, \text{ or } 7 \pmod{8}$, or $Q \equiv 3 \pmod{4}$ and $R \equiv 1 \pmod{8}$, then $V_n = \Box$ iff n = 1, or n = 3 and $R - 3Q = \Box$.

Proof. If *n* is even, then $V_n \equiv \Box$ only if $V_n \equiv 0, 1, 4 \pmod{8}$, and by Lemma 1 this is possible for *Q* and *R* odd only if $R - 2Q \equiv 1 \pmod{8}$. Hence, for $Q \equiv 1 \pmod{4}$ and $R \equiv 1, 5, \text{ or } 7 \pmod{8}$, or for $Q \equiv 3 \pmod{4}$ and $R \equiv 1, 3, \text{ or } 5 \pmod{8}$, $V_n \neq \Box$.

Assume n is odd. If $Q \equiv 1 \pmod{4}$ and $R \equiv 1, 5$, or 7 (mod 8), the theorem is true by Lemma 6.

Assume $Q \equiv 3 \pmod{4}$ and $R \equiv 1 \pmod{8}$. If n = 1, then $V_n = V_1 = 1 = \Box$, and if n = 3, then $V_n = V_3 = R - 3Q$ is a square iff R - 3Q is a square. Let n=2j+m, $j=2^uk$, $u \ge 1$, k odd, k > 0, and m=1 or 3. Then

$$V_{2j+m} \equiv -Q^{j}V_{m} \equiv -Q^{j}V_{1} \text{ or } -Q^{j}V_{3} \pmod{V_{2^{u}}}$$

By Lemma 1, $V_{2^u} \equiv -1 \pmod{8}$ for u > 1 and $V_2 = R - 2Q \equiv 3 \pmod{4}$. Hence, $(-Q^j V_1 | V_{2^u}) = -1$ if $u \ge 1$ and by Lemma 3, $(-Q^j V_3 | V_{2^u}) = -1$ if u > 1. That is, $V_n \ne \Box$ if $n = 2 \cdot 2^u k + 1$ for $u \ge 1$, m = 1, or u > 1, m = 3. It remains to show that $V \ne \Box$ if n = 4k + 3, k = 2k and L_1 this end

It remains to show that $V_n \neq \Box$ if n = 4k + 3, k odd. In this case, $n \equiv -5, -1$ or 3 (mod 12). By Lemma 2,

$$V_{12t-5} \equiv Q^5 V_5 \equiv Q(R^2 - 5RQ + 5Q^2) \equiv 5 \pmod{8}$$

and

$$V_{12t-1} \equiv QV_1 \equiv 3 \text{ or } 7 \pmod{8},$$

and it is clear that $V_n \neq \Box$ in each case. If $n \equiv 3 \pmod{12}$, we write $n = 3^e h, e \ge 1, h \text{ odd}, 3 \nmid h$. By using (8) repeatedly, we have

$$V_{3^{e}h} = V_{3^{j}h} \cdot \prod_{i=j}^{e-1} (RV_{3^{i}h}^{2} - 3Q^{3^{i}h}),$$

for $0 \leq j \leq e-1$. Since $V_{3^jh} | V_{3^ih}$ for $j \leq i$, and $gcd(V_{3^jh}, Q) = 1$, we have $gcd(V_{3^jh}, RV_{3^ih}^2 - 3Q^{3^ih}) = 1$ or 3. Therefore, $gcd(V_{3^jh}, \prod_{i=j}^{e-1} (RV_{3^ih}^2 - 3Q^{3^ih}))$ is 1 or a power of 3. Hence, $V_{3^eh} = \Box$ only if $V_{3^jh} = \Box$ or $3\Box$ for $0 \leq j \leq e-1$, and, in particular, $V_h = \Box$ or $3\Box$. However, we have just shown that, for h not divisible by 3, $V_h = \Box$ only if h = 1, and, by Lemma 5, $V_h \neq 3\Box$.

Taking h = 1, we have $V_n = V_{3^e} = \Box$ only if $V_{3^j} = \Box$ or $3\Box$, for $j = 1, \ldots, u-1$. Now, since $gcd(R, R^2 - 3Q) = 1$ or $3, \Box = V_3 = R(R^2 - 3Q)$ is possible only if $R = \Box$ or $3\Box$. However, R is not a square, by assumption, and $R \neq 3\Box$ since $R \equiv 1 \pmod{8}$. It follows that $V_{3^e} \neq \Box$ for $e \ge 1$, proving that $V_n = \Box$ if and only if n = 1.

THEOREM 2. Let $n \ge 0$ and $Q \equiv 3 \pmod{4}$, or $Q \equiv 5 \pmod{8}$ and $R \equiv 5 \pmod{8}$. Then $U_n = \Box$ iff

(i) $n = 0, 1, 2, \text{ or } n = 3 \text{ and } R - Q = \Box, \text{ or } n = 4 \text{ and } R - 2Q = \Box, \text{ or }$ (ii) $n = 6, R - Q = 2\Box$ and $R - 3Q = 2\Box$ (this implies $Q \equiv 3 \pmod{4}$, $R \equiv Q \pmod{8}$).

Proof. That $U_n = \Box$ if (i) holds is obvious. Suppose n > 4.

Case 1: n odd and $n \ge 5$. Assume that $U_n = \Box$. If $Q \equiv 3 \pmod{4}$, then $U_n \ne \Box$ by Lemma 6. Assume that $Q \equiv R \equiv 5 \pmod{8}$ and let n = 2j + m, where j and m are defined as in the proof of Theorem 1. Then

$$U_{2j+m} \equiv -Q^{j}U_{m} \equiv -Q^{j}U_{1} \text{ or } -Q^{j}U_{3} \pmod{V_{2^{u}}},$$

and exactly as in the proof of Theorem 1 (and using Lemma 4), we have $U_n \neq \Box$ except possibly if n = 4k + 3, k odd.

If n = 4k + 3, k odd, then $n \equiv -5, -1$ or 3 (mod 12), and by Lemma 2,

$$U_{12t-5} \equiv -Q^5 U_5 \equiv -Q(R^2 - 3RQ + Q^2) \equiv 5 \pmod{8}$$

and

$$U_{12t-1} \equiv -QU_1 \equiv 3 \pmod{8};$$

it is clear that $U_n \neq \Box$ in each case. If n = 12t + 3, we write $n = 3^e h, e \ge 1$, $h \text{ odd}, 3 \nmid h$. By using (7) repeatedly, we have

$$U_{3^eh} = U_{3^jh} \cdot \prod_{i=j}^{e-1} (\Delta U_{3^ih}^2 + 3Q^{3^ih})$$

for $0 \leq j \leq e-1$. By an argument essentially identical to that in Theorem 1, we see that $U_{3^eh} = \Box$ only if $U_{3^jh} = \Box$ or $3\Box$ for $0 \leq j \leq e-1$, and, in particular, $U_h = \Box$ or $3\Box$. We just showed above that for h not divisible by 3, $U_h = \Box$ only if h = 1, and $U_h = 3\Box$ is not possible by Lemma 5.

Taking h = 1, we have $U_n = U_{3^e} = \Box$ only if $U_{3^j} = \Box$ or $3\Box$ for $j = 1, 2, \ldots, e - 1$. We have noted that U_3 may be a square and have shown above that $U_9 = U_{2\cdot 4+1} \neq \Box$. If $3\Box = U_9 = U_3(\Delta U_3^2 + 3Q^3)$, then $\Delta U_3^2 + 3Q^3 \equiv \Box$ or $3\Box$. However, since $U_3 = R - Q \equiv 0 \pmod{8}$, $\Delta U_3^2 + 3Q^3 \equiv 0 + 3 \cdot 5 \equiv -1 \pmod{8}$ implies that $\Delta U_3^2 + 3Q^3 \neq \Box$ or $3\Box$. Hence, $U_n = U_{3^e} \equiv \Box$ only if e = 1, i.e., only if n = 3.

Case 2: *n* even. Assume n > 4 and $U_n = \Box$, and let $n = 2^u m$, $u \ge 1$, *m* odd. By repeated application of (6), we have

$$U_{2^{u}m} = U_{2^{j}m} V_{2^{j}m} V_{2^{j+1}m} \dots V_{2^{u-1}m}, \quad \text{for } 0 \le j \le u-1.$$

Now, by (13) and (14), $gcd(U_{2^jm}, V_{2^jm}) = 1$ or 2, and $gcd(V_{2^jm}, V_{2^im}) = 1$ or 2 for $i \neq j$. Hence, $gcd(U_{2^jm}, V_{2^jm} \dots V_{2^{u-1}m})$ is equal to 1 or a power of 2, and $gcd(V_{2^jm}, U_{2^jm}V_{2^{j+1}m} \dots V_{2^{u-1}m}) = 1$ or a power of 2. It follows that $U_{2^jm} \equiv \Box$ or $2\Box$ and $V_{2^jm} \equiv \Box$ or $2\Box$ for $0 \leq j \leq u-1$. In particular, $U_m \equiv \Box$ or $2\Box$ and $V_m \equiv \Box$ or $2\Box$. If $Q \equiv 3 \pmod{4}$, then, by Lemma 6 and Case 1 above, $U_m \equiv \Box$ or $2\Box$ only if $m \equiv 1$ or $m \equiv 3$, and if $Q \equiv 1 \pmod{4}$ then, by Theorem 1 and Lemma 6, $V_m \equiv \Box$ or $2\Box$ only if m = 1 or $m \equiv 3$.

We assume now that $Q \equiv 3 \pmod{4}$ or $Q \equiv R \equiv 5 \pmod{8}$. If m = 1, $U_{2^jm} = U_{2^j}$ is odd, so $U_{2^j} \neq 2\Box$. If j = 1, then $U_{2^j} = U_2 = 1 = \Box$, and, if j = 2, then $U_4 = R - 2Q$ could be a square if $R \equiv 3 \pmod{4}$. If j = 3, then $U_{2^j} = U_8 = U_4V_4$ is not a square since $gcd(U_4, V_4) = 1$ and $V_4 \neq \Box$ by Lemma 1. Hence, if m = 1, then $U_n = \Box$ if and only if n = 2 or n = 4 and $R - 2Q = \Box$.

If m = 3, we show first that $U_{24} \neq \Box$ or $2\Box$, implying that $u \leq 2$. Now, by (7), $U_{24} = U_8(R\Delta U_8^2 + 3Q^8)$. Since $gcd(U_8, Q) = 1$, $gcd(U_8, R\Delta U_8^2 + 3Q^8) = 1$ or 3. If $U_{24} = \Box$ or $2\Box$, then since by (5), U_8 is odd, we have $U_8 = \Box$ or $3\Box$; however, $U_8 \neq \Box$, as seen above, and $3\Box = U_8 = U_4V_4$ implies that $V_4 = \Box$ or $3\Box$, which is impossible by Lemma 1.

It follows that $n = 2^u \cdot 3$, with u = 1 or 2. If u = 1, then $U_n = U_6 = \Box$ iff $U_3 = R - Q = 2\Box$ and $V_3 = R - 3Q = 2\Box$. This is possible for $Q \equiv R \equiv 3$ or 7 (mod 8). Conversely, if $R - Q = 2\Box$ and $R - 3Q = 2\Box$, then $U_6 = \Box$. If u = 2, then $U_n = U_{12} = U_6V_6 = \Box$ is possible only if $U_6 = 2\Box$ and $V_6 = 2\Box$ ($U_6 = \Box$, $V_6 = \Box$ is not possible since $V_6 \equiv \pm 2 \pmod{8}$). This implies that $U_3 = \Box$, $V_3 = 2\Box$, $V_2 = 3\Box$ and $V_2^2 - 3Q^2 = 6\Box$. Hence, there exist integers x, y and z such that $U_3 = R - Q = x^2$, $V_3 = R - 3Q = 2y^2$ and $V_2 = R - 2Q = 3z^2$. Since Q and R are odd, x is even, z is odd, and $(3U_3 - V_3)/2 = R = 3x^2/2 - y^2$ implies y is odd. We see now, however, that $Q = V_2 - V_3 = 3z^2 - 2y^2 \equiv 1 \pmod{8}$, contrary to our assumption that $Q \equiv 3, 5$ or 7 (mod 8). Thus, $n = 2^u \cdot 3$ only if u = 1.

THEOREM 3. Let $n \ge 0$. If $Q \equiv 1 \pmod{4}$ and $R \equiv 1 \text{ or } 7 \pmod{8}$, then $V_n = 2\Box$ iff n = 0, or n = 3 and $R - 3Q = 2\Box$.

Proof. We note that $V_0 = 2 = 2\Box$ and $V_3 = R - 3Q$. Assume $n \neq 0, 3$ and that $V_n = 2\Box$. Since V_n is even, $3 \mid n$, by (5). Let $n = 3^e h$, $e \ge 1$ and $3 \nmid h$. By Lemma 6, we may assume h is even. We have, from (8),

$$V_{3^e h} = V_h \cdot \prod_{i=0}^{e-1} (V_{3^i h}^2 - 3Q^{3^i h}).$$

It follows that $V_{3^eh} = 2\Box$ only if $V_h \equiv \Box$ or $3\Box$; however, $V_h \equiv \Box$ is impossible for *h* even by Theorem 1 and $3\Box \equiv V_h \equiv R - 2Q \pmod{8}$, by Lemma 1, and this is not possible for $Q \equiv 1 \pmod{4}$ and $R \equiv 1$ or 7 (mod 8).

THEOREM 4. Let $n \ge 0$ and $Q \equiv 3 \pmod{4}$. Then $U_n = 2 \square$ iff

- (i) n = 0,
- (ii) n = 3 and $R Q = 2\Box$, or
- (iii) n = 6, and $R Q = \Box$ or $2\Box$ and $R 3Q = 2\Box$ or \Box , respectively.

We omit the proof, since the argument is similar to those of the preceding theorems.

We remark, in closing, that it appears likely that a different approach may be required to prove the theorems of this paper for additional values of Q and R. The difficulty in obtaining the result for the remaining values is related, primarily, to the failure of Lemma 1 to hold for those additional values, and this lemma played a key role in our proofs.

REFERENCES

- J. H. E. Cohn, Eight Diophantine equations, Proc. London Math. Soc. (3) 16 (1966), 153–166.
- [2] —, Five Diophantine equations, Math. Scand. 21 (1967), 61–70.
- [3] —, Squares in some recurrent sequences, Pacific J. Math. (3) 41 (1972), 631–646.
- [4] D. H. Lehmer, An extended theory of Lucas' functions, Ann. of Math. 31 (1930), 419–448.
- [5] W. L. McDaniel, The g.c.d. in Lucas sequences and Lehmer number sequences, Fibonacci Quart. 29 (1991), 24-29.
- [6] W. L. McDaniel and P. Ribenboim, *The square terms in Lucas sequences*, to appear.
- [7] A. Rotkiewicz, Applications of Jacobi's symbol to Lehmer's numbers, Acta Arith. 42 (1983), 163–187.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE UNIVERSITY OF MISSOURI–ST. LOUIS ST. LOUIS, MISSOURI 63121-4499 U.S.A. E-mail: MCDANIEL@ARCH.UMSL.EDU

> Reçu par la Rédaction le 2.12.1991; en version modifiée le 10.8.1992 et 4.3.1993