C OLLOQUIUM MATHEMATICUM

SQUARE LEHMER NUMBERS

BY
WAYNE L. MCDANIEL (ST. LOUIS, MISSOURI)

1. Introduction. Let R and Q be relatively prime integers, and α and β denote the zeros of $x^{2}-\sqrt{R} x+Q$.

In 1930, D. H. Lehmer [4] extended the arithmetic theory of Lucas sequences by defining $u_{n}=\left(\alpha^{n}-\beta^{n}\right) /(\alpha-\beta)$ and $v_{n}=\alpha^{n}+\beta^{n}$ for $n \geq 0$. If R is a perfect square, $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ are Lucas sequences and "associated" Lucas sequences, respectively. If R is not a square, then $u_{2 n+1}$ and $v_{2 n}$ are integers, while $u_{2 n}$ and $v_{2 n+1}$ are integral multiples of \sqrt{R}. If one defines

$$
U_{n}=U_{n}(\sqrt{R}, Q)= \begin{cases}\left(\alpha^{n}-\beta^{n}\right) /(\alpha-\beta) & \text { if } n \text { is odd } \tag{1}\\ \left(\alpha^{n}-\beta^{n}\right) /\left(\alpha^{2}-\beta^{2}\right) & \text { if } n \text { is even }\end{cases}
$$

and

$$
V_{n}=V_{n}(\sqrt{R}, Q)= \begin{cases}\left(\alpha^{n}+\beta^{n}\right) /(\alpha+\beta) & \text { if } n \text { is odd, } \tag{2}\\ \alpha^{n}+\beta^{n} & \text { if } n \text { is even }\end{cases}
$$

then $\left\{U_{n}\right\}$ and $\left\{V_{n}\right\}$ are seen to be the sequences $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ with the \sqrt{R} factor in $u_{2 n}$ and $v_{2 n+1}$ suppressed, and are therefore integer sequences. The sequences $\left\{U_{n}\right\}$ and $\left\{V_{n}\right\}$ are known as Lehmer and "associated" Lehmer sequences, respectively.

In this paper, we examine these sequences for the existence of perfect square terms and terms which are twice a perfect square. Using congruences, with extensive reliance upon the Jacobi symbol, we determine that the square terms of those Lehmer sequences $\left\{U_{n}(\sqrt{R}, Q)\right\}$ for which R is odd and $Q \equiv 3(\bmod 4)$, and for which $Q \equiv R \equiv 5(\bmod 8)$, may occur only for $n=0,1,2,3,4$ or 6 . We obtain a similar result for the associated Lehmer sequences $\left\{V_{n}(\sqrt{R}, Q)\right\}$, and corresponding results for the sequences $\left\{2 U_{n}(\sqrt{R}, Q)\right\}$ and $\left\{2 V_{n}(\sqrt{R}, Q)\right\}$.

Interest in the factors of U_{n} and V_{n} began with Lehmer [4] who described the divisors of U_{n} and V_{n} and gave their forms in terms of n. In 1983, Rotkiewicz [7] used the Jacobi symbol to show that certain terms of the Lehmer sequence $\left\{U_{n}(\sqrt{R}, Q)\right\}$ cannot be squares when certain conditions on R and Q are satisfied. Each of Rotkiewicz's results involves $R \equiv 3$ $(\bmod 4), Q \equiv 0(\bmod 4)$, or $R \equiv 0(\bmod 4), Q \equiv 1(\bmod 4)$, and in either
case it is shown that the term U_{n} is not a square if n is odd and not a square, or n is an even integer, not a power of 2 , whose greatest odd prime factor does not divide $\Delta=R-4 Q^{2}$.

The problem of determining the square terms when R is a perfect square, i.e., in Lucas sequences and associated Lucas sequences, has been solved in certain cases: When $Q= \pm 1$, and $\sqrt{R}=P$ is odd or has certain even values [1], [2], [3], and recently [6] for all Lucas sequences for which P and Q are odd. The previously mentioned paper by Rotkiewicz contains a partial solution for the Lucas sequence with P even and $Q \equiv 1(\bmod 4)$.
2. Preliminary results. From the definition of α and β, we have $Q=\alpha \beta, R=(\alpha+\beta)^{2}$ and we define $\Delta=R-4 Q=(\alpha-\beta)^{2}$. It follows readily from (1) that $U_{0}=0, U_{1}=1, V_{0}=2, V_{1}=1$, and these recurrence relations hold for $n \geq 2$:

$$
\begin{align*}
U_{n+2} & = \begin{cases}R U_{n+1}-Q U_{n} & \text { if } n \text { is odd, } \\
U_{n+1}-Q U_{n} & \text { if } n \text { is even, }\end{cases} \tag{3}\\
V_{n+2} & = \begin{cases}V_{n+1}-Q V_{n} & \text { if } n \text { is odd, } \\
R V_{n+1}-Q V_{n} & \text { if } n \text { is even. }\end{cases} \tag{4}
\end{align*}
$$

The definitions of U_{n} and V_{n} can be extended to n negative: (1) and (2) immediately imply that $U_{-n}=-U_{n} / Q^{n}$ and $V_{-n}=V_{n} / Q^{n}$; we see easily that if $n \neq 0, \operatorname{gcd}\left(U_{n}, Q\right)=\operatorname{gcd}\left(V_{n}, Q\right)=1$, so U_{-n} and V_{-n} are integers only when $Q= \pm 1$. We shall require the following properties which hold for all n and all integers R and Q, except as noted:
(5) If R and Q are odd and $n \geq 0$, then U_{n} is even iff $3 \mid n$ and V_{n} is even iff $3 \mid n$.

$$
U_{2 n}=U_{n} V_{n} \quad \text { and } \quad V_{2 n}= \begin{cases}R V_{n}^{2}-2 Q^{n} & \text { if } n \text { is odd } \tag{6}\\ V_{n}^{2}-2 Q^{n} & \text { if } n \text { is even }\end{cases}
$$

$$
U_{3 n}= \begin{cases}U_{n}\left(R V_{n}^{2}-Q^{n}\right)=U_{n}\left(\Delta U_{n}^{2}+3 Q^{n}\right) & \text { if } n \text { is odd, } \tag{7}\\ U_{n}\left(V_{n}^{2}-Q^{n}\right)=U_{n}\left(R \Delta U_{n}^{2}+3 Q^{n}\right) & \text { if } n \text { is even }\end{cases}
$$

$$
V_{3 n}= \begin{cases}V_{n}\left(R V_{n}^{2}-3 Q^{n}\right) & \text { if } n \text { is odd } \tag{8}\\ V_{n}\left(V_{n}^{2}-3 Q^{n}\right) & \text { if } n \text { is even. }\end{cases}
$$

(9) $\quad 2 U_{m \pm n}= \begin{cases}R U_{m} V_{ \pm n}+U_{ \pm n} V_{m} & \text { if } m \text { is even and } n \text { is odd, } \\ U_{m} V_{ \pm n}+U_{ \pm n} V_{m} & \text { if } m \text { and } n \text { have the same parity, } \\ U_{m} V_{ \pm n}+R U_{ \pm n} V_{m} & \text { if } m \text { is odd and } n \text { is even. }\end{cases}$
(10) $2 V_{m \pm n}= \begin{cases}V_{m} V_{ \pm n}+\Delta U_{m} U_{ \pm n} & \text { if } m \text { and } n \text { have opposite parity, } \\ R V_{m} V_{ \pm n}+\Delta U_{m} U_{ \pm n} & \text { if } m \text { and } n \text { are odd, } \\ U_{m} V_{ \pm n}+R \Delta U_{m} U_{ \pm n} & \text { if } m \text { and } n \text { are even. }\end{cases}$
(11) If $j=2^{u} k, u \geq 1, k$ odd, $k>0$, and $m>0$, then
(a) $U_{2 j+m} \equiv-Q^{j} U_{m}\left(\bmod V_{2^{u}}\right)$,
(b) $U_{2 j-m} \equiv Q^{j-m} U_{m}\left(\bmod V_{2^{u}}\right)$ if $j \geq m$,
(c) $V_{2 j+m} \equiv-Q^{j} V_{m}\left(\bmod V_{2^{u}}\right)$,
(d) $V_{2 j-m} \equiv-Q^{j-m} V_{m}\left(\bmod V_{2^{u}}\right)$ if $j \geq m$.
(12) If $d=\operatorname{gcd}(m, n)$, then $\operatorname{gcd}\left(U_{m}, U_{n}\right)=U_{d}$.
(13) If $d=\operatorname{gcd}(m, n)$, then $\operatorname{gcd}\left(V_{m}, V_{n}\right)=V_{d}$ if m / d and n / d are odd, and 1 or 2 otherwise.
(14) If $d=\operatorname{gcd}(m, n)$, then $\operatorname{gcd}\left(U_{m}, V_{n}\right)=V_{d}$ if m / d is even, and 1 or 2 otherwise.

Properties (5) through (10) are proven precisely as for the Lucas sequences ((6) through (10) are immediately verifiable using (1) and (2)), and (12) is well-known. Property (11) follows readily from (6), (9), (10), (13) and (14). Properties (13) and (14) are proven in [5].

We list, for reference purposes, the first few values of U_{n} and $V_{n}: U_{0}=0$, $U_{1}=1, U_{2}=1, U_{3}=R-Q ; V_{0}=2, V_{1}=1, V_{2}=R-2 Q, V_{3}=R-3 Q$.
3. Some preliminary lemmas. For the remainder of the paper, it is assumed that R and Q are relatively prime odd integers, R is positive and not a square, and that $\Delta=R-4 Q>0$. (The latter condition assures that $U_{n}>0$ and $V_{n}>0$ for $n>0$.)

Lemma 1. Let m be an odd positive integer and $u \geq 1$.
(a) If $3 \mid m$, then $V_{2^{u} m} \equiv \pm 2(\bmod 8)$.
(b) If $3 \nmid m$, then $V_{2^{u} m} \equiv \begin{cases}-1(\bmod 8) & \text { if } u>1, \\ R-2 Q(\bmod 8) & \text { if } u=1 .\end{cases}$

Proof. (a) If $3 \mid m$, then by (5) and (6), $V_{2 m}=R V_{m}^{2}-2 Q^{m} \equiv-2 Q$ or $4 R-2 Q \equiv \pm 2(\bmod 8)$, and the result is immediate by induction.
(b) If $3 \nmid m$, then $V_{2 m}=R V_{m}^{2}-2 Q^{m} \equiv R-2 Q(\bmod 8)$ is odd, so $V_{4 m}=V_{2 m}^{2}-2 Q^{2 m} \equiv-1(\bmod 8)$, and the result for $V_{2^{u} m}$ follows by induction.

It is also readily shown by induction on u that

$$
\begin{align*}
& V_{2^{u}} \equiv-Q^{2^{u-1}}\left(\bmod V_{3}\right) \quad \text { if } u>1, \text { and } \tag{15}\\
& V_{2^{u}} \equiv-Q^{2^{u-1}}\left(\bmod U_{3}\right) \quad \text { if } u \geq 1 \tag{16}
\end{align*}
$$

Lemma 2. Let $t>0, m \geq 0$, and $12 t-m>0$. Then
(i) $V_{12 t+m} \equiv V_{m}(\bmod 8)$ and $V_{12 t-m} \equiv Q^{m} V_{m}(\bmod 8)$, and
(ii) $U_{12 t+m} \equiv U_{m}(\bmod 8)$ and $U_{12 t-m} \equiv-Q^{m} U_{m}(\bmod 8)$.

Proof. (i) By repeatedly using (4), we obtain

$$
V_{6+m}=a_{0} V_{1+m}+a_{1} V_{m},
$$

where $a_{0}=(R-Q)(R-3 Q)$ if m is odd, $a_{0}=R(R-Q)(R-3 Q)$ if m is even, and $a_{1}=-Q\left(R^{2}-3 Q R+Q^{2}\right)$. For all odd R and $Q, a_{0} \equiv 0$ $(\bmod 8)$, so $V_{6+m} \equiv a_{1} V_{m}(\bmod 8)$, and it readily follows by induction that $V_{6 r+m} \equiv a_{1}^{r} V_{m}(\bmod 8)$, for $r \geq 1$. Upon letting $r=2 t$, we have the first congruence of (i), since a_{1} is odd, and the second congruence of (i) is readily established using $V_{-n}=V_{n} / Q^{n}$.
(ii) The proof of (ii) is similar to that of (i).

Lemma 3. If $u>1$, the Jacobi symbol $J=\left(V_{3} \mid V_{2^{u}}\right)$ equals +1 .
Proof. Since $V_{2^{u}}$ is odd, $\operatorname{gcd}\left(V_{3}, V_{2^{u}}\right)=1$ so $\left(V_{3} \mid V_{2^{u}}\right)$ is defined. Let $V_{3}=2^{e} N, e \geq 1$ and N odd. Then $J=\left(2^{e} \mid V_{2^{u}}\right)\left(N \mid V_{2^{u}}\right)$. Since $V_{2^{u}} \equiv-1(\bmod 8)$ for $u>1,\left(2^{e} \mid V_{2^{u}}\right)=+1$, for all e. Hence, $J=$ $(-1)^{(N-1) / 2}\left(V_{2^{u}} \mid N\right)$. By (15), $V_{2^{u}} \equiv-Q^{2^{u-1}}(\bmod N)$, so

$$
J=(-1)^{(N-1) / 2}\left(-Q^{2^{u-1}} \mid N\right)=(-1)^{(N-1) / 2}(-1)^{(N-1) / 2}=+1
$$

Lemma 4. If $u>1$, then $\left(U_{3} \mid V_{2^{u}}\right)$ equals +1 .
Proof. By (5) and (14), $\operatorname{gcd}\left(U_{3}, V_{2^{u}}\right)=1$, so $\left(U_{3} \mid V_{2^{u}}\right)$ is defined. We let $U_{3}=2^{e} N, e \geq 1, N$ odd, and proceed as in Lemma 3, using (16), to find that $\left(U_{3} \mid V_{2^{u}}\right)=+1$.

Lemma 5. If n is a positive integer, then
(i) $3 \mid U_{n}$ if and only if $3 \mid n$ and $R \equiv Q \not \equiv 0(\bmod 3)$, or $4 \mid n$ and $R \equiv 2 Q(\bmod 3)$, and
(ii) $3 \mid V_{n}$ if and only if n is odd, $3 \mid n$ and $R \equiv 0(\bmod 3)$, or $n \equiv 2$ $(\bmod 4)$ and $R \equiv 2 Q(\bmod 3)$.

Proof. Assume $n>0$ is odd. We note first that if $3 \mid Q$, then $3 \nmid U_{n}$ and $3 \nmid V_{n}$, since $\operatorname{gcd}\left(U_{n}, Q\right)=\operatorname{gcd}\left(V_{n}, Q\right)=1$. Assume $3 \nmid Q$. Then either $R \equiv 0$ $(\bmod 3), R \equiv Q(\bmod 3)$, or $R \equiv 2 Q(\bmod 3)$.
(i) If $R \equiv 0(\bmod 3)$,

$$
\begin{aligned}
U_{n} & =R U_{n-1}-Q U_{n-2} \equiv-Q U_{n-2} \equiv(-Q)^{2} U_{n-4} \\
& \equiv \ldots \equiv(-Q)^{(n-1) / 2} U_{1} \not \equiv 0(\bmod 3) .
\end{aligned}
$$

If $R \equiv Q(\bmod 3)$, then 3 divides $U_{3}=R-Q$, and it follows from (12) that $3 \mid U_{n}$ iff $3 \mid n$. And, if $R \equiv 2 Q(\bmod 3)$, then 3 divides $U_{4}=U_{2} V_{2}=R-2 Q$ and, since by $(12), \operatorname{gcd}\left(U_{4}, U_{n}\right)=U_{1}, U_{2}$ or $U_{4}, 3 \mid U_{n}$ iff $4 \mid n$.
(ii) If $R \equiv 0(\bmod 3)$, then $V_{3}=V_{1}\left(R V_{1}^{2}-3 Q\right) \equiv 0(\bmod 3)$ and by (13), $\operatorname{gcd}\left(V_{3}, V_{n}\right)$ is divisible by 3 iff n is an odd multiple of 3 . If $R \equiv Q$ $(\bmod 3)$, then $3 \mid U_{3}$; however, by $(14), \operatorname{gcd}\left(U_{3}, V_{n}\right)$ is 1 or 2 for all n, so $3 \nmid V_{n}$. If $R \equiv 2 Q(\bmod 3)$, then 3 divides $V_{2}=R-2 Q$ and again, by (13), $\operatorname{gcd}\left(V_{2}, V_{n}\right)$ is divisible by 3 iff n is an odd multiple of 2 .
4. Squares in $\left\{U_{n}\right\}$ and $\left\{V_{n}\right\}$. In this section, we use \square for the words "a square".

Lemma 6. Let n be a positive odd integer.
(i) If $Q \equiv 3(\bmod 4)$, then $U_{n}=\square$ if and only if $n=1$, or $n=3$ and $R-Q=\square$, and $U_{n}=2 \square$ if and only if $n=3$ and $R-Q=2 \square$.
(ii) If $Q \equiv 1(\bmod 4)$, then $V_{n}=\square$ if and only if $n=1$, or $n=3$ and $R-3 Q=\square$, and $V_{n}=2 \square$ if and only if $n=3$ and $R-3 Q=2 \square$.

Proof. (i) Assume $Q \equiv 3(\bmod 4)$ and $n>0$ is odd. We note that $U_{1}=1=\square \neq 2 \square$ and clearly, U_{3} equals \square or $2 \square$ iff $R-Q=\square$ or $2 \square$. Assume $n>3$ and let $n=2 j+m, j=2^{u} k, u \geq 1, k$ odd, $k>0$, and $m=1$ or 3 . We define $\lambda=1$ or 2 and observe that if $u>1$, then, using Lemma 1, we have $\left(\lambda \mid V_{2^{u}}\right)=+1$.

By (11a),

$$
\lambda U_{2 j+m} \equiv-\lambda Q^{j} U_{m}\left(\bmod V_{2^{u}}\right)
$$

Now, $\lambda U_{n}=\square$ only if the Jacobi symbol $\left(-\lambda Q^{j} U_{m} \mid V_{2^{u}}\right)$ is +1 . However, if $u>1$, then $\left(-\lambda Q^{j} U_{m} \mid V_{2^{u}}\right)=\left(\lambda \mid V_{2^{u}}\right)\left(-U_{m} \mid V_{2^{u}}\right)$ is clearly -1 if $m=1$, and, by Lemma 4 , is -1 if $m=3$. If $u=1$, then $n=4 k+m, k$ odd, implies that $n \equiv-1$ or $-3(\bmod 8)$; let $n=2 i-t, i=2^{w} r, w \geq 2, r$ odd and $t=1$ or 3 . By (11b),

$$
\lambda U_{n}=\lambda U_{2 i-t} \equiv \lambda Q^{i-1} U_{1} \text { or } \lambda Q^{i-3} U_{3}\left(\bmod V_{2^{w}}\right)
$$

Since $Q \equiv 3(\bmod 4)$,

$$
\begin{aligned}
\left(\lambda Q^{i-1} U_{1} \mid V_{2^{w}}\right) & =(+1)\left(Q \mid V_{2^{w}}\right)=(-1)\left(V_{2^{w}} \mid Q\right) \\
& =-\left(V_{2^{w-1}}^{2}-2 Q^{2^{w-1}} \mid Q\right)=-1
\end{aligned}
$$

and, using Lemma 4,

$$
\left(\lambda Q^{i-3} U_{3} \mid V_{2^{w}}\right)=\left(\lambda Q^{i-3} \mid V_{2^{w}}\right)\left(U_{3} \mid V_{2^{w}}\right)=-1 .
$$

This proves that $\lambda U_{n} \neq \square$ and therefore that $U_{n} \neq \lambda \square$.
(ii) Assume $Q \equiv 1(\bmod 4)$ and n is a positive odd integer. If $n=1$, then $V_{n}=1=\square \neq 2 \square$, and if $n=3$, then $V_{n}=R-3 Q$ could be \square or $2 \square$. If $n>3$, let $n=2 j+m, j=2^{u} k, u \geq 1, k$ odd, $k>0$, and $m=1$ or 3 . As in (i), let $\lambda=1$ or 2 . By (11c),

$$
\lambda V_{2 j+m} \equiv-\lambda Q^{j} V_{m}\left(\bmod V_{2^{u}}\right) .
$$

We see from Lemma 1 that if $u>1$, then $V_{2^{u}} \equiv-1(\bmod 8)$; hence, in this case, if $m=1$, then $J=\left(-\lambda Q^{j} V_{m} \mid V_{2^{u}}\right)=-1$, and if $m=3$, then, by Lemma $3, J=-1$. If $u=1$, then $n=4 k+m$ with k odd, so $n \equiv-1$ or -3 $(\bmod 8)$; let $n=2 i-t, i=2^{w} r, w \geq 2, r$ odd and $t=1$ or 3 . By (11d),

$$
\lambda V_{n}=\lambda V_{2 i-t} \equiv-\lambda Q^{i-t} V_{t} \equiv-\lambda Q^{i-1} V_{1} \text { or }-\lambda Q^{i-3} V_{3}\left(\bmod V_{2^{w}}\right)
$$

Since $Q \equiv 1(\bmod 4)$,

$$
\left(-\lambda Q^{i-1} V_{1} \mid V_{2^{w}}\right)=-\left(\lambda \mid V_{2^{w}}\right)\left(Q \mid V_{2^{w}}\right)=-\left(V_{2^{w}} \mid Q\right)=-1
$$

and, using Lemma 3,

$$
\left(-\lambda Q^{i-3} V_{3} \mid V_{2^{w}}\right)=-\left(Q \mid V_{2^{w}}\right)\left(V_{3} \mid V_{2^{w}}\right)=(-1)(+1)=-1
$$

so $\lambda V_{n} \neq \square$, and therefore $V_{n} \neq \lambda \square$.
Theorem 1. Let $n \geq 0$. If $Q \equiv 1(\bmod 4)$ and $R \equiv 1,5$, or $7(\bmod 8)$, or $Q \equiv 3(\bmod 4)$ and $R \equiv 1(\bmod 8)$, then $V_{n}=\square$ iff $n=1$, or $n=3$ and $R-3 Q=\square$.

Proof. If n is even, then $V_{n}=\square$ only if $V_{n} \equiv 0,1,4(\bmod 8)$, and by Lemma 1 this is possible for Q and R odd only if $R-2 Q \equiv 1(\bmod 8)$. Hence, for $Q \equiv 1(\bmod 4)$ and $R \equiv 1,5$, or $7(\bmod 8)$, or for $Q \equiv 3(\bmod 4)$ and $R \equiv 1,3$, or $5(\bmod 8), V_{n} \neq \square$.

Assume n is odd. If $Q \equiv 1(\bmod 4)$ and $R \equiv 1,5$, or $7(\bmod 8)$, the theorem is true by Lemma 6 .

Assume $Q \equiv 3(\bmod 4)$ and $R \equiv 1(\bmod 8)$. If $n=1$, then $V_{n}=V_{1}=$ $1=\square$, and if $n=3$, then $V_{n}=V_{3}=R-3 Q$ is a square iff $R-3 Q$ is a square. Let $n=2 j+m, j=2^{u} k, u \geq 1, k$ odd, $k>0$, and $m=1$ or 3 . Then

$$
V_{2 j+m} \equiv-Q^{j} V_{m} \equiv-Q^{j} V_{1} \text { or }-Q^{j} V_{3}\left(\bmod V_{2^{u}}\right)
$$

By Lemma $1, V_{2^{u}} \equiv-1(\bmod 8)$ for $u>1$ and $V_{2}=R-2 Q \equiv 3(\bmod 4)$. Hence, $\left(-Q^{j} V_{1} \mid V_{2^{u}}\right)=-1$ if $u \geq 1$ and by Lemma $3,\left(-Q^{j} V_{3} \mid V_{2^{u}}\right)=-1$ if $u>1$. That is, $V_{n} \neq \square$ if $n=2 \cdot 2^{u} k+1$ for $u \geq 1, m=1$, or $u>1, m=3$.

It remains to show that $V_{n} \neq \square$ if $n=4 k+3, k$ odd. In this case, $n \equiv-5,-1$ or $3(\bmod 12)$. By Lemma 2 ,

$$
V_{12 t-5} \equiv Q^{5} V_{5} \equiv Q\left(R^{2}-5 R Q+5 Q^{2}\right) \equiv 5(\bmod 8)
$$

and

$$
V_{12 t-1} \equiv Q V_{1} \equiv 3 \text { or } 7(\bmod 8),
$$

and it is clear that $V_{n} \neq \square$ in each case. If $n \equiv 3(\bmod 12)$, we write $n=3^{e} h, e \geq 1, h$ odd, $3 \nmid h$. By using (8) repeatedly, we have

$$
V_{3^{e} h}=V_{3^{j} h} \cdot \prod_{i=j}^{e-1}\left(R V_{3^{i} h}^{2}-3 Q^{3^{i} h}\right),
$$

for $0 \leq j \leq e-1$. Since $V_{3^{j} h} \mid V_{3^{i} h}$ for $j \leq i$, and $\operatorname{gcd}\left(V_{3^{j} h}, Q\right)=1$, we have $\operatorname{gcd}\left(V_{3^{j} h}, R V_{3^{i} h}^{2}-3 Q^{3^{i} h}\right)=1$ or 3 . Therefore, $\operatorname{gcd}\left(V_{3^{j} h}, \prod_{i=j}^{e-1}\left(R V_{3^{i} h}^{2}-\right.\right.$ $\left.3 Q^{3^{i} h}\right)$) is 1 or a power of 3 . Hence, $V_{3^{e} h}=\square$ only if $V_{3^{j} h}=\square$ or $3 \square$ for $0 \leq j \leq e-1$, and, in particular, $V_{h}=\square$ or $3 \square$. However, we have just shown that, for h not divisible by $3, V_{h}=\square$ only if $h=1$, and, by Lemma 5 , $V_{h} \neq 3 \square$.

Taking $h=1$, we have $V_{n}=V_{3^{e}}=\square$ only if $V_{3^{j}}=\square$ or $3 \square$, for $j=1, \ldots, u-1$. Now, since $\operatorname{gcd}\left(R, R^{2}-3 Q\right)=1$ or $3, \square=V_{3}=R\left(R^{2}-3 Q\right)$ is possible only if $R=\square$ or $3 \square$. However, R is not a square, by assumption, and $R \neq 3 \square$ since $R \equiv 1(\bmod 8)$. It follows that $V_{3^{e}} \neq \square$ for $e \geq 1$, proving that $V_{n}=\square$ if and only if $n=1$.

Theorem 2. Let $n \geq 0$ and $Q \equiv 3(\bmod 4)$, or $Q \equiv 5(\bmod 8)$ and $R \equiv 5(\bmod 8)$. Then $U_{n}=\square$ iff
(i) $n=0,1,2$, or $n=3$ and $R-Q=\square$, or $n=4$ and $R-2 Q=\square$, or
(ii) $n=6, R-Q=2 \square$ and $R-3 Q=2 \square($ this implies $Q \equiv 3(\bmod 4)$, $R \equiv Q(\bmod 8))$.

Proof. That $U_{n}=\square$ if (i) holds is obvious. Suppose $n>4$.
Case 1: n odd and $n \geq 5$. Assume that $U_{n}=\square$. If $Q \equiv 3(\bmod 4)$, then $U_{n} \neq \square$ by Lemma 6 . Assume that $Q \equiv R \equiv 5(\bmod 8)$ and let $n=2 j+m$, where j and m are defined as in the proof of Theorem 1. Then

$$
U_{2 j+m} \equiv-Q^{j} U_{m} \equiv-Q^{j} U_{1} \text { or }-Q^{j} U_{3}\left(\bmod V_{2^{u}}\right),
$$

and exactly as in the proof of Theorem 1 (and using Lemma 4), we have $U_{n} \neq \square$ except possibly if $n=4 k+3, k$ odd.

If $n=4 k+3, k$ odd, then $n \equiv-5,-1$ or $3(\bmod 12)$, and by Lemma 2 ,

$$
U_{12 t-5} \equiv-Q^{5} U_{5} \equiv-Q\left(R^{2}-3 R Q+Q^{2}\right) \equiv 5(\bmod 8)
$$

and

$$
U_{12 t-1} \equiv-Q U_{1} \equiv 3(\bmod 8) ;
$$

it is clear that $U_{n} \neq \square$ in each case. If $n=12 t+3$, we write $n=3^{e} h, e \geq 1$, h odd, $3 \nmid h$. By using (7) repeatedly, we have

$$
U_{3^{e} h}=U_{3^{j} h} \cdot \prod_{i=j}^{e-1}\left(\Delta U_{3^{i} h}^{2}+3 Q^{3^{i} h}\right)
$$

for $0 \leq j \leq e-1$. By an argument essentially identical to that in Theorem 1, we see that $U_{3^{e} h}=\square$ only if $U_{3^{j} h}=\square$ or $3 \square$ for $0 \leq j \leq e-1$, and, in particular, $U_{h}=\square$ or $3 \square$. We just showed above that for h not divisible by $3, U_{h}=\square$ only if $h=1$, and $U_{h}=3 \square$ is not possible by Lemma 5 .

Taking $h=1$, we have $U_{n}=U_{3^{e}}=\square$ only if $U_{3^{j}}=\square$ or $3 \square$ for $j=1,2, \ldots, e-1$. We have noted that U_{3} may be a square and have shown above that $U_{9}=U_{2 \cdot 4+1} \neq \square$. If $3 \square=U_{9}=U_{3}\left(\Delta U_{3}^{2}+3 Q^{3}\right)$, then $\Delta U_{3}^{2}+3 Q^{3}=\square$ or $3 \square$. However, since $U_{3}=R-Q \equiv 0(\bmod 8)$, $\Delta U_{3}^{2}+3 Q^{3} \equiv 0+3 \cdot 5 \equiv-1(\bmod 8)$ implies that $\Delta U_{3}^{2}+3 Q^{3} \neq \square$ or $3 \square$. Hence, $U_{n}=U_{3^{e}}=\square$ only if $e=1$, i.e., only if $n=3$.

Case 2: n even. Assume $n>4$ and $U_{n}=\square$, and let $n=2^{u} m, u \geq 1, m$ odd. By repeated application of (6), we have

$$
U_{2^{u} m}=U_{2^{j} m} V_{2^{j} m} V_{2^{j+1} m} \ldots V_{2^{u-1} m}, \quad \text { for } 0 \leq j \leq u-1
$$

Now, by (13) and (14), $\operatorname{gcd}\left(U_{2^{j} m}, V_{2^{j} m}\right)=1$ or 2 , and $\operatorname{gcd}\left(V_{2^{j} m}, V_{2^{i} m}\right)=1$ or 2 for $i \neq j$. Hence, $\operatorname{gcd}\left(U_{2^{j} m}, V_{2^{j} m} \ldots V_{2^{u-1} m}\right)$ is equal to 1 or a power of 2 , and $\operatorname{gcd}\left(V_{2^{j} m}, U_{2^{j} m} V_{2^{j+1} m} \ldots V_{2^{u-1} m}\right)=1$ or a power of 2 . It follows that $U_{2^{j} m}=\square$ or $2 \square$ and $V_{2^{j} m}=\square$ or $2 \square$ for $0 \leq j \leq u-1$. In particular, $U_{m}=\square$ or $2 \square$ and $V_{m}=\square$ or $2 \square$. If $Q \equiv 3(\bmod 4)$, then, by Lemma 6 and Case 1 above, $U_{m}=\square$ or $2 \square$ only if $m=1$ or $m=3$, and if $Q \equiv 1(\bmod 4)$ then, by Theorem 1 and Lemma $6, V_{m}=\square$ or $2 \square$ only if $m=1$ or $m=3$.

We assume now that $Q \equiv 3(\bmod 4)$ or $Q \equiv R \equiv 5(\bmod 8)$. If $m=1$, $U_{2^{j} m}=U_{2^{j}}$ is odd, so $U_{2^{j}} \neq 2 \square$. If $j=1$, then $U_{2^{j}}=U_{2}=1=\square$, and, if $j=2$, then $U_{4}=R-2 Q$ could be a square if $R \equiv 3(\bmod 4)$. If $j=3$, then $U_{2^{j}}=U_{8}=U_{4} V_{4}$ is not a square since $\operatorname{gcd}\left(U_{4}, V_{4}\right)=1$ and $V_{4} \neq \square$ by Lemma 1. Hence, if $m=1$, then $U_{n}=\square$ if and only if $n=2$ or $n=4$ and $R-2 Q=\square$.

If $m=3$, we show first that $U_{24} \neq \square$ or $2 \square$, implying that $u \leq 2$. Now, by (7), $U_{24}=U_{8}\left(R \Delta U_{8}^{2}+3 Q^{8}\right)$. Since $\operatorname{gcd}\left(U_{8}, Q\right)=1, \operatorname{gcd}\left(U_{8}, R \Delta U_{8}^{2}+\right.$ $3 Q^{8}$) $=1$ or 3 . If $U_{24}=\square$ or $2 \square$, then since by (5), U_{8} is odd, we have $U_{8}=\square$ or $3 \square$; however, $U_{8} \neq \square$, as seen above, and $3 \square=U_{8}=U_{4} V_{4}$ implies that $V_{4}=\square$ or $3 \square$, which is impossible by Lemma 1 .

It follows that $n=2^{u} \cdot 3$, with $u=1$ or 2 . If $u=1$, then $U_{n}=U_{6}=\square$ iff $U_{3}=R-Q=2 \square$ and $V_{3}=R-3 Q=2 \square$. This is possible for $Q \equiv R \equiv 3$ or $7(\bmod 8)$. Conversely, if $R-Q=2 \square$ and $R-3 Q=2 \square$, then $U_{6}=\square$. If $u=2$, then $U_{n}=U_{12}=U_{6} V_{6}=\square$ is possible only if $U_{6}=2 \square$ and $V_{6}=2 \square\left(U_{6}=\square, V_{6}=\square\right.$ is not possible since $\left.V_{6} \equiv \pm 2(\bmod 8)\right)$. This implies that $U_{3}=\square, V_{3}=2 \square, V_{2}=3 \square$ and $V_{2}^{2}-3 Q^{2}=6 \square$. Hence, there exist integers x, y and z such that $U_{3}=R-Q=x^{2}, V_{3}=R-3 Q=2 y^{2}$ and $V_{2}=R-2 Q=3 z^{2}$. Since Q and R are odd, x is even, z is odd, and $\left(3 U_{3}-V_{3}\right) / 2=R=3 x^{2} / 2-y^{2}$ implies y is odd. We see now, however, that $Q=V_{2}-V_{3}=3 z^{2}-2 y^{2} \equiv 1(\bmod 8)$, contrary to our assumption that $Q \equiv 3,5$ or $7(\bmod 8)$. Thus, $n=2^{u} \cdot 3$ only if $u=1$.

Theorem 3. Let $n \geq 0$. If $Q \equiv 1(\bmod 4)$ and $R \equiv 1$ or $7(\bmod 8)$, then $V_{n}=2 \square$ iff $n=0$, or $n=3$ and $R-3 Q=2 \square$.

Proof. We note that $V_{0}=2=2 \square$ and $V_{3}=R-3 Q$. Assume $n \neq 0,3$ and that $V_{n}=2 \square$. Since V_{n} is even, $3 \mid n$, by (5). Let $n=3^{e} h, e \geq 1$ and $3 \nmid h$. By Lemma 6, we may assume h is even. We have, from (8),

$$
V_{3^{e} h}=V_{h} \cdot \prod_{i=0}^{e-1}\left(V_{3^{i} h}^{2}-3 Q^{3^{i} h}\right)
$$

It follows that $V_{3^{e} h}=2 \square$ only if $V_{h}=\square$ or $3 \square$; however, $V_{h}=\square$ is impossible for h even by Theorem 1 and $3 \square=V_{h} \equiv R-2 Q(\bmod 8)$, by Lemma 1 , and this is not possible for $Q \equiv 1(\bmod 4)$ and $R \equiv 1$ or $7(\bmod 8)$.

Theorem 4. Let $n \geq 0$ and $Q \equiv 3(\bmod 4)$. Then $U_{n}=2 \square i f f$
(i) $n=0$,
(ii) $n=3$ and $R-Q=2 \square$, or
(iii) $n=6$, and $R-Q=\square$ or $2 \square$ and $R-3 Q=2 \square$ or \square, respectively.

We omit the proof, since the argument is similar to those of the preceding theorems.

We remark, in closing, that it appears likely that a different approach may be required to prove the theorems of this paper for additional values of Q and R. The difficulty in obtaining the result for the remaining values is related, primarily, to the failure of Lemma 1 to hold for those additional values, and this lemma played a key role in our proofs.

REFERENCES

[1] J. H. E. Cohn, Eight Diophantine equations, Proc. London Math. Soc. (3) 16 (1966), 153-166.
[2] -, Five Diophantine equations, Math. Scand. 21 (1967), 61-70.
[3] -, Squares in some recurrent sequences, Pacific J. Math. (3) 41 (1972), 631-646.
[4] D. H. Lehmer, An extended theory of Lucas' functions, Ann. of Math. 31 (1930), 419-448.
[5] W. L. McDaniel, The g.c.d. in Lucas sequences and Lehmer number sequences, Fibonacci Quart. 29 (1991), 24-29.
[6] W. L. McDaniel and P. Ribenboim, The square terms in Lucas sequences, to appear.
[7] A. Rotkiewicz, Applications of Jacobi's symbol to Lehmer's numbers, Acta Arith. 42 (1983), 163-187.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE
UNIVERSITY OF MISSOURI-ST. LOUIS
ST. LOUIS, MISSOURI 63121-4499
U.S.A.

E-mail: MCDANIEL@ARCH.UMSL.EDU

