COLLOQUIUM MATHEMATICUM
 VOL. LXVI

NONCOMMUTATIVE ANALOGS OF SYMMETRIC POLYNOMIALS

BY
MACIEJ BURNECKI (WROCŁAW)

1. Introduction. Our aim is to introduce and investigate several analogs of the (commutative) symmetric polynomials (compare [2], Section I.2) in the case of the semigroup algebra of the free noncommutative semigroup with a finite number of generators-this is the algebra of noncommutative polynomials - and in the case of the group algebra of the free noncommutative group with a finite number of generators (for the free group see [3], Section 1.2, for the (semi)group algebra see [1], Definition 5.73).

The general idea is to consider expressions of the form

$$
\sum_{i_{1}, \ldots, i_{q}} x_{i_{1}}^{h_{1}} \ldots x_{i_{q}}^{h_{q}}
$$

where h_{j} 's are nonzero integers and any two consecutive i_{j}, i_{j+1} are different.
Remarkably, the vector spaces spanned by these functions are algebras. Moreover, many properties of ordinary symmetric functions hold in this new situation.

The algebras m (of Section 4) and λ (of Section 7) are basic while C and M are variations on the same principle.

The author is indebted to Professor M. Bo/zejko for posing the problem and helpful discussions. The author wishes to express his thanks to the referees for useful remarks and comments.
2. Notation and terminology. We write $\mathbb{N}=\{0,1,2, \ldots\}, \mathbb{N}_{+}=$ $\mathbb{N} \backslash\{0\}$. We fix a commutative ring K with unit, an integer $k \geq 2$ and free generators x_{1}, \ldots, x_{k} of the free noncommutative group \mathbb{F}_{k}. Let \mathbb{P}_{k} mean the (free noncommutative) semigroup $\mathbb{P}_{k} \subseteq \mathbb{F}_{k}$ with unit generated by x_{1}, \ldots, x_{k}. The symbols $K\left(\mathbb{F}_{k}\right)$ and $K\left(\mathbb{P}_{k}\right)$ denote the group algebra of \mathbb{F}_{k} and the semigroup algebra of \mathbb{P}_{k} respectively.

We say that a subset I of noncommutative algebra A is algebraically independent if for every $a_{1}, \ldots, a_{i} \in I$ and a polynomial f of i noncommutating variables the equality $f\left(a_{1}, \ldots, a_{i}\right)=0$ implies $f=0$.

We write $B<A$ if B is a subalgebra over K of A and $K \subset B$. Notice $K\left(\mathbb{P}_{k}\right)<K\left(\mathbb{F}_{k}\right)$.

The algebra over K generated by the sum of its subset T and K is denoted by $\operatorname{Alg}(T)$. We call a set T an algebraic basis of an algebra $A<$ $K\left(\mathbb{F}_{k}\right)$ if T is algebraically independent and $\operatorname{Alg}(T)=A$.

If T is a set then T^{i}, T^{∞} denote respectively the i-fold and countable products of $T, T^{i}=\{\emptyset\}$ for $i<1, T_{\infty}=\bigcup_{i=0}^{\infty} T^{i}$.

Moreover, if a_{t} 's belong to an algebra with unit $\mathbf{1}$ and with zero $\mathbf{0}$ then we put $\prod_{t=1}^{i} a_{t}=a_{1} a_{2} \ldots a_{i}$ if $i \in \mathbb{N}_{+}$(notice the ordering of $a_{j}{ }^{\prime}$ s), $\prod_{t \in \emptyset} a_{t}=\mathbf{1}$, $\sum_{t \in \emptyset} a_{t}=\mathbf{0}$.

A sequence $\left(i_{t}\right)_{t=p}^{q}$, where p, q are integers, is usually denoted by $i_{p, q}$, $i_{p, q}=\emptyset$ for $p>q$.

The symbol [...] denotes the operation of "writing in" elements of a finite sequence into a sequence, that is,

$$
\left(\ldots, a,\left[i_{p, q}\right], b, \ldots\right)=\left(\ldots, a, i_{p}, i_{p+1}, \ldots, i_{q}, b, \ldots\right),
$$

for instance $(\ldots, 1,[(2,3)], 4, \ldots)=(\ldots, 1,2,3,4, \ldots)$.
For $i_{p, p+q} \in\{1, \ldots, k\}_{\infty}, h_{r, r+q} \in \mathbb{Z}_{\infty}$ and $\alpha \in\{-1,1\}$ we set

$$
x_{i_{p, p+q}}^{h_{r, r+q}}=\prod_{t=0}^{q} x_{i_{p+t}}^{h_{r+t}}, \quad \alpha h_{r, r+q}=\left(\alpha h_{r+t}\right)_{t=0}^{q}
$$

and we let $1_{p, p+q} \in\{1\}^{q+1}$ be the sequence consisting of 1 's.
We say that the condition $W\left(i_{p, p+q}\right)$ holds iff $p, q \in \mathbb{Z},-1 \leq q, i_{p, p+q} \in$ $\{1, \ldots, k\}^{q+1}$ and any two consecutive i_{j}, i_{j+1} are different.

Let $l(y)$ be the length of a reduced word z, where $z=y \in \mathbb{F}_{k}$ (compare [3], Chapters 1.4 and 1.1). Every function $f \in K\left(\mathbb{F}_{k}\right)$ can be written in a unique way as

$$
f=\sum_{y \in \mathbb{F}_{k}} a_{y} y
$$

and we set $d(f)=\max \left\{l(y): a_{y} \neq 0\right\}, d(\mathbf{0})=\infty$.
The characteristic function of $\{0\} \subseteq \mathbb{Z}$ is denoted by δ.
In the following to denote the value of a function f at an element which is a sequence $\left(i_{p}, \ldots, i_{q}\right)$ we often write $f\left(i_{p}, \ldots, i_{q}\right)$ instead of $f\left(\left(i_{p}, \ldots, i_{q}\right)\right)$ and this should not be misleading.
3. Auxiliary definitions. For calculating coefficients in the products of our symmetric functions we need a useful function L. In the proofs that some sets are algebraic bases we apply the orderings $<_{1}, \ldots,<_{4}$ defined below, and the functions I_{1} and I_{2} are used in proving algebraic independence and in defining $<_{3}$ and $<_{4}$.

Notice that L below depends only on its first argument and on whether other arguments are 0 or not.
3.1. Definition. The function $L: \mathbb{N} \times \mathbb{Z}^{4} \rightarrow K$ is given by
$L(a, b, c, d, e)= \begin{cases}1 & \text { if } a=0, \\ 0 & \text { if } a b \neq 0, \\ (k-1)^{a-1} & \text { if } b=0 \text { and } a c \neq 0, \\ (k-2)(k-1)^{a-1} & \text { if } b=c=0 \text { and } a \neq 0 \neq d e, \\ (k-1)^{a} & \text { if } b=c=d e=0 \text { and } a\left(d^{2}+e^{2}\right) \neq 0, \\ k(k-1)^{a-1} & \text { if } b=c=d=e=0 \text { and } a \neq 0 .\end{cases}$
Notice that I_{1} and I_{2} below are injections.
3.2. Definition. (a) Let $I_{1}:(\mathbb{Z} \backslash\{0\})_{\infty} \rightarrow(\mathbb{Z} \backslash\{0\})_{\infty}$ be given by induction as follows: if $q, r \in \mathbb{N}_{+}, z \in \mathbb{Z} \backslash\{0\}, z_{1, q} \in(\mathbb{Z} \backslash\{0\})^{q}$ and $I_{1}\left(z_{1, q}\right)=\varepsilon_{1, r}$ then $I_{1}(\emptyset)=\emptyset, I_{1}(z)=\operatorname{sgn}(z) 1_{1,|z|}$, and
$I_{1}\left(\left[z_{1, q}\right], z\right)= \begin{cases}\left(\left[\varepsilon_{1, r-1}\right], \varepsilon_{r}+\operatorname{sgn}(z),\left[\operatorname{sgn}(z) 1_{1,|z|-1}\right]\right) & \text { if } \operatorname{sgn}\left(\varepsilon_{r}\right)=\operatorname{sgn}(z), \\ \left(\left[\varepsilon_{1, r}\right],\left[\operatorname{sgn}(z) 1_{1, \mid z]}\right]\right) & \text { if } \operatorname{sgn}\left(\varepsilon_{r}\right)=-\operatorname{sgn}(z) .\end{cases}$
(b) Let $I_{2}:\left(\{-1,1\}_{\infty}\right)_{\infty} \rightarrow(\mathbb{Z} \backslash\{0\})_{\infty}$ be given by the following induction: if $r \in \mathbb{N}_{+}, h \in\{-1,1\}_{\infty}, j \in\left(\{-1,1\}_{\infty}\right)_{\infty} \backslash\{\emptyset\}$ and $I_{2}(j)=\varepsilon_{1, r}$ then $I_{2}(\emptyset)=\emptyset, I_{2}(h)=(1,[h])$, and

$$
I_{2}([j], h)=\left(\left[\varepsilon_{1, r-1}\right], \varepsilon_{r}+\operatorname{sgn}\left(\varepsilon_{r}\right),\left[\operatorname{sgn}\left(\varepsilon_{r}\right) h\right]\right) .
$$

3.3. Definition. We define orderings $<_{1},<_{2}$ and $<_{3}$ on $(\mathbb{Z} \backslash\{0\})_{\infty}$. Let $h_{1, q} \neq l_{1, s} \in(\mathbb{Z} \backslash\{0\})_{\infty}$. In the following for nonempty $h_{1, q}, l_{1, s}$ we write

$$
\nu=\min \left\{t \in\{1,2, \ldots, \min \{q, s\}\}: h_{t} \neq l_{t}\right\} .
$$

We define:
(a) $h_{1, q}<_{1} l_{1, s}$ iff $\sum_{t=1}^{q}\left|h_{t}\right|>\sum_{u=1}^{s}\left|l_{u}\right|$ or $\left(\sum_{t=1}^{q}\left|h_{t}\right|=\sum_{u=1}^{s}\left|l_{u}\right|\right.$ and $\left(\left|h_{\nu}\right|<\left|l_{\nu}\right|\right.$ or $\left(\left|h_{\nu}\right|=\left|l_{\nu}\right|\right.$ and ω_{1} holds $\left.)\right)$). The condition ω_{1} is chosen to make $<_{1}$ a linear ordering; for instance, ω_{1} holds iff $h_{\nu}=-l_{\nu}>0$.
(b) $h_{1, q}<_{2} l_{1, s}$ iff $\sum_{t=1}^{q}\left|h_{t}\right|>\sum_{u=1}^{s}\left|l_{u}\right|$ or $\left(\sum_{t=1}^{q}\left|h_{t}\right|=\sum_{u=1}^{s}\left|l_{u}\right|\right.$ and $\left(\left|h_{\nu}\right|>\left|l_{\nu}\right|\right.$ or $\left(\left|h_{\nu}\right|=\left|l_{\nu}\right|\right.$ and ω_{2} holds))), where ω_{2} is a condition making $<_{2}$ linear; for instance, ω_{2} is equivalent to ω_{1}.
(c) $h_{1, q}<_{3} l_{1, s}$ iff $I_{1}\left(h_{1, q}\right)<2 I_{1}\left(l_{1, s}\right)$.
3.4. Definition. A linear ordering $<_{4}$ on $\left(\{-1,1\}_{\infty}\right)_{\infty}$ is given by the following formula:

$$
h<_{4} l \quad \text { iff } \quad I_{2}(h)<_{2} I_{2}(l),
$$

where $h, l \in\left(\{-1,1\}_{\infty}\right)_{\infty}$.
4. The algebra m. We now introduce our first version of symmetric functions. These are functions $S(h) \in K\left(\mathbb{F}_{k}\right)$ (Definition 4.1) which are analogous to complete symmetric functions. The crucial Lemma 4.2, expressing
the product of two $S(h)$'s as a linear combination of $S(h)$'s, shows that the linear subspace m of $K\left(\mathbb{F}_{k}\right)$ spanned by the $S(h)$'s is in fact a subalgebra.

Then we introduce two subsets n, e, which are analogs of the polynomials $\sum_{i} x_{i}^{l}$ and of elementary symmetric polynomials respectively. It turns out that both these sets are algebraic bases of m. Moreover, the Euler formula holds.

At the end we remark that m consists of functions invariant under a length preserving action of a product G of permutation groups.
4.1. Definition. If $h=\emptyset$ or h is a finite sequence of zeros then $S(h)=\mathbf{1}$, and

$$
S(h)=\sum_{W\left(j_{1, s}\right)} x_{j_{1, s}}^{l_{1, s}}
$$

for other $h \in \mathbb{Z}_{\infty}$, where the sequence $l_{1, s}$ arises from h by omission of zeros.
The vector space spanned by the $S(h)$'s is denoted by m.
Every element $f \in m$ can be written in a unique way as

$$
f=\sum_{h \in(\mathbb{Z} \backslash\{0\})_{\infty}} a_{h} S(h),
$$

where $a_{h} \in K$. We call a_{h} the coefficient of $S(h)$ in f.
Practical use of the following Lemma 4.2 is made easier by the fact that if $h_{q+1-u}+l_{u} \neq 0$ for an index u then

$$
\begin{gathered}
\sum_{w=1}^{t-1}\left|h_{q+1-w}+l_{w}\right| \neq 0 \quad \text { for } t>u \\
L\left(t, \sum_{w=1}^{t-1}\left|h_{q+1-w}+l_{w}\right|, h_{q+1-t}+l_{t}, q-t, s-t\right)=0
\end{gathered}
$$

and we actually sum over t until $h_{t+1}+l_{t} \neq 0$.
4.2. Lemma. Let $q, s \in \mathbb{N}, h_{1, q}, l_{1, s} \in(\mathbb{Z} \backslash\{0\})_{\infty}$ and $l_{0}=h_{q+1}=0$. Then

$$
\begin{aligned}
S\left(h_{1, q}\right) S\left(l_{1, s}\right)= & \sum_{t=0}^{\min (q, s)} L\left(t, \sum_{u=1}^{t-1}\left|h_{q+1-u}+l_{u}\right|, h_{q+1-t}+l_{t}, q-t, s-t\right) \\
& \cdot S\left(\left[h_{1, q-t}\right], h_{q+1-t}+l_{t},\left[l_{t+1, s}\right]\right) .
\end{aligned}
$$

Proof. If $q=0$ then $S(\emptyset) S\left(l_{1, s}\right)=S\left(l_{1, s}\right)$, and similarly for $s=0$. Let $q, s \geq 1$. Set $v=\max \left\{t \in\{0,1, \ldots, \min (q, s)\}: h_{q+1}+l_{0}=h_{q}+l_{1}=\ldots=\right.$ $\left.h_{q+1-t}+l_{t}=0\right\}$. If $v=0$ then

$$
S\left(h_{1, q}\right) S\left(l_{1, s}\right)=S\left(\left[h_{1, q}\right],\left[l_{1, s}\right]\right)+S\left(\left[h_{1, q-1}\right], h_{q}+l_{1},\left[l_{2, s}\right]\right) .
$$

Let $v>0$. Then

$$
\begin{aligned}
& S\left(h_{1, q}\right) S\left(l_{1, s}\right) \\
& =\left(\sum_{W\left(i_{1, q}\right)} x_{i_{1, q}}^{h_{1, q}}\right)\left(\sum_{W\left(j_{1, s}\right)} x_{j_{1, s}}^{l_{1, s}}\right)=\sum_{W\left(i_{1, q+s}\right)} x_{i_{1, q+s}}^{\left(\left[h_{1, q}\right],\left[l_{1, s}\right]\right)} \\
& +(k-2) \sum_{W\left(i_{1, q+s-2}\right)} x_{i_{1, q+s-2}}^{\left(\left[h_{1, q-1}\right],\left[l_{2, s}\right]\right)} \\
& +(k-2)(k-1) \sum_{W\left(i_{1, q+s-4}\right)} x_{i_{1, q+s-4}}^{\left(\left[h_{1, q-2}\right],\left[l_{3, s}\right]\right)}+\ldots \\
& +(k-2)(k-1)^{t} \sum_{W\left(i_{1, q+s-2(t+1)}\right)} x_{i_{1, q+s-2(t+1)}^{\left(\left[h_{1, q-1-t}\right],\left[l_{t+2, s}\right]\right)}+\ldots}+\ldots
\end{aligned}
$$

4.3. Corollary. $m<K\left(\mathbb{F}_{k}\right)$.
4.4. Definition. We put $n=\left\{\sum_{i=1}^{k} x_{i}^{l}: l \in \mathbb{Z} \backslash\{0\}\right\}$. These are analogs of the polynomials $\sum_{i} x_{i}^{l}$.
4.5. Theorem. (a) $\operatorname{Alg}(\{f \in n: d(f) \leq i\})=\operatorname{Alg}(\{g \in m: d(g) \leq i\})$ for every $i \in \mathbb{N}$.
(b) $\operatorname{Alg}(n)=m$.

Proof. To show that if $q \in \mathbb{N}, h_{1, q} \in(\mathbb{Z} \backslash\{0\})^{q}$ and $S\left(h_{1, q}\right) \in\{g \in m$: $d(g) \leq i\}$ then $S\left(h_{1, q}\right) \in \operatorname{Alg}(\{f \in n: d(f) \leq i\})$ we apply induction on q. We have $S\left(h_{1,1}\right) \in n$. If $q>1$ then, by Lemma 4.2,

$$
\begin{aligned}
S\left(h_{1, q}\right) & =S\left(h_{1}\right) S\left(h_{2, q}\right)-L\left(1,0, h_{1}+h_{2}, 0, q-2\right) S\left(h_{1}+h_{2},\left[h_{3, q}\right]\right) \\
& \in \operatorname{Alg}(\{f \in n: d(f) \leq i\}) \quad \text { by the inductive assumption. }
\end{aligned}
$$

4.6. Theorem. The set n is algebraically independent. Thus it forms an algebraic basis of m.

Proof. Every polynomial f over K with elements of n as noncommutative variables is of the form

$$
f=\sum_{q \in \mathbb{N}, h_{1, q} \in(\mathbb{Z} \backslash\{0\})_{\infty}} a_{h_{1, q}} P\left(h_{1, q}\right),
$$

where $a_{h_{1, q}} \in K, P\left(h_{1, q}\right)=\prod_{t=1}^{q} S\left(h_{t}\right)$ and all but finitely many $a_{h_{1, q}}$ are equal to 0 .

All the elements $S\left(l_{1, s}\right) \in K\left(\mathbb{F}_{k}\right)$, where $l_{1, s} \in(\mathbb{Z} \backslash\{0\})_{\infty}$, appearing with nonzero coefficients in $P\left(h_{1, q}\right) \in K\left(\mathbb{F}_{k}\right)$ for an $h_{1, q} \in(\mathbb{Z} \backslash\{0\})_{\infty}$, satisfy $\sum_{t=1}^{q}\left|h_{t}\right| \geq \sum_{u=1}^{s}\left|l_{u}\right|$. If equality holds then every l_{u} is a sum of some h_{t} 's which are of the same sign and

$$
\begin{aligned}
& \left(\left|l_{1}\right|>\left|h_{1}\right| \text { or }\left(l_{1}=h_{1} \text { and }\left|l_{2}\right|>\left|h_{2}\right|\right)\right. \text { or } \\
& \left(l_{1}=h_{1} \text { and } l_{2}=h_{2} \text { and }\left|l_{3}\right|>\left|h_{3}\right|\right) \text { or } \ldots \text { or } \\
& \left.\left(l_{1}=h_{1} \text { and } l_{2}=h_{2} \text { and } \ldots \text { and } l_{q}=h_{q}\right)\right),
\end{aligned}
$$

which means that $h_{1, q}<_{1} l_{1, s}$.
Therefore, $S\left(l_{1, s}\right)$ appears with coefficient 0 in $P\left(h_{1, q}\right) \in K\left(\mathbb{F}_{k}\right)$ if $h_{1, q}>_{1}$ $l_{1, s}$ and $l_{1, s} \neq h_{1, q}$.

Now, by induction in $(\mathbb{Z} \backslash\{0\})_{\infty}$ with respect to $<_{1}$, one can show that $a_{h_{1, q}}$ is the coefficient of $S\left(h_{1, q}\right)$ in f and therefore $a_{h_{1, q}}=0$.
4.7. Definition. Let $e=\left\{S\left(\operatorname{sgn}(i) 1_{1,|i|}\right): i \in \mathbb{Z} \backslash\{0\}\right\} ;$ these are analogs of elementary symmetric polynomials.
4.8. Proposition (Euler formula). If $i \in \mathbb{N}_{+}$and $\varepsilon \in\{-1,1\}$ then

$$
\sum_{t=0}^{i}(-1)^{t} S\left(\varepsilon 1_{1, t}\right) S(\varepsilon(i-t))=\sum_{t=0}^{i}(-1)^{t} S(\varepsilon(i-t)) S\left(\varepsilon 1_{1, t}\right)=0
$$

Proof. It suffices to apply Lemma 4.2 and to consider the differences between the products for t and $t+1$.
4.9. Proposition. (a) $\operatorname{Alg}(\{f \in e: d(f) \leq i\})=\operatorname{Alg}(\{g \in m: d(g)$ $\leq i\}$) for every $i \in \mathbb{N}$.
(b) $\operatorname{Alg}(e)=m$.

Proof. (a) is a consequence of Theorem 4.5 and Proposition 4.8.
4.10. Theorem. The set e is algebraically independent. Thus it forms an algebraic basis of m.

Proof. Let

$$
Q\left(h_{1, q}\right)=\prod_{t=1}^{q} S\left(I_{1}\left(h_{t}\right)\right) \quad \text { for } h_{1, q} \in(\mathbb{Z} \backslash\{0\})_{\infty}
$$

(I_{1} is defined in 3.2) and let

$$
f=\sum_{q \in \mathbb{N}, h_{1, q} \in(\mathbb{Z} \backslash\{0\})_{\infty}} a_{h_{1, q}} Q\left(h_{1, q}\right)=0
$$

where $a_{h_{1, q}} \in K$ and all but finitely many $a_{h_{1, q}}$ are 0 .

All the elements $S\left(l_{1, s}\right) \in K\left(\mathbb{F}_{k}\right)$, where $l_{1, s} \in(\mathbb{Z} \backslash\{0\})_{\infty}$, which have nonzero coefficients in a fixed $Q\left(h_{1, q}\right)$, satisfy

$$
\sum_{t=1}^{q}\left|h_{t}\right| \geq \sum_{u=1}^{s}\left|l_{u}\right|
$$

If equality holds then every l_{u} is a sum

$$
l_{u}=\operatorname{sgn}\left(h_{t}\right)+\operatorname{sgn}\left(h_{t+1}\right)+\ldots+\operatorname{sgn}\left(h_{p}\right)
$$

with all signs equal to 1 or all signs equal to -1 . Therefore, $I_{1}\left(h_{1, q}\right)<{ }_{2} l_{1, s}$. Moreover, the coefficient of $S\left(I_{1}\left(h_{1, q}\right)\right)$ in $Q\left(h_{1, q}\right)$ is 1 .

Finally, one can apply induction in $(\mathbb{Z} \backslash\{0\})_{\infty}$ with respect to $<_{3}$ and show that each $a_{h_{1, q}}$ is the coefficient of $S\left(I_{1}\left(h_{1, q}\right)\right)$ in f and therefore $a_{h_{1, q}}$ $=0$.
4.11. Remark. The algebra m consists of functions invariant under a length preserving action of the group $G=S_{k} \times\left(S_{k-1}\right)^{\infty}$ on $K\left(\mathbb{F}_{k}\right)$, where S_{l} denotes the permutation group of $\{1, \ldots, l\}$. The action does not preserve multiplication in \mathbb{F}_{k} for $k>2$. It is defined as follows.

Let $i\langle j\rangle=i-1+\operatorname{sgn}(j-i)$ for $i, j \in \mathbb{N}$ and let
$\phi:\left\{i_{1, q}: q \in \mathbb{N}_{+}\right.$and $W\left(i_{1, q}\right)$ holds $\} \rightarrow\{1, \ldots, k\} \times\{1, \ldots, k-1\}_{\infty}$
be defined by the formula

$$
\phi\left(i_{1, q}\right)=\left(i_{1}, i_{2}\left\langle i_{1}\right\rangle, i_{3}\left\langle i_{2}\right\rangle, \ldots, i_{q}\left\langle i_{q-1}\right\rangle\right)
$$

Notice that ϕ is a bijection.
The group G acts on $K\left(\mathbb{F}_{k}\right)$ in the following way:

$$
(\sigma f)(\mathbf{e})=f(\mathbf{e}), \quad(\sigma f)\left(x_{i_{1, q}}^{h_{1, q}}\right)=f\left(x_{\phi^{-1} \sigma \phi\left(i_{1, q}\right)}^{h_{1, q}}\right)
$$

where $f \in K\left(\mathbb{F}_{k}\right), \sigma \in G, q \in \mathbb{N}_{+}, W\left(i_{1, q}\right)$ holds, $h_{1, q} \in(\mathbb{Z} \backslash\{0\})^{q}$ and \mathbf{e} denotes the unit of \mathbb{F}_{k}.
5. The algebra C. We study a second version of symmetric functions: linear combinations of $S_{C}(h)$'s (Definition 5.1). This again turns out to be an algebra with a basis e_{C}. The elements of C are functions invariant under a length preserving action of a group G_{C}.
5.1. Definition. (a) Let $S_{C}(h) \in K\left(\mathbb{F}_{k}\right)$ be defined as follows: $S_{C}(h)=$ $1 \in K\left(\mathbb{F}_{k}\right)$ if $h=\emptyset$ or h is a finite sequence of zeros, and $S_{C}(h)=S(h)+$ $S(-h)$ for other $h \in \mathbb{Z}_{\infty}$. These are analogs of the complete symmetric functions.
(b) The set C of all linear combinations of $S_{C}(h)$, where $h \in \mathbb{Z}_{\infty}$, is an analog of the set of symmetric polynomials.

Every element $f \in C$ can be written in a unique way as

$$
f=\sum_{h \in\{\emptyset\} \cup \mathbb{N}_{+} \times(\mathbb{Z} \backslash\{0\})_{\infty}} a_{h} S_{C}(h),
$$

where $a_{h} \in K$. We call a_{h} the coefficient of $S_{C}(h)$ in f.
To make the use of the following Lemma 5.2 easier notice that if $h_{q+1-u}+$ $\varepsilon l_{u} \neq 0$ for $1 \leq u<t$ then $L_{\varepsilon, t}=0$, and in the formula of Lemma 5.2 we actually sum over t until $h_{q+1-t}+\varepsilon l_{t} \neq 0$.
5.2. Lemma (an application of Lemma 4.2). Let $q, s \in \mathbb{N}, h_{1, q}, l_{1, s} \in$ $(\mathbb{Z} \backslash\{0\})_{\infty}, l_{0}=h_{q+1}=0$, and for $\varepsilon \in\{-1,1\}, t \in\{1,2, \ldots, \min (q, s)\}$ let

$$
\begin{aligned}
L_{\varepsilon, t} & =L\left(t, \sum_{u=1}^{t-1}\left|h_{q+1-u}+\varepsilon l_{u}\right|, h_{q+1-t}+\varepsilon l_{t}, q-t, s-t\right) \\
S_{\varepsilon, t} & =S_{C}\left(\left[h_{1, q-t}\right], h_{q+1-t}+\varepsilon l_{t},\left[\varepsilon l_{t+1, s}\right]\right)
\end{aligned}
$$

Then

$$
\begin{aligned}
S_{C}\left(h_{1, q}\right) S_{C}\left(l_{1, s}\right)= & \sum_{\varepsilon \in\{-1,1\}} \sum_{t=0}^{\min (q, s)} 2^{\delta\left(d\left(S_{\varepsilon, t}\right)\right)-\delta(q+s)} \\
& \cdot(1-\delta(q s+1+\varepsilon)) L_{\varepsilon, t} S_{\varepsilon, t}
\end{aligned}
$$

5.3. Corollary. $C<K\left(\mathbb{F}_{k}\right)$.
5.4. Definition. The set $e_{C} \subseteq C$ we now define is the analog of the set of elementary symmetric polynomials. Let

$$
e_{C}=\left\{S_{C}(h): h \in\{-1,1\}_{\infty}\right\}
$$

5.5. Proposition (an application of Lemma 5.2). Let $q \in \mathbb{N}_{+}, h_{1, q} \in$ $(\mathbb{Z} \backslash\{0\})_{\infty} \backslash\{-1,1\}_{\infty}$ and $v=\min \left\{t \in\{1, \ldots, q\}: h_{t} \notin\{-1,1\}\right\}$. Then

$$
\begin{aligned}
S_{C}\left(h_{1, q}\right)= & S_{C}\left(\left[h_{1, v-1}\right], \operatorname{sgn}\left(h_{v}\right)\right) S_{C}\left(h_{v}-\operatorname{sgn}\left(h_{v}\right),\left[h_{v+1, q}\right]\right) \\
& -\sum_{\varepsilon \in\{-1,1\}} S_{C}\left(\left[h_{1, v-1}\right], \operatorname{sgn}\left(h_{v}\right), \varepsilon\left(h_{v}-\operatorname{sgn}\left(h_{v}\right)\right), \varepsilon\left[h_{v+1, q}\right]\right) \\
& -2^{\delta\left(\left|h_{v}\right|+q-3\right)} L\left(1,0,2 \operatorname{sgn}\left(h_{v}\right)-h_{v}, v-1, q-v\right) \\
& \cdot S_{C}\left(\left[h_{1, v-1}\right], 2 \operatorname{sgn}\left(h_{v}\right)-h_{v},-\left[h_{v+1, q}\right]\right) \\
& -\sum_{\varepsilon \in\{-1,1\}} \sum_{t=2}^{\min (v, q+1-v)} L_{\varepsilon, t}^{\prime} S_{\varepsilon, t}^{\prime},
\end{aligned}
$$

where $L_{\varepsilon, t}^{\prime}$ and $S_{\varepsilon, t}^{\prime}$ are as in Lemma 5.2.
5.6. Theorem. (a) $\operatorname{Alg}\left(\left\{f \in e_{C}: d(f) \leq i\right\}\right)=\operatorname{Alg}(\{g \in C: d(g) \leq i\})$ for every $i \in \mathbb{N}$.
(b) $\operatorname{Alg}\left(e_{C}\right)=C$.

Proof. First $\operatorname{Alg}\left(\left\{f \in e_{C}: d(f) \leq 0\right\}\right)=K=\operatorname{Alg}(\{g \in C: d(g) \leq 0\})$.
Let (a) hold for $i<j$, where $j>0$. To show that if $h_{1, q} \in(\mathbb{Z} \backslash\{0\})_{\infty}$ and $d\left(S_{C}\left(h_{1, q}\right)\right) \leq j$ then $S_{C}\left(h_{1, q}\right) \in \operatorname{Alg}\left(\left\{f \in e_{C}: d(f) \leq j\right\}\right)$, apply Proposition 5.5 and induction in $(\mathbb{Z} \backslash\{0\})_{\infty}$ with respect to $<_{1}$.
5.7. Theorem. The set e_{C} is algebraically independent. Thus it is an algebraic basis of C.

Proof. Let

$$
f=\sum_{h_{1, q} \in\left(\{-1,1\}_{\infty}\right)_{\infty}} a_{h_{1, q}} \prod_{t=1}^{q} S_{C}\left(1,\left[h_{t}\right]\right)=0
$$

where $a_{h_{1, q}} \in K$ and all but finitely many $a_{h_{1, q}}$ are 0 .
To show that every $a_{h_{1, q}}=0$ it is enough to apply induction in $\left(\{-1,1\}_{\infty}\right)_{\infty}$ with respect to $<_{4}$ showing that $a_{h_{1, q}}$ is the coefficient of $S_{C}\left(I_{2}\left(h_{1, q}\right)\right)$ in f and therefore $a_{h_{1, q}}=0$, similarly to Theorems 4.6 and 4.10.
5.8. Remark. The algebra C consists of functions invariant under the following length preserving action of the group $G_{C}=G \times \mathbb{Z}_{2}$ on $K\left(\mathbb{F}_{k}\right)$, where $\mathbb{Z}_{2}=(\{-1,1\}, \cdot)$ (compare Remark 4.11): if $\sigma \in G, \varepsilon \in\{-1,1\}$, $W\left(i_{1, q}\right)$ holds, $h_{1, q} \in(\mathbb{Z} \backslash\{0\})^{q}$ and $f \in K\left(\mathbb{F}_{k}\right)$ then

$$
((\sigma, \varepsilon) f)\left(x_{i_{1, q}}^{h_{1, q}}\right)=(\sigma f)\left(x_{i_{1, q}}^{\varepsilon h_{1, q}}\right)
$$

6. The algebra M. We give a third version of analogs: an algebra M with bases N and E. Elements of M are invariant under an action of a group G_{M}.
6.1. Definition. (a) We now define functions $S_{M}(h) \in K\left(\mathbb{F}_{k}\right)$ which are analogs of the complete symmetric functions. Let $S_{M}(h)=1$ if either $h=\emptyset$ or h is a finite sequence of zeros, and

$$
S_{M}(h)=\sum_{\varepsilon_{1, s} \in\{-1,1\}^{s}} S\left(\varepsilon_{1} l_{1}, \ldots, \varepsilon_{s} l_{s}\right)
$$

for other $h \in \mathbb{Z}_{\infty}$, where the sequence $l_{1, s}$ is obtained from h by omission of zeros.
(b) The set of all linear combinations of the $S_{M}(h)$, where $h \in \mathbb{Z}_{\infty}$, is denoted by M. This is an analog of the algebra of symmetric polynomials.

Applying Lemma 4.2 we have
6.2. Lemma. Let $q, s \in \mathbb{N}, h_{1, q}, l_{1, s} \in(\mathbb{Z} \backslash\{0\})_{\infty}$ and $h_{q+1}=l_{0}=\varepsilon_{0}=0$. Then

$$
S_{M}\left(h_{1, q}\right) S_{M}\left(l_{1, s}\right)=\sum_{t=0}^{\min (q, s)} \sum_{\varepsilon_{1, t} \in\{-1,1\}^{t}} 2^{t-1+\delta\left(h_{q+1-t}+\varepsilon_{t} l_{t}\right)}
$$

$$
\begin{aligned}
& \cdot L\left(t, \sum_{u=1}^{t-1}\left|h_{q+1-u}+\varepsilon_{u} l_{u}\right|, h_{q+1-t}+\varepsilon_{t} l_{t}, q-t, s-t\right) \\
& \cdot S_{M}\left(\left[h_{1, q-t}\right], h_{q+1-t}+\varepsilon_{t} l_{t},\left[l_{t+1, s}\right]\right) .
\end{aligned}
$$

Similarly to Lemmas 4.2 and 5.2 we can stop the summation in Lemma 6.2 when $h_{q+1-t}+\varepsilon_{t} l_{t} \neq 0$ (compare remarks before 4.2 and 5.2).
6.3. Corollary. $M<K\left(\mathbb{F}_{k}\right)$.
6.4. Definition. We now define a set $N \subseteq M$ which is an analog of the set of the polynomials $\sum_{i} x_{i}^{l}$. We put $N=\left\{S_{M}(i): i \in \mathbb{N}_{+}\right\}$.
6.5. Theorem. (a) $\operatorname{Alg}(\{f \in N: d(f) \leq i\})=\operatorname{Alg}(\{g \in M: d(g) \leq i\})$ for every $i \in \mathbb{N}$.
(b) $\operatorname{Alg}(N)=M$.

Proof. Lemma 6.2 implies that

$$
\begin{aligned}
S_{M}\left(h_{1, q}\right)= & S_{M}\left(h_{1}\right) S_{M}\left(h_{2, q}\right) \\
& -\sum_{\varepsilon \in\{-1,1\}} 2^{\delta\left(h_{1}+\varepsilon h_{2}\right)} L\left(1,0, h_{1}+\varepsilon h_{2}, 0, q-2\right) S_{M}\left(h_{1}+\varepsilon h_{2},\left[h_{3, q}\right]\right)
\end{aligned}
$$

for $2 \leq q \in \mathbb{N}$ and $h_{1, q} \in(\mathbb{Z} \backslash\{0\})_{\infty}$. To prove that $S_{M}\left(h_{1, q}\right) \in \operatorname{Alg}(\{f \in$ $N: d(f) \leq i\})$ if $d\left(S_{M}\left(h_{1, q}\right)\right) \leq i$, use induction on q.
6.6. Theorem. The set N is an algebraic basis of M.

Proof. To show the algebraic independence apply induction with respect to $<_{1}$ considered in $\left(\mathbb{N}_{+}\right)_{\infty}$ (compare Theorem 4.6).
6.7. Definition. We define a set $E \subseteq M$ which is an analog of the elementary symmetric polynomials. We put $E=\left\{S_{M}\left(1_{1, q}\right): q \in \mathbb{N}_{+}\right\}$.

The connection between elements of E and N is given in Proposition 6.8 which follows from Lemma 6.2.
6.8. Proposition (Euler formula). Let $i \in \mathbb{N}_{+}$and $\varepsilon \in\{-1,1\}$. Then

$$
\begin{aligned}
\sum_{t=0}^{i} & (-1)^{t} S_{M}\left(1_{1, t}\right) S_{M}(i-t) \\
& =\sum_{t=1}^{i-1}(-1)^{t} 2^{\delta(i-1-t)} L(1,0, i-1-t, t-1,0) S_{M}\left(1_{1, t-1}, i-1-t\right)
\end{aligned}
$$

and

$$
\sum_{t=0}^{i}(-1)^{t} S_{M}(t) S_{M}\left(1_{1, i-t}\right)
$$

$$
=\sum_{t=1}^{i-1}(-1)^{t} 2^{\delta(i-1-t)} L(1,0, t-1,0, i-t-1) S_{M}\left(t-1,1_{1, i-t-1}\right)
$$

6.9. Theorem. (a) $\operatorname{Alg}(\{f \in E: d(f) \leq i\})=\operatorname{Alg}(\{g \in M: d(g) \leq i\})$ for every $i \in \mathbb{N}$.
(b) $\operatorname{Alg}(E)=M$.

Proof. (a) We apply Theorem 6.5, Proposition 6.8 and induction on i.
6.10. Theorem. The set E is algebraically independent. Thus it is an algebraic basis of M.

Proof. This follows from Theorem 5.7 because

$$
S_{M}\left(1_{1, q}\right)=\sum_{\varepsilon \in\{-1,1\}^{q-1}} S_{C}(1,[\varepsilon]) \quad \text { for } q \in \mathbb{N}_{+}
$$

6.11. Remark. The algebra M consists of functions invariant under the following length preserving action of the group $G_{M}=G \times\left(\mathbb{Z}_{2}\right)^{\infty}$ on $K\left(\mathbb{F}_{k}\right)$ (compare Remarks 4.10 and 5.8): if $\sigma \in G, \varepsilon=\left(\varepsilon_{t}\right)_{t=1}^{\infty} \in\left(\mathbb{Z}_{2}\right)^{\infty}$, $W\left(i_{1, q}\right)$ holds, $h_{1, q} \in(\mathbb{Z} \backslash\{0\})^{q}$ and $f \in K\left(\mathbb{F}_{k}\right)$ then

$$
((\sigma, \varepsilon) f)\left(x_{i_{1, q}}^{h_{1, q}}\right)=(\sigma f)\left(x_{i_{1, q}}^{\left(\varepsilon_{1} h_{1}, \ldots, \varepsilon_{q} h_{q}\right)}\right)
$$

7. The algebra λ. We give a version of analogs in the case of the algebra $K\left(\mathbb{P}_{k}\right)$ which consists of noncommutative polynomials. We introduce an algebra λ with algebraic bases e_{λ} and n_{λ}; the Euler formula also holds in this setting. The algebra λ consists of polynomials invariant under the action of the group G on $K\left(\mathbb{P}_{k}\right)$. We show, in the case of $k>2$ generators, that the algebra $\Lambda_{\text {perm }}$ of noncommutative polynomials invariant under permutations of generators cannot be generated by a sum of λ and a finite number of elements of $\Lambda_{\text {perm }}$.
7.1. Definition. (a) We introduce analogs λ, e_{λ} and n_{λ} of the sets of symmetric polynomials, elementary symmetric polynomials and the polynomials $\sum_{i} x_{i}^{l}$ respectively:

$$
\lambda=m \cap K\left(\mathbb{P}_{k}\right), \quad e_{\lambda}=e \cap K\left(\mathbb{P}_{k}\right) \quad \text { and } \quad n_{\lambda}=n \cap K\left(\mathbb{P}_{k}\right) .
$$

(b) The functions $S(h) \in K\left(\mathbb{P}_{k}\right)$ for $h \in \mathbb{N}_{\infty}$ are analogs of the complete symmetric functions.
7.2. Lemma (a special case of Lemma 4.2). Let $q, s \in \mathbb{N}, h_{1, q}, l_{1, s} \in$ $\left(\mathbb{N}_{+}\right)_{\infty}$ and $l_{0}=h_{q+1}=0$. Then

$$
S\left(h_{1, q}\right) S\left(l_{1, s}\right)=S\left(\left[h_{1, q}\right],\left[l_{1, s}\right]\right)+(1-\delta(q s)) S\left(\left[h_{1, q-1}\right], h_{q}+l_{1},\left[l_{2, s}\right]\right)
$$

7.3. Corollary. $\lambda<K\left(\mathbb{P}_{k}\right)$.
7.4. Proposition (follows from Lemma 7.2). Let $q \in \mathbb{N}_{+}$and $h_{1, q} \in$ $\left(\mathbb{N}_{+}\right)_{\infty}$. Then

$$
\begin{aligned}
S\left(h_{1, q}\right) & =\sum_{t=1}^{q}(-1)^{t+1} S\left(h_{1}+h_{2}+\ldots+h_{t}\right) S\left(h_{t+1, q}\right) \\
& =\sum_{t=0}^{q-1}(-1)^{q-t-1} S\left(h_{1, t}\right) S\left(h_{t+1}+h_{t+2}+\ldots+h_{q}\right) .
\end{aligned}
$$

7.5. Theorem. (a) (an application of Proposition 7.4 and induction on $q)$. $\operatorname{Alg}\left(\left\{f \in n_{\lambda}: d(f) \leq i\right\}\right)=\operatorname{Alg}(\{g \in \lambda: d(g) \leq i\})$ for every $i \in \mathbb{N}$.
(b) $\operatorname{Alg}\left(n_{\lambda}\right)=\operatorname{Alg}(\lambda)$.
7.6. Theorem. The set n_{λ} is an algebraic basis of λ.

Proof. The fact that n_{λ} is algebraically independent follows from Theorem 4.6 because $n_{\lambda} \subseteq n$.
7.7. Proposition (Euler formula). If $i \in \mathbb{N}_{+}$then

$$
\sum_{t=0}^{i}(-1)^{t} S\left(1_{1, t}\right) S(i-t)=\sum_{t=0}^{i}(-1)^{t} S(i-t) S\left(1_{1, t}\right)=0
$$

Proof. This is a special case of Proposition 4.8 if $\varepsilon=1$.
7.8. Theorem. (a) $\operatorname{Alg}\left(\left\{f \in e_{\lambda}: d(f) \leq i\right\}\right)=\operatorname{Alg}(\{g \in \lambda: d(g) \leq i\})$ for every $i \in \mathbb{N}$.
(b) $\operatorname{Alg}\left(e_{\lambda}\right)=\operatorname{Alg}(\lambda)$.

Proof. (a) We apply Theorem 7.5, Proposition 7.7 and induction on i.
7.9. Theorem. The set e_{λ} is an algebraic basis of λ.

Proof. The algebraic independence of e_{λ} follows from Theorem 4.10 because $e_{\lambda} \subseteq e$.
7.10. Remarks. (a) The algebra λ consists of functions invariant under the length preserving action of the group G on $K\left(\mathbb{P}_{k}\right)$ (compare Remark 4.11).
(b) $M<C<m$ and $\lambda<m$.

We denote by $\Lambda_{\text {perm }}<K\left(\mathbb{P}_{k}\right)$ the subalgebra composed of functions invariant under permutations of the generators x_{1}, \ldots, x_{k} of \mathbb{P}_{k}. It is clear from the definitions that $\lambda<\Lambda_{\text {perm }}$. Moreover, $\lambda=\Lambda_{\text {perm }}$ for $k=2$, which is essential in the proof of the following theorem.
7.11. Theorem. If $k>2$ then the algebra $\Lambda_{\text {perm }}$ cannot be obtained as an algebra generated by λ and a finite number of elements of $\Lambda_{\text {perm }}$.

Proof. Let $t \in \mathbb{N}_{+}, f_{1}, \ldots, f_{t} \in \Lambda_{\text {perm }} \backslash\{0\}, T=\lambda \cup\left\{f_{1}, \ldots, f_{t}\right\}$ and $r=\max \left\{d\left(f_{u}\right): u \in\{1, \ldots, t\}\right\}+1$, where the degree $d\left(f_{u}\right)$ is defined in Section 2.

In order to show that $\Lambda_{\text {perm }} \backslash \operatorname{Alg}(T) \neq \emptyset$ we consider

$$
h=\sum_{i \neq j} x_{i} x_{j}^{r} x_{i} \in \Lambda_{\mathrm{perm}}
$$

It is clear that $h\left(x_{1} x_{2}^{r} x_{1}\right)=1 \neq 0=h\left(x_{1} x_{2}^{r} x_{3}\right)$. We prove that $h \notin \operatorname{Alg}(T)$.
Let $p \in \mathbb{N}_{+}$and let $g_{v} \in T \backslash K$ for $v \in\{1, \ldots, p\}$. For every $s \in \mathbb{N}$ we obtain

$$
g_{p}\left(x_{2}^{s} x_{1}\right)=g_{p}\left(x_{2}^{s} x_{3}\right)
$$

because $g_{p} \in \Lambda_{\text {perm }}$ and

$$
g_{p}\left(x_{1} x_{2}^{r} x_{1}\right)=g_{p}\left(x_{1} x_{2}^{r} x_{3}\right)
$$

because if one of $g_{p}\left(x_{1} x_{2}^{r} x_{1}\right), g_{p}\left(x_{1} x_{2}^{r} x_{3}\right)$ is nonzero, then $d\left(g_{p}\right)>r$ and $g_{p} \in \lambda$. Therefore,

$$
\left(g_{1} g_{2} \ldots g_{p}\right)\left(x_{1} x_{2}^{r} x_{1}\right)=\left(g_{1} g_{2} \ldots g_{p}\right)\left(x_{1} x_{2}^{r} x_{3}\right) .
$$

This yields that the function h cannot be a linear combination of such products $g_{1} g_{2} \ldots g_{p}$, which means that $h \notin \operatorname{Alg}(T)$.

REFERENCES

[1] C. Faith, Algebra: Rings, Modules and Categories I, Springer, Berlin, 1973.
[2] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford, 1979.
[3] W. Magnus, A. Karras and D. Solitar, Combinatorial Group Theory, Pure and Appl. Math., Interscience Publishers, New York, 1966.

INSTITUTE OF MATHEMATICS
WROCEAW UNIVERSITY OF TECHNOLOGY
WYBRZEŻE WYSPIAŃSKIEGO 27
50-370 WROCŁAW, POLAND

