COLLOQUIUM MATHEMATICUM

VOL. LXVI

1993

NONCOMMUTATIVE ANALOGS OF SYMMETRIC POLYNOMIALS

BY

MACIEJ BURNECKI (WROCŁAW)

1. Introduction. Our aim is to introduce and investigate several analogs of the (commutative) symmetric polynomials (compare [2], Section I.2) in the case of the semigroup algebra of the free noncommutative semigroup with a finite number of generators—this is the algebra of noncommutative polynomials—and in the case of the group algebra of the free noncommutative group with a finite number of generators (for the free group see [3], Section 1.2, for the (semi)group algebra see [1], Definition 5.73).

The general idea is to consider expressions of the form

$$\sum_{i_1,\ldots,i_q} x_{i_1}^{h_1}\ldots x_{i_q}^{h_q}$$

where h_i 's are nonzero integers and any two consecutive i_i , i_{i+1} are different.

Remarkably, the vector spaces spanned by these functions are algebras. Moreover, many properties of ordinary symmetric functions hold in this new situation.

The algebras m (of Section 4) and λ (of Section 7) are basic while C and M are variations on the same principle.

The author is indebted to Professor M. Bo/zejko for posing the problem and helpful discussions. The author wishes to express his thanks to the referees for useful remarks and comments.

2. Notation and terminology. We write $\mathbb{N} = \{0, 1, 2, ...\}, \mathbb{N}_+ = \mathbb{N} \setminus \{0\}$. We fix a commutative ring K with unit, an integer $k \geq 2$ and free generators x_1, \ldots, x_k of the free noncommutative group \mathbb{F}_k . Let \mathbb{P}_k mean the (free noncommutative) semigroup $\mathbb{P}_k \subseteq \mathbb{F}_k$ with unit generated by x_1, \ldots, x_k . The symbols $K(\mathbb{F}_k)$ and $K(\mathbb{P}_k)$ denote the group algebra of \mathbb{F}_k and the semigroup algebra of \mathbb{P}_k respectively.

We say that a subset I of noncommutative algebra A is algebraically independent if for every $a_1, \ldots, a_i \in I$ and a polynomial f of i noncommutating variables the equality $f(a_1, \ldots, a_i) = 0$ implies f = 0.

We write B < A if B is a subalgebra over K of A and $K \subset B$. Notice $K(\mathbb{P}_k) < K(\mathbb{F}_k)$.

M. BURNECKI

The algebra over K generated by the sum of its subset T and K is denoted by $\operatorname{Alg}(T)$. We call a set T an *algebraic basis* of an algebra $A < K(\mathbb{F}_k)$ if T is algebraically independent and $\operatorname{Alg}(T) = A$.

If T is a set then T^i , T^{∞} denote respectively the *i*-fold and countable products of T, $T^i = \{\emptyset\}$ for i < 1, $T_{\infty} = \bigcup_{i=0}^{\infty} T^i$.

Moreover, if a_t 's belong to an algebra with unit **1** and with zero **0** then we put $\prod_{t=1}^{i} a_t = a_1 a_2 \dots a_i$ if $i \in \mathbb{N}_+$ (notice the ordering of a_j 's), $\prod_{t \in \emptyset} a_t = \mathbf{1}$, $\sum_{t \in \emptyset} a_t = \mathbf{0}$.

A sequence $(i_t)_{t=p}^q$, where p, q are integers, is usually denoted by $i_{p,q}$, $i_{p,q} = \emptyset$ for p > q.

The symbol $[\ldots]$ denotes the operation of "writing in" elements of a finite sequence into a sequence, that is,

$$(\dots, a, [i_{p,q}], b, \dots) = (\dots, a, i_p, i_{p+1}, \dots, i_q, b, \dots)$$

for instance $(\ldots, 1, [(2,3)], 4, \ldots) = (\ldots, 1, 2, 3, 4, \ldots).$

For $i_{p,p+q} \in \{1, \ldots, k\}_{\infty}, h_{r,r+q} \in \mathbb{Z}_{\infty}$ and $\alpha \in \{-1, 1\}$ we set

$$x_{i_{p,p+q}}^{h_{r,r+q}} = \prod_{t=0}^{q} x_{i_{p+t}}^{h_{r+t}}, \qquad \alpha h_{r,r+q} = (\alpha h_{r+t})_{t=0}^{q}$$

and we let $1_{p,p+q} \in \{1\}^{q+1}$ be the sequence consisting of 1's.

We say that the condition $W(i_{p,p+q})$ holds iff $p, q \in \mathbb{Z}, -1 \leq q, i_{p,p+q} \in \{1, \ldots, k\}^{q+1}$ and any two consecutive i_j, i_{j+1} are different.

Let l(y) be the length of a reduced word z, where $z = y \in \mathbb{F}_k$ (compare [3], Chapters 1.4 and 1.1). Every function $f \in K(\mathbb{F}_k)$ can be written in a unique way as

$$f = \sum_{y \in \mathbb{F}_k} a_y y \,,$$

and we set $d(f) = \max\{l(y) : a_y \neq 0\}, d(\mathbf{0}) = \infty.$

The characteristic function of $\{0\} \subseteq \mathbb{Z}$ is denoted by δ .

In the following to denote the value of a function f at an element which is a sequence (i_p, \ldots, i_q) we often write $f(i_p, \ldots, i_q)$ instead of $f((i_p, \ldots, i_q))$ and this should not be misleading.

3. Auxiliary definitions. For calculating coefficients in the products of our symmetric functions we need a useful function L. In the proofs that some sets are algebraic bases we apply the orderings $<_1, \ldots, <_4$ defined below, and the functions I_1 and I_2 are used in proving algebraic independence and in defining $<_3$ and $<_4$.

Notice that L below depends only on its first argument and on whether other arguments are 0 or not.

3.1. DEFINITION. The function $L: \mathbb{N} \times \mathbb{Z}^4 \to K$ is given by

$$L(a, b, c, d, e) = \begin{cases} 1 & \text{if } a = 0, \\ 0 & \text{if } ab \neq 0, \\ (k-1)^{a-1} & \text{if } b = 0 \text{ and } ac \neq 0, \\ (k-2)(k-1)^{a-1} & \text{if } b = c = 0 \text{ and } a \neq 0 \neq de, \\ (k-1)^a & \text{if } b = c = de = 0 \text{ and } a(d^2 + e^2) \neq 0, \\ k(k-1)^{a-1} & \text{if } b = c = d = e = 0 \text{ and } a \neq 0. \end{cases}$$

Notice that I_1 and I_2 below are injections.

3.2. DEFINITION. (a) Let $I_1: (\mathbb{Z} \setminus \{0\})_{\infty} \to (\mathbb{Z} \setminus \{0\})_{\infty}$ be given by induction as follows: if $q, r \in \mathbb{N}_+$, $z \in \mathbb{Z} \setminus \{0\}$, $z_{1,q} \in (\mathbb{Z} \setminus \{0\})^q$ and $I_1(z_{1,q}) = \varepsilon_{1,r}$ then $I_1(\emptyset) = \emptyset$, $I_1(z) = \operatorname{sgn}(z) \mathbb{1}_{1,|z|}$, and

$$I_1([z_{1,q}], z) = \begin{cases} ([\varepsilon_{1,r-1}], \varepsilon_r + \operatorname{sgn}(z), [\operatorname{sgn}(z)\mathbf{1}_{1,|z|-1}]) \\ & \text{if } \operatorname{sgn}(\varepsilon_r) = \operatorname{sgn}(z), \\ ([\varepsilon_{1,r}], [\operatorname{sgn}(z)\mathbf{1}_{1,|z|}]) & \text{if } \operatorname{sgn}(\varepsilon_r) = -\operatorname{sgn}(z) \end{cases}$$

(b) Let $I_2: (\{-1,1\}_{\infty})_{\infty} \to (\mathbb{Z} \setminus \{0\})_{\infty}$ be given by the following induction: if $r \in \mathbb{N}_+$, $h \in \{-1,1\}_{\infty}$, $j \in (\{-1,1\}_{\infty})_{\infty} \setminus \{\emptyset\}$ and $I_2(j) = \varepsilon_{1,r}$ then $I_2(\emptyset) = \emptyset, I_2(h) = (1, [h]), \text{ and }$

$$I_2([j],h) = ([\varepsilon_{1,r-1}], \varepsilon_r + \operatorname{sgn}(\varepsilon_r), [\operatorname{sgn}(\varepsilon_r)h])$$

3.3. DEFINITION. We define orderings $<_1, <_2$ and $<_3$ on $(\mathbb{Z}\setminus\{0\})_{\infty}$. Let $h_{1,q} \neq l_{1,s} \in (\mathbb{Z} \setminus \{0\})_{\infty}$. In the following for nonempty $h_{1,q}$, $l_{1,s}$ we write

$$\nu = \min\{t \in \{1, 2, \dots, \min\{q, s\}\} : h_t \neq l_t\}.$$

We define:

(a) $h_{1,q} <_1 l_{1,s}$ iff $\sum_{t=1}^q |h_t| > \sum_{u=1}^s |l_u|$ or $(\sum_{t=1}^q |h_t| = \sum_{u=1}^s |l_u|$ and $(|h_\nu| < |l_\nu|$ or $(|h_\nu| = |l_\nu|$ and ω_1 holds))). The condition ω_1 is chosen to make $<_1$ a linear ordering; for instance, ω_1 holds iff $h_{\nu} = -l_{\nu} > 0$.

(b) $h_{1,q} <_2 l_{1,s}$ iff $\sum_{t=1}^{q} |h_t| > \sum_{u=1}^{s} |l_u|$ or $(\sum_{t=1}^{q} |h_t| = \sum_{u=1}^{s} |l_u|$ and $(|h_\nu| > |l_\nu|)$ or $(|h_\nu| = |l_\nu|)$ and ω_2 holds))), where ω_2 is a condition making $<_2$ linear; for instance, ω_2 is equivalent to ω_1 .

(c) $h_{1,q} <_3 l_{1,s}$ iff $I_1(h_{1,q}) <_2 I_1(l_{1,s})$.

3.4. DEFINITION. A linear ordering $<_4$ on $(\{-1,1\}_{\infty})_{\infty}$ is given by the following formula:

T (1)

$$h <_4 l$$
 iff $I_2(h) <_2 I_2(l)$,
where $h, l \in (\{-1, 1\}_{\infty})_{\infty}$.

4. The algebra *m*. We now introduce our first version of symmetric functions. These are functions $S(h) \in K(\mathbb{F}_k)$ (Definition 4.1) which are analogous to complete symmetric functions. The crucial Lemma 4.2, expressing the product of two S(h)'s as a linear combination of S(h)'s, shows that the linear subspace m of $K(\mathbb{F}_k)$ spanned by the S(h)'s is in fact a subalgebra.

Then we introduce two subsets n, e, which are analogs of the polynomials $\sum_i x_i^l$ and of elementary symmetric polynomials respectively. It turns out that both these sets are algebraic bases of m. Moreover, the Euler formula holds.

At the end we remark that m consists of functions invariant under a length preserving action of a product G of permutation groups.

4.1. DEFINITION. If $h = \emptyset$ or h is a finite sequence of zeros then $S(h) = \mathbf{1}$, and

$$S(h) = \sum_{W(j_{1,s})} x_{j_{1,s}}^{l_{1,s}}$$

for other $h \in \mathbb{Z}_{\infty}$, where the sequence $l_{1,s}$ arises from h by omission of zeros.

The vector space spanned by the S(h)'s is denoted by m.

Every element $f \in m$ can be written in a unique way as

$$f = \sum_{h \in (\mathbb{Z} \setminus \{0\})_{\infty}} a_h S(h) \,,$$

where $a_h \in K$. We call a_h the coefficient of S(h) in f.

Practical use of the following Lemma 4.2 is made easier by the fact that if $h_{q+1-u} + l_u \neq 0$ for an index u then

$$\sum_{w=1}^{t-1} |h_{q+1-w} + l_w| \neq 0 \quad \text{for } t > u ,$$
$$L\left(t, \sum_{w=1}^{t-1} |h_{q+1-w} + l_w|, h_{q+1-t} + l_t, q - t, s - t\right) = 0$$

and we actually sum over t until $h_{t+1} + l_t \neq 0$.

4.2. LEMMA. Let $q, s \in \mathbb{N}$, $h_{1,q}$, $l_{1,s} \in (\mathbb{Z} \setminus \{0\})_{\infty}$ and $l_0 = h_{q+1} = 0$. Then

$$S(h_{1,q})S(l_{1,s}) = \sum_{t=0}^{\min(q,s)} L\left(t, \sum_{u=1}^{t-1} |h_{q+1-u} + l_u|, h_{q+1-t} + l_t, q-t, s-t\right)$$
$$\cdot S([h_{1,q-t}], h_{q+1-t} + l_t, [l_{t+1,s}]).$$

Proof. If q = 0 then $S(\emptyset)S(l_{1,s}) = S(l_{1,s})$, and similarly for s = 0. Let $q, s \ge 1$. Set $v = \max\{t \in \{0, 1, \dots, \min(q, s)\} : h_{q+1} + l_0 = h_q + l_1 = \dots = h_{q+1-t} + l_t = 0\}$. If v = 0 then

$$S(h_{1,q})S(l_{1,s}) = S([h_{1,q}], [l_{1,s}]) + S([h_{1,q-1}], h_q + l_1, [l_{2,s}])$$

Let
$$v > 0$$
. Then

$$\begin{split} S(h_{1,q})S(l_{1,s}) &= \left(\sum_{W(i_{1,q})} x_{i_{1,q}}^{h_{1,q}}\right) \left(\sum_{W(j_{1,s})} x_{j_{1,s}}^{l_{1,s}}\right) = \sum_{W(i_{1,q+s})} x_{i_{1,q+s}}^{([h_{1,q}],[l_{1,s}])} \\ &+ (k-2) \sum_{W(i_{1,q+s-2})} x_{i_{1,q+s-2}}^{([h_{1,q-1}],[l_{2,s}])} \\ &+ (k-2)(k-1) \sum_{W(i_{1,q+s-4})} x_{i_{1,q+s-4}}^{([h_{1,q-2}],[l_{3,s}])} + \dots \\ &+ (k-2)(k-1)^t \sum_{W(i_{1,q+s-2}(t+1))} x_{i_{1,q+s-2}(t+1)}^{([h_{1,q-1-t}],[l_{t+2,s}])} + \dots \\ &+ \left\{ \begin{aligned} (k-2)(k-1)^{v-1} \sum_{W(i_{1,q+s-2v})} x_{i_{1,q+s-2v}}^{([h_{1,q-v-1}],[l_{v+1,s}])} \\ &+ (k-1)^v \sum_{W(i_{1,q+s-1-2v})} x_{i_{1,q+s-1-2v}}^{([h_{1,q-v-1}],h_{q-v}+l_{v+1},[l_{v+2,s}])} \\ &+ \begin{cases} (k-1)^v \sum_{W(i_{1,q+s-2v})} x_{i_{1,q+s-2v}}^{([h_{1,q-v}],[l_{v+1,s}])} \\ &+ (k-1)^v \sum_{W(i_{1,q+s-2v})} x_{i_{1,q+s-2v}}^{([h_{1,q-v}],[l_{v+1,s}])} \\ &+ (k-1)^v \sum_{W(i_{1,q+s-2v})} x_{i_{1,q+s-2v}}^{([h_{1,q-v}],[l_{v+1,s}])} \\ &+ (k-1)^{v-1} & \text{if } v = \min\{q,s\} < \max\{q,s\}, \end{aligned} \right\}$$

4.3. COROLLARY. $m < K(\mathbb{F}_k)$.

4.4. DEFINITION. We put $n = \{\sum_{i=1}^k x_i^l : l \in \mathbb{Z} \setminus \{0\}\}$. These are analogs of the polynomials $\sum_i x_i^l$.

4.5. THEOREM. (a) Alg({ $f \in n : d(f) \le i$ }) = Alg({ $g \in m : d(g) \le i$ }) for every $i \in \mathbb{N}$.

(b) $\operatorname{Alg}(n) = m$.

Proof. To show that if $q \in \mathbb{N}$, $h_{1,q} \in (\mathbb{Z} \setminus \{0\})^q$ and $S(h_{1,q}) \in \{g \in m : d(g) \leq i\}$ then $S(h_{1,q}) \in \operatorname{Alg}(\{f \in n : d(f) \leq i\})$ we apply induction on q. We have $S(h_{1,1}) \in n$. If q > 1 then, by Lemma 4.2,

$$S(h_{1,q}) = S(h_1)S(h_{2,q}) - L(1,0,h_1 + h_2,0,q-2)S(h_1 + h_2,[h_{3,q}])$$

 $\in Alg(\{f \in n : d(f) \le i\})$ by the inductive assumption.

4.6. THEOREM. The set n is algebraically independent. Thus it forms an algebraic basis of m.

 $\operatorname{Proof.}$ Every polynomial f over K with elements of n as noncommutative variables is of the form

$$f = \sum_{q \in \mathbb{N}, h_{1,q} \in (\mathbb{Z} \setminus \{0\})_{\infty}} a_{h_{1,q}} P(h_{1,q}),$$

M. BURNECKI

where $a_{h_{1,q}} \in K$, $P(h_{1,q}) = \prod_{t=1}^{q} S(h_t)$ and all but finitely many $a_{h_{1,q}}$ are equal to 0.

All the elements $S(l_{1,s}) \in K(\mathbb{F}_k)$, where $l_{1,s} \in (\mathbb{Z} \setminus \{0\})_{\infty}$, appearing with nonzero coefficients in $P(h_{1,q}) \in K(\mathbb{F}_k)$ for an $h_{1,q} \in (\mathbb{Z} \setminus \{0\})_{\infty}$, satisfy $\sum_{t=1}^{q} |h_t| \geq \sum_{u=1}^{s} |l_u|$. If equality holds then every l_u is a sum of some h_t 's which are of the same sign and

 $(|l_1| > |h_1| \text{ or } (l_1 = h_1 \text{ and } |l_2| > |h_2|) \text{ or }$

 $(l_1 = h_1 \text{ and } l_2 = h_2 \text{ and } |l_3| > |h_3|) \text{ or } \dots \text{ or}$

 $(l_1 = h_1 \text{ and } l_2 = h_2 \text{ and } \dots \text{ and } l_q = h_q)),$

which means that $h_{1,q} <_1 l_{1,s}$.

Therefore, $S(l_{1,s})$ appears with coefficient 0 in $P(h_{1,q}) \in K(\mathbb{F}_k)$ if $h_{1,q} >_1 l_{1,s}$ and $l_{1,s} \neq h_{1,q}$.

Now, by induction in $(\mathbb{Z}\setminus\{0\})_{\infty}$ with respect to $<_1$, one can show that $a_{h_{1,q}}$ is the coefficient of $S(h_{1,q})$ in f and therefore $a_{h_{1,q}} = 0$.

4.7. DEFINITION. Let $e = \{S(\operatorname{sgn}(i)1_{1,|i|}) : i \in \mathbb{Z} \setminus \{0\}\}$; these are analogs of elementary symmetric polynomials.

4.8. PROPOSITION (Euler formula). If $i \in \mathbb{N}_+$ and $\varepsilon \in \{-1, 1\}$ then

$$\sum_{t=0}^{i} (-1)^{t} S(\varepsilon \mathbf{1}_{1,t}) S(\varepsilon(i-t)) = \sum_{t=0}^{i} (-1)^{t} S(\varepsilon(i-t)) S(\varepsilon \mathbf{1}_{1,t}) = 0.$$

Proof. It suffices to apply Lemma 4.2 and to consider the differences between the products for t and t+1. \blacksquare

4.9. PROPOSITION. (a) $\operatorname{Alg}(\{f \in e : d(f) \leq i\}) = \operatorname{Alg}(\{g \in m : d(g) \leq i\})$ for every $i \in \mathbb{N}$.

(b) $\operatorname{Alg}(e) = m$.

Proof. (a) is a consequence of Theorem 4.5 and Proposition 4.8. \blacksquare

4.10. THEOREM. The set e is algebraically independent. Thus it forms an algebraic basis of m.

Proof. Let

$$Q(h_{1,q}) = \prod_{t=1}^{q} S(I_1(h_t)) \quad \text{ for } h_{1,q} \in (\mathbb{Z} \setminus \{0\})_{\infty}$$

 $(I_1 \text{ is defined in } 3.2)$ and let

$$f = \sum_{q \in \mathbb{N}, h_{1,q} \in (\mathbb{Z} \setminus \{0\})_{\infty}} a_{h_{1,q}} Q(h_{1,q}) = 0,$$

where $a_{h_{1,q}} \in K$ and all but finitely many $a_{h_{1,q}}$ are 0.

All the elements $S(l_{1,s}) \in K(\mathbb{F}_k)$, where $l_{1,s} \in (\mathbb{Z} \setminus \{0\})_{\infty}$, which have nonzero coefficients in a fixed $Q(h_{1,q})$, satisfy

$$\sum_{t=1}^{q} |h_t| \ge \sum_{u=1}^{s} |l_u|.$$

If equality holds then every l_u is a sum

$$l_u = \operatorname{sgn}(h_t) + \operatorname{sgn}(h_{t+1}) + \ldots + \operatorname{sgn}(h_p),$$

with all signs equal to 1 or all signs equal to -1. Therefore, $I_1(h_{1,q}) <_2 l_{1,s}$. Moreover, the coefficient of $S(I_1(h_{1,q}))$ in $Q(h_{1,q})$ is 1.

Finally, one can apply induction in $(\mathbb{Z}\setminus\{0\})_{\infty}$ with respect to $<_3$ and show that each $a_{h_{1,q}}$ is the coefficient of $S(I_1(h_{1,q}))$ in f and therefore $a_{h_{1,q}} = 0$.

4.11. Remark. The algebra m consists of functions invariant under a length preserving action of the group $G = S_k \times (S_{k-1})^{\infty}$ on $K(\mathbb{F}_k)$, where S_l denotes the permutation group of $\{1, \ldots, l\}$. The action does not preserve multiplication in \mathbb{F}_k for k > 2. It is defined as follows.

Let $i\langle j \rangle = i - 1 + \operatorname{sgn}(j - i)$ for $i, j \in \mathbb{N}$ and let

 $\phi: \{i_{1,q}: q \in \mathbb{N}_+ \text{ and } W(i_{1,q}) \text{ holds}\} \to \{1, \dots, k\} \times \{1, \dots, k-1\}_{\infty}$

be defined by the formula

$$\phi(i_{1,q}) = (i_1, i_2 \langle i_1 \rangle, i_3 \langle i_2 \rangle, \dots, i_q \langle i_{q-1} \rangle).$$

Notice that ϕ is a bijection.

The group G acts on $K(\mathbb{F}_k)$ in the following way:

$$(\sigma f)(\mathbf{e}) = f(\mathbf{e}), \quad (\sigma f)(x_{i_{1,q}}^{h_{1,q}}) = f(x_{\phi^{-1}\sigma\phi(i_{1,q})}^{h_{1,q}}),$$

where $f \in K(\mathbb{F}_k)$, $\sigma \in G$, $q \in \mathbb{N}_+$, $W(i_{1,q})$ holds, $h_{1,q} \in (\mathbb{Z} \setminus \{0\})^q$ and **e** denotes the unit of \mathbb{F}_k .

5. The algebra C. We study a second version of symmetric functions: linear combinations of $S_C(h)$'s (Definition 5.1). This again turns out to be an algebra with a basis e_C . The elements of C are functions invariant under a length preserving action of a group G_C .

5.1. DEFINITION. (a) Let $S_C(h) \in K(\mathbb{F}_k)$ be defined as follows: $S_C(h) = 1 \in K(\mathbb{F}_k)$ if $h = \emptyset$ or h is a finite sequence of zeros, and $S_C(h) = S(h) + S(-h)$ for other $h \in \mathbb{Z}_{\infty}$. These are analogs of the complete symmetric functions.

(b) The set C of all linear combinations of $S_C(h)$, where $h \in \mathbb{Z}_{\infty}$, is an analog of the set of symmetric polynomials.

Every element $f \in C$ can be written in a unique way as

$$f = \sum_{h \in \{\emptyset\} \cup \mathbb{N}_+ \times (\mathbb{Z} \setminus \{0\})_{\infty}} a_h S_C(h) \,,$$

where $a_h \in K$. We call a_h the coefficient of $S_C(h)$ in f.

To make the use of the following Lemma 5.2 easier notice that if $h_{q+1-u} + \varepsilon l_u \neq 0$ for $1 \leq u < t$ then $L_{\varepsilon,t} = 0$, and in the formula of Lemma 5.2 we actually sum over t until $h_{q+1-t} + \varepsilon l_t \neq 0$.

5.2. LEMMA (an application of Lemma 4.2). Let $q, s \in \mathbb{N}$, $h_{1,q}, l_{1,s} \in (\mathbb{Z} \setminus \{0\})_{\infty}$, $l_0 = h_{q+1} = 0$, and for $\varepsilon \in \{-1, 1\}$, $t \in \{1, 2, \dots, \min(q, s)\}$ let

$$L_{\varepsilon,t} = L\left(t, \sum_{u=1} |h_{q+1-u} + \varepsilon l_u|, h_{q+1-t} + \varepsilon l_t, q-t, s-t\right)$$
$$S_{\varepsilon,t} = S_C([h_{1,q-t}], h_{q+1-t} + \varepsilon l_t, [\varepsilon l_{t+1,s}]).$$

Then

$$S_C(h_{1,q})S_C(l_{1,s}) = \sum_{\varepsilon \in \{-1,1\}} \sum_{t=0}^{\min(q,s)} 2^{\delta(d(S_{\varepsilon,t})) - \delta(q+s)} \cdot (1 - \delta(qs + 1 + \varepsilon))L_{\varepsilon,t}S_{\varepsilon,t}.$$

5.3. COROLLARY. $C < K(\mathbb{F}_k)$.

5.4. DEFINITION. The set $e_C \subseteq C$ we now define is the analog of the set of elementary symmetric polynomials. Let

$$e_C = \{S_C(h) : h \in \{-1, 1\}_\infty\}.$$

5.5. PROPOSITION (an application of Lemma 5.2). Let $q \in \mathbb{N}_+$, $h_{1,q} \in (\mathbb{Z} \setminus \{0\})_{\infty} \setminus \{-1,1\}_{\infty}$ and $v = \min\{t \in \{1,\ldots,q\} : h_t \notin \{-1,1\}\}$. Then

$$S_{C}(h_{1,q}) = S_{C}([h_{1,v-1}], \operatorname{sgn}(h_{v}))S_{C}(h_{v} - \operatorname{sgn}(h_{v}), [h_{v+1,q}]) - \sum_{\varepsilon \in \{-1,1\}} S_{C}([h_{1,v-1}], \operatorname{sgn}(h_{v}), \varepsilon(h_{v} - \operatorname{sgn}(h_{v})), \varepsilon[h_{v+1,q}]) - 2^{\delta(|h_{v}|+q-3)}L(1, 0, 2\operatorname{sgn}(h_{v}) - h_{v}, v - 1, q - v) \cdot S_{C}([h_{1,v-1}], 2\operatorname{sgn}(h_{v}) - h_{v}, -[h_{v+1,q}]) - \sum_{\varepsilon \in \{-1,1\}} \sum_{t=2}^{\min(v,q+1-v)} L'_{\varepsilon,t}S'_{\varepsilon,t},$$

where $L'_{\varepsilon,t}$ and $S'_{\varepsilon,t}$ are as in Lemma 5.2.

5.6. THEOREM. (a) $\operatorname{Alg}(\{f \in e_C : d(f) \leq i\}) = \operatorname{Alg}(\{g \in C : d(g) \leq i\})$ for every $i \in \mathbb{N}$.

(b) $\operatorname{Alg}(e_C) = C$.

 $\label{eq:proof.First} \mbox{Alg}(\{f \in e_C: d(f) \leq 0\}) = K = \mbox{Alg}(\{g \in C: d(g) \leq 0\}).$

Let (a) hold for i < j, where j > 0. To show that if $h_{1,q} \in (\mathbb{Z} \setminus \{0\})_{\infty}$ and $d(S_C(h_{1,q})) \leq j$ then $S_C(h_{1,q}) \in \text{Alg}(\{f \in e_C : d(f) \leq j\})$, apply Proposition 5.5 and induction in $(\mathbb{Z} \setminus \{0\})_{\infty}$ with respect to $<_1$.

5.7. THEOREM. The set e_C is algebraically independent. Thus it is an algebraic basis of C.

Proof. Let

$$f = \sum_{h_{1,q} \in (\{-1,1\}_{\infty})_{\infty}} a_{h_{1,q}} \prod_{t=1}^{q} S_C(1, [h_t]) = 0,$$

where $a_{h_{1,q}} \in K$ and all but finitely many $a_{h_{1,q}}$ are 0.

To show that every $a_{h_{1,q}} = 0$ it is enough to apply induction in $(\{-1,1\}_{\infty})_{\infty}$ with respect to $<_4$ showing that $a_{h_{1,q}}$ is the coefficient of $S_C(I_2(h_{1,q}))$ in f and therefore $a_{h_{1,q}} = 0$, similarly to Theorems 4.6 and 4.10.

5.8. Remark. The algebra C consists of functions invariant under the following length preserving action of the group $G_C = G \times \mathbb{Z}_2$ on $K(\mathbb{F}_k)$, where $\mathbb{Z}_2 = (\{-1,1\},\cdot)$ (compare Remark 4.11): if $\sigma \in G$, $\varepsilon \in \{-1,1\}$, $W(i_{1,q})$ holds, $h_{1,q} \in (\mathbb{Z} \setminus \{0\})^q$ and $f \in K(\mathbb{F}_k)$ then

$$((\sigma,\varepsilon)f)(x_{i_{1,q}}^{h_{1,q}}) = (\sigma f)(x_{i_{1,q}}^{\varepsilon h_{1,q}})$$

6. The algebra M. We give a third version of analogs: an algebra M with bases N and E. Elements of M are invariant under an action of a group G_M .

6.1. DEFINITION. (a) We now define functions $S_M(h) \in K(\mathbb{F}_k)$ which are analogs of the complete symmetric functions. Let $S_M(h) = 1$ if either $h = \emptyset$ or h is a finite sequence of zeros, and

$$S_M(h) = \sum_{\varepsilon_{1,s} \in \{-1,1\}^s} S(\varepsilon_1 l_1, \dots, \varepsilon_s l_s)$$

for other $h \in \mathbb{Z}_{\infty}$, where the sequence $l_{1,s}$ is obtained from h by omission of zeros.

(b) The set of all linear combinations of the $S_M(h)$, where $h \in \mathbb{Z}_{\infty}$, is denoted by M. This is an analog of the algebra of symmetric polynomials.

Applying Lemma 4.2 we have

6.2. LEMMA. Let $q, s \in \mathbb{N}$, $h_{1,q}, l_{1,s} \in (\mathbb{Z} \setminus \{0\})_{\infty}$ and $h_{q+1} = l_0 = \varepsilon_0 = 0$. Then

$$S_M(h_{1,q})S_M(l_{1,s}) = \sum_{t=0}^{\min(q,s)} \sum_{\varepsilon_{1,t} \in \{-1,1\}^t} 2^{t-1+\delta(h_{q+1-t}+\varepsilon_t l_t)}$$

$$\cdot L\left(t, \sum_{u=1}^{t-1} |h_{q+1-u} + \varepsilon_u l_u|, h_{q+1-t} + \varepsilon_t l_t, q-t, s-t\right) \\ \cdot S_M([h_{1,q-t}], h_{q+1-t} + \varepsilon_t l_t, [l_{t+1,s}]).$$

Similarly to Lemmas 4.2 and 5.2 we can stop the summation in Lemma 6.2 when $h_{q+1-t} + \varepsilon_t l_t \neq 0$ (compare remarks before 4.2 and 5.2).

6.3. COROLLARY. $M < K(\mathbb{F}_k)$.

6.4. DEFINITION. We now define a set $N \subseteq M$ which is an analog of the set of the polynomials $\sum_i x_i^l$. We put $N = \{S_M(i) : i \in \mathbb{N}_+\}$.

6.5. THEOREM. (a) Alg $(\{f \in N : d(f) \le i\}) = Alg(\{g \in M : d(g) \le i\})$ for every $i \in \mathbb{N}$.

(b) $\operatorname{Alg}(N) = M$.

Proof. Lemma 6.2 implies that

$$S_M(h_{1,q}) = S_M(h_1)S_M(h_{2,q}) - \sum_{\varepsilon \in \{-1,1\}} 2^{\delta(h_1 + \varepsilon h_2)}L(1,0,h_1 + \varepsilon h_2,0,q-2)S_M(h_1 + \varepsilon h_2,[h_{3,q}])$$

for $2 \leq q \in \mathbb{N}$ and $h_{1,q} \in (\mathbb{Z} \setminus \{0\})_{\infty}$. To prove that $S_M(h_{1,q}) \in \text{Alg}(\{f \in N : d(f) \leq i\})$ if $d(S_M(h_{1,q})) \leq i$, use induction on q.

6.6. THEOREM. The set N is an algebraic basis of M.

Proof. To show the algebraic independence apply induction with respect to $<_1$ considered in $(\mathbb{N}_+)_{\infty}$ (compare Theorem 4.6).

6.7. DEFINITION. We define a set $E \subseteq M$ which is an analog of the elementary symmetric polynomials. We put $E = \{S_M(1_{1,q}) : q \in \mathbb{N}_+\}$.

The connection between elements of E and N is given in Proposition 6.8 which follows from Lemma 6.2.

6.8. PROPOSITION (Euler formula). Let $i \in \mathbb{N}_+$ and $\varepsilon \in \{-1, 1\}$. Then

$$\sum_{t=0}^{i} (-1)^{t} S_{M}(1_{1,t}) S_{M}(i-t)$$

=
$$\sum_{t=1}^{i-1} (-1)^{t} 2^{\delta(i-1-t)} L(1,0,i-1-t,t-1,0) S_{M}(1_{1,t-1},i-1-t)$$

and

$$\sum_{t=0}^{i} (-1)^{t} S_{M}(t) S_{M}(1_{1,i-t})$$

$$=\sum_{t=1}^{i-1} (-1)^t 2^{\delta(i-1-t)} L(1,0,t-1,0,i-t-1) S_M(t-1,1_{1,i-t-1}) . \blacksquare$$

6.9. THEOREM. (a) Alg({ $f \in E : d(f) \le i$ }) = Alg({ $g \in M : d(g) \le i$ }) for every $i \in \mathbb{N}$.

(b) $\operatorname{Alg}(E) = M$.

Proof. (a) We apply Theorem 6.5, Proposition 6.8 and induction on i.

6.10. THEOREM. The set E is algebraically independent. Thus it is an algebraic basis of M.

Proof. This follows from Theorem 5.7 because

$$S_M(1_{1,q}) = \sum_{\varepsilon \in \{-1,1\}^{q-1}} S_C(1, [\varepsilon]) \quad \text{for } q \in \mathbb{N}_+ . \blacksquare$$

6.11. Remark. The algebra M consists of functions invariant under the following length preserving action of the group $G_M = G \times (\mathbb{Z}_2)^{\infty}$ on $K(\mathbb{F}_k)$ (compare Remarks 4.10 and 5.8): if $\sigma \in G$, $\varepsilon = (\varepsilon_t)_{t=1}^{\infty} \in (\mathbb{Z}_2)^{\infty}$, $W(i_{1,q})$ holds, $h_{1,q} \in (\mathbb{Z} \setminus \{0\})^q$ and $f \in K(\mathbb{F}_k)$ then

$$((\sigma,\varepsilon)f)(x_{i_{1,q}}^{h_{1,q}}) = (\sigma f)(x_{i_{1,q}}^{(\varepsilon_1h_1,\ldots,\varepsilon_qh_q)}).$$

7. The algebra λ . We give a version of analogs in the case of the algebra $K(\mathbb{P}_k)$ which consists of noncommutative polynomials. We introduce an algebra λ with algebraic bases e_{λ} and n_{λ} ; the Euler formula also holds in this setting. The algebra λ consists of polynomials invariant under the action of the group G on $K(\mathbb{P}_k)$. We show, in the case of k > 2 generators, that the algebra Λ_{perm} of noncommutative polynomials invariant under permutations of generators cannot be generated by a sum of λ and a finite number of elements of Λ_{perm} .

7.1. DEFINITION. (a) We introduce analogs λ , e_{λ} and n_{λ} of the sets of symmetric polynomials, elementary symmetric polynomials and the polynomials $\sum_{i} x_{i}^{l}$ respectively:

$$\lambda = m \cap K(\mathbb{P}_k), \quad e_{\lambda} = e \cap K(\mathbb{P}_k) \text{ and } n_{\lambda} = n \cap K(\mathbb{P}_k).$$

(b) The functions $S(h) \in K(\mathbb{P}_k)$ for $h \in \mathbb{N}_{\infty}$ are analogs of the complete symmetric functions.

7.2. LEMMA (a special case of Lemma 4.2). Let $q, s \in \mathbb{N}$, $h_{1,q}, l_{1,s} \in (\mathbb{N}_+)_{\infty}$ and $l_0 = h_{q+1} = 0$. Then

$$S(h_{1,q})S(l_{1,s}) = S([h_{1,q}], [l_{1,s}]) + (1 - \delta(qs))S([h_{1,q-1}], h_q + l_1, [l_{2,s}]).$$

7.3. COROLLARY. $\lambda < K(\mathbb{P}_k)$.

7.4. PROPOSITION (follows from Lemma 7.2). Let $q \in \mathbb{N}_+$ and $h_{1,q} \in (\mathbb{N}_+)_{\infty}$. Then

$$S(h_{1,q}) = \sum_{t=1}^{q} (-1)^{t+1} S(h_1 + h_2 + \ldots + h_t) S(h_{t+1,q})$$
$$= \sum_{t=0}^{q-1} (-1)^{q-t-1} S(h_{1,t}) S(h_{t+1} + h_{t+2} + \ldots + h_q) . \blacksquare$$

7.5. THEOREM. (a) (an application of Proposition 7.4 and induction on q). Alg $(\{f \in n_{\lambda} : d(f) \leq i\}) = \text{Alg}(\{g \in \lambda : d(g) \leq i\})$ for every $i \in \mathbb{N}$.

(b) $\operatorname{Alg}(n_{\lambda}) = \operatorname{Alg}(\lambda)$.

7.6. THEOREM. The set n_{λ} is an algebraic basis of λ .

Proof. The fact that n_{λ} is algebraically independent follows from Theorem 4.6 because $n_{\lambda} \subseteq n$.

7.7. PROPOSITION (Euler formula). If $i \in \mathbb{N}_+$ then

$$\sum_{t=0}^{i} (-1)^{t} S(1_{1,t}) S(i-t) = \sum_{t=0}^{i} (-1)^{t} S(i-t) S(1_{1,t}) = 0.$$

Proof. This is a special case of Proposition 4.8 if $\varepsilon = 1$.

7.8. THEOREM. (a) $\operatorname{Alg}(\{f \in e_{\lambda} : d(f) \leq i\}) = \operatorname{Alg}(\{g \in \lambda : d(g) \leq i\})$ for every $i \in \mathbb{N}$.

(b) $\operatorname{Alg}(e_{\lambda}) = \operatorname{Alg}(\lambda).$

Proof. (a) We apply Theorem 7.5, Proposition 7.7 and induction on i.

7.9. THEOREM. The set e_{λ} is an algebraic basis of λ .

Proof. The algebraic independence of e_{λ} follows from Theorem 4.10 because $e_{\lambda} \subseteq e$. ■

7.10. Remarks. (a) The algebra λ consists of functions invariant under the length preserving action of the group G on $K(\mathbb{P}_k)$ (compare Remark 4.11).

(b) M < C < m and $\lambda < m$.

We denote by $\Lambda_{\text{perm}} < K(\mathbb{P}_k)$ the subalgebra composed of functions invariant under permutations of the generators x_1, \ldots, x_k of \mathbb{P}_k . It is clear from the definitions that $\lambda < \Lambda_{\text{perm}}$. Moreover, $\lambda = \Lambda_{\text{perm}}$ for k = 2, which is essential in the proof of the following theorem.

7.11. THEOREM. If k > 2 then the algebra Λ_{perm} cannot be obtained as an algebra generated by λ and a finite number of elements of Λ_{perm} .

Proof. Let $t \in \mathbb{N}_+$, $f_1, \ldots, f_t \in \Lambda_{\text{perm}} \setminus \{0\}$, $T = \lambda \cup \{f_1, \ldots, f_t\}$ and $r = \max\{d(f_u) : u \in \{1, \ldots, t\}\} + 1$, where the degree $d(f_u)$ is defined in Section 2.

In order to show that $\Lambda_{\text{perm}} \setminus \text{Alg}(T) \neq \emptyset$ we consider

$$h = \sum_{i \neq j} x_i x_j^r x_i \in \Lambda_{\text{perm}} \,.$$

It is clear that $h(x_1x_2^rx_1) = 1 \neq 0 = h(x_1x_2^rx_3)$. We prove that $h \notin Alg(T)$.

Let $p \in \mathbb{N}_+$ and let $g_v \in T \setminus K$ for $v \in \{1, \ldots, p\}$. For every $s \in \mathbb{N}$ we obtain

$$g_p(x_2^s x_1) = g_p(x_2^s x_3)$$

because $g_p \in \Lambda_{\text{perm}}$ and

$$g_p(x_1 x_2^r x_1) = g_p(x_1 x_2^r x_3)$$

because if one of $g_p(x_1x_2^rx_1)$, $g_p(x_1x_2^rx_3)$ is nonzero, then $d(g_p) > r$ and $g_p \in \lambda$. Therefore,

$$(g_1g_2\ldots g_p)(x_1x_2^rx_1) = (g_1g_2\ldots g_p)(x_1x_2^rx_3).$$

This yields that the function h cannot be a linear combination of such products $g_1g_2 \ldots g_p$, which means that $h \notin \operatorname{Alg}(T)$.

REFERENCES

- [1] C. Faith, Algebra: Rings, Modules and Categories I, Springer, Berlin, 1973.
- [2] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford, 1979.
- [3] W. Magnus, A. Karras and D. Solitar, *Combinatorial Group Theory*, Pure and Appl. Math., Interscience Publishers, New York, 1966.

INSTITUTE OF MATHEMATICS WROCŁAW UNIVERSITY OF TECHNOLOGY WYBRZEŻE WYSPIAŃSKIEGO 27 50-370 WROCŁAW, POLAND

> Reçu par la Rédaction le 14.3.1990; en version modifiée le 5.3.1993